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ZIRCON U-PB AGES OF THE VALDEZ GROUP AND THE PASSAGE CANAL AND 
BILLINGS PLUTONS, FROM THE PASSAGE CANAL AREA OF PRINCE WILLIAM 
SOUND, ALASKA  
Robert J. Gillis1, Paul B. O'Sullivan2, and Ray A. Donelick2 

 

INTRODUCTION 

The zircon U-Pb results provided in this report supplement geologic mapping of the Passage 
Canal area near Whittier, Alaska, to constrain the ages of major mapped bedrock units (Bull and others, 
2024). These include Cretaceous Valdez Group marine strata and the Passage Canal and Billings 
plutons. Files associated with this publication can be downloaded from doi.org/10.14509/31427. 

LIST OF DELIVERABLES 

• Methods report 
• Summary data spreadsheet and accompanying data dictionary 
• Analytical lab data and accompanying data dictionary provided by GeoSep Services 

METHODS 

Sample Collection 

We selected approximately 10–15 kg of the freshest, most unaltered and unweathered rock available at each 
of three sampled locations. Sample 12BG300A was a medium- to fine-grained sandstone metamorphosed 
to greenschist facies. Samples 12BG303A and 12BG308A were phaneritic intrusive rocks with unaltered 
mafic mineral phases, visible striae on crystal faces, and appeared to be free of chloritic alteration or 
oxidation. Sample locations were recorded using modern, hand-held GPS units set to UTM Zone 6 
(NAD27) coordinates with typical horizontal precision of 9 to 21 feet. Locations presented herein were 
converted to NAD27 geographic coordinates. 

Sample preparation 

Zircon grains were isolated and prepared for Laser Ablation-Inductively Coupled Plasma-Mass 
Spectrometry (LA-ICP-MS) analyses. Each sample was crushed using a jaw crusher to <5 mm, and 
the crushate was sieved using 300-micron nylon mesh. The <300-micron fraction was washed with 
tap water and dried at room temperature in air, and zircon was isolated using standard gravimetric 
and magnetic mineral separation techniques. Zircon grains were mounted in epoxide resin and 
polished to a smooth finish using 0.3-micron alumina slurry. Zircon grain mounts were stirred 
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vigorously in reagent-grade 5.5 molar nitric acid for 20 seconds at 21°C and rinsed with distilled 
water to remove any common lead contamination. 
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LA-ICP-MS Data Collection 

Zircon U-Pb data were acquired at Donelick Properties in Viola, Washington, using a Resonetics 
RESOlution M-50 ArF Excimer 193 nm laser attached to an Agilent 7700x quadrupole inductively 
coupled plasma mass spectrometer using the following standards: 

B2 ~1,128 Ma (Donelick and Donelick, written commun.) 
B3 ~1,128 Ma (Donelick and Donelick, written commun.) 
DR 31.44 ± 0.18 Ma (Boyce and Hodges, 2005; McDowell and others, 2005) 
FC 1,099.0 ± 0.6 Ma (Paces and Miller, 1993)  
F5 1,099.0 ± 0.6 Ma (assumed equal to FC-1) (Paces and Miller, 1993) 
IF 28.201 ± 0.012 Ma (Lanphere and Baadsraard, 2001; Kuiper and others, 2008) 
MD 99.12 ± 0.14 Ma (Renne and others, 1998) 
MM 523.98 ± 0.12 Ma (Schoene and Bowring, 2006) 
MT 732 ± 5 Ma (Black and Gulson, 1978; Yuan and others, 2008) 
OL 913 ± 7 Ma (Barfod and others, 2005) 
S9 1,065.4 ± 0.6 Ma (Yuan and others, 2008; Weidenbeck and others, 1995) 
TI 390.5 ± 0.5 Ma (Roden and others, 1990) 

 

LA-ICP-MS Data Modeling  

The data for each spot on a single zircon grain were characterized by a series of data scans, each 
scan representing one measurement for each mass in order of increasing mass. The series of data scans 
may be divided into background and signal+background segments. Background represents data 
collected prior to firing the laser. Signal+background represents data collected during laser ablation of 
the spot. 

The following steps were taken to determine background-corrected signal intensities for each mass 
analyzed for each spot: (1) the true time was calculated over which each measurement was collected for each 
mass for each scan; the time at which background ends and signal+background begins was determined using 
selected masses; (2) a line was fitted to all background values for each mass prior to the time at which background 
ends; (3) outlier background values were removed and the regression repeated. For a negative slope, the 
background value for the current mass was set equal to the value of the line at the time at which background 
ends; the error was set equal to the standard deviation of the background values about the fitted line. For zero or 
positive slope, the background value for the current mass was set equal to the mean of the fitted background 
values; the error was set equal to the standard deviation of the background values about the mean. 

• Signal+background values were smoothed (versus scan number) for each mass using a Savitzky 
and Golay (1964) filter based on the median of fitted polynomials; the error of each 
signal+background value was set equal to the standard deviation of the signal+background values 
about the smoothed curve. 

• Background-corrected signal values were calculated by subtracting background from signal+back-
round values. Background-corrected signal error values were calculated using background error 
and signal+backround error values. 
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The following steps were taken to calculate isotopic ages and their errors for each spot in a session: 

In each primary standard spot, common Pb was assumed negligible, and fractionation factors 
(accepted isotopic ratio divided by the measured ratio) and their errors were calculated for each scan 
using background-corrected signal values and their errors (Donelick and others, 2009). Fractionation 
factors and their errors were smoothed (versus spot number) using a Savitzky and Golay (1964) filter 
based on the median of fitted polynomials. Fractionation factors and their errors were used by 
interpolation/extrapolation to calculate ages and their errors for each scan at each spot in the session. 
Only concordant scans, where all ages overlap at the 2-sigma (σ) error level, were used to calculate 
weighted-mean isotopic ratios for a spot. Weighted-mean isotopic ratios of concordant scans were 
used to calculate the isotopic ages for a spot. For all spots in a session, a value proportional to radiation 
dose (function of calculated isotopic age, uranium, and thorium contents) was calculated. Also, the 
ratio of accepted isotopic age versus measured isotopic age was calculated for each primary and 
secondary standard spot. A linear regression was obtained giving isotopic age ratio for the standards 
versus radiation dose. Ages were again calculated for concordant scans using weighted-mean isotopic 
ratios corrected for radiation dose (Donelick and others, 2009). 

The data were considered concordant if their ratios overlapped concordia within 2σ analytical uncertainty 
(Spencer and others, 2016). Systematic uncertainties were propagated by quadrature prior to calculation of the 
weighted mean of all magmatic samples (Horstwood and others, 2016). For determining the maximum 
depositional date from detrital samples, systematic uncertainties were added by quadrature to the weighted 
mean of the youngest cluster of grain dates that overlapped within 2σ (Horstwood and others, 2016; Coutts and 
others, 2019). For this study, all weighted-mean calculations, and weighted mean, Concordia, and kernel density 
estimate plots were determined and produced using IsoplotR (Vermeesch, 2018). 

Maximum depositional ages (MDA) defined by populations of young zircons were determined for the 
Valdez Group sample. To determine its MDA, we calculated the youngest statistical population (youngest 
statistical population [YSP]; Coutts and others, 2019; Herriott and others, 2019). This approach is a reliable 
means of calculating an MDA with a low likelihood of producing a date that is younger than the true 
stratigraphic age of the sampled interval (Coutts and others, 2019). 

Determining the crystallization age of an igneous rock requires dating only zircons that grew 
immediately prior to magma crystallization (autocrystic grains; Miller and others, 2007). However, 
igneous rocks can contain significant quantities of antecrystic zircons (older grains that suggest long 
magma residence times [Hildreth, 2001; Charlier and others, 2005]) and xenocrystic grains inherited 
from wall rock that must be excluded prior to calculating the weighted mean (WM). Few strategies have 
been developed for distinguishing antecrystic and xenocrystic grains in LA-ICP-MS data (e.g., Campbell 
and others, 2006; Seigel and others, 2018), and a standardized approach for doing so has not been 
established. We, therefore, use the commonly adopted method of calculating the WM of the entire zircon 
distribution, recognizing that the resulting mean standard weighted deviation (MSWD) is much greater 
than 1.0 and the probability of fits of zero indicates dispersion of dates greater than expected for a 
genetically congruent population. 
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Sample Descriptions 

Sample 12BG300A – Valdez Group 

Sample12BG300A (Latitude/Longitude: 60.80260/-148.85042) is a fine-upper to medium-lower 
grain size, moderately sorted sandstone with subrounded to subangular grains. The sample is 
metamorphosed to greenschist facies and outcrops near minor, medium-bedded slate with possible 
weak S-C fabric parallel to bedding. 

Sample 12BG303A – Passage Canal Pluton 

Sample 12BG303A (Latitude/Longitude: 60.86881/-148.49242) is a granite composed of 34 
percent granophyric potassium feldspar crystals 3 mm to 1 cm long with Carlsbad twinning and 
plagioclase inclusions. Quartz crystals 2 mm to 1 cm long constitute 34 percent of the sample with 
overgrowths on some crystals and tiny unidentified inclusions. Undulose extinction and embayed, 
cracked quartz crystals are common. The rock consists of 24 percent plagioclase crystals with sericite 
and lamellar twins, 2 to 4 mm long. Biotite crystals (3 percent) are variably altered to chlorite, and 
exhibit dark red-brown and light brown pleochroism; some show birds-eye extinction. The sample 
also contains trace muscovite and opaques (the latter often enclosed within altered biotite). 

Sample 12BG308A – Billings Pluton 

12BG308A (Latitude/Longitude: 60.85443/-148.59760) is a granite consisting of 34 percent 
granophyric potassium feldspar crystals 3 mm to 1 cm long with Carlsbad twinning and plagioclase 
inclusions. Thirty-four percent quartz crystals 2 mm to 1 cm long with overgrowths on some crystals 
and tiny unidentified inclusions. Common undulose extinction and embayed, cracked crystals. 
Twenty-four percent plagioclase 2 to 4 mm long, commonly with sericite and lamellar twins. Three 
to 5 percent biotite, mostly altered to chlorite with dark red-brown and light brown pleochroism; 
Some birds-eye extinction. Some muscovite and trace opaques (the latter often enclosed within 
altered biotite). Plagioclase and potassium feldspars exhibit possible perthitic textures.  
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RESULTS 

Sample 12BG300A – Valdez Group: 66.1±1.5 (MSWD=1.01, probability of fit [PoF] =0.36) 
Maximum Depositional Age 

 

Figure 1. Concordia diagram of individual zircon U-Pb analyses for sample 12BG300A.  
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Figure 2. Kernel density estimate of detrital zircon distribution of all dated grains and inset showing distribution from 0 
to 400 Ma for sample 12BG300A. 
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Figure 3. Ranked date plot of entire detrital zircon distribution and inset showing dates calculated for the weighted-
mean maximum depositional age for sample 12BG300A. See Bull and others (2024) for a discussion of zircon date 
selection for this sample. 
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Sample 12BG303A – Passage Canal Pluton: 38.7±0.9 Ma (n=56, MSWD=2.86, PoF=0.00) 
Crystallization Age 

 

Figure 4. Concordia diagram of individual zircon U-Pb analyses for sample 12BG303A. 
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Figure 5. Ranked date plot of entire zircon distribution for sample 12BG303A.  
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Sample 12BG308A – Billings Pluton: 38.8±0.8 Ma (n=57, MSWD=2.24, PoF=0.00) 
Crystallization Age 

 

Figure 6. Concordia diagram of individual zircon U-Pb analyses for sample 12BG308A.  
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Figure 7. Ranked date plot of entire zircon distribution for sample 12BG308A. 
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