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CORRELATION OF MAP UNITS
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DESCRIPTION OF MAP UNITS

Unconsolidated Deposits

ACTIVE-FLOODPLAIN ALLUVIUM—Chiefly well-sorted and well-stratified layers and lenses of silt, sand, and

polymictic gravel (pebbles and cobbles) comprising river bars subject to frequent inundations by streams; the
mapped extent is a function of river level (stage) and reflects the transitory extent of exposed river bars at the
time the photographs were taken; active alluvium underlies all active stream channels; composed dominantly
of gravel and sand where stream is braided and sand and silt cover deposits and bars where meandering;

generally unfrozen with shallow water table

INACTIVE-FLOODPLAIN ALLUVIUM—Chiefly 10 to 20 ft of overbank silty sand and sandy silt overlying grav-

elly, polymictic riverbed sand and sandy gravel beneath surfaces subject to stream flooding at least as often
as once or twice every century (Mason and Begét, 1991); may include more than one surface; surface peat
generally absent; moisture contents range from 9 to 21 percent and average about 13 percent; generally un-
frozen in younger areas and discontinuously frozen in older areas with low to moderate ice content; active

channels are floored by 5 to 20 ft of sand and silty sand that are generally unfrozen; fills of inactive channels
include 7 to 12 ft of discontinuously frozen organic silt with moderate to high ice content over sand and grav-
elly sand

ABANDONED-FLOODPLAIN ALLUVIUM—Chiefly 10 to 20 ft of overbank sandy silt and silty sand overlying
sandy, polymictic riverbed gravel beneath surfaces with widespread lowland loess and local sand dunes and
subject to stream flooding about once every 500 to 1,000 years (Mann and others, 1995); may include several
surface levels; overbank sequences contain organic-silt channel fills 7 to 20 ft thick; surface peat generally

discontinuous to widespread; generally frozen with low to moderate ice content

UNDIFFERENTIATED GLACIAL AND NONGLACIAL ALLUVIUM—Primarily coarse, polymictic gravel and sand
deposited by former proglacial streams of the Delta glaciation and locally covered along courses of nonglacial

streams by postglacial alluvium; may be terraced; locally mantled by loess and eolian sand; locally subject to
seasonal stream icings; sporadically frozen with low ice content

STREAM-TERRACE ALLUVIUM—Chiefly 4 to more than 20 ft of organic sandy silt and silty sand overlying

well-sorted, polymictic sand and gravel beneath stream terrace treads no longer subject to inundations by the
stream that deposited the alluvium (Kreig and Reger, 1982); may include several levels and incorporate out-
wash alluvium in highest terraces; locally covered by up to 15 ft of lowland loess and eolian sand-blanket and
dune complexes; locally subject to seasonal stream icings; continuously to discontinuously frozen with low to

moderate ice content

MIXED COLLUVIUM AND ALLUVIAL DEPOSITS—Primarily fan-shaped, massive to poorly stratified fine ma-
terial mixed with polymictic pebble and cobble gravel laid down by small, ephemeral streams draining glacial

and eolian-cover deposits; discontinuously to continuously frozen with moderate to high ice content

LOESS—Silt with up to 15 percent very fine sand carried by winds and deposited as a blanket over the down-
wind topography (Péwé, 1951, 1955a); mixed with eolian sand on lower slopes and on lowland surfaces close

to floodplain sources; thickness ranges from >20 ft close to Delta River to �2 ft elsewhere (Lindholm and
others, 1959); organic rich on lower slopes and lowland sites; moderate to high moisture content (more than

15 percent moisture) in lowland sites; generally unfrozen, except discontinuously frozen and ice rich on some
lower south-facing slopes and continuously frozen and ice rich on some lower north-facing slopes and lowland
sites

RETRANSPORTED LOESS AND LOWLAND SILT—Chiefly organic silt with variable amounts of sand and
lenses of locally derived gravel that are deposited by slope runoff and seasonal streams draining bedrock
slopes covered by upland silt; complexly mixed with primary airfall loess laid down on lowland sites and
debris-flow deposits; subject to seasonal stream and slope icings; discontinuously to continuously frozen with

moderate to high ice content

DUNE SAND—Chiefly fine eolian sand with trace amounts (2 to 16 percent) of silt (Kreig and Reger, 1982, pl.

9); dunes stand 5 to 10 ft in relief; discontinuous with thicknesses up to �25 ft (Schoephorster, 1973); thicker

and more extensive west of Delta River; generally covered by up to 2 ft of loess (Lindholm and others, 1959);
moisture content is low (3 to 4 percent); discontinuously frozen

TILL AND ASSOCIATED MORAINAL DEPOSITS OF DELTA GLACIATION—Heterogeneous, nonstratified, poly-
mictic pebble–cobble gravel with some sand and silt and few to numerous subangular to subrounded boul-
ders deposited by glacial ice; discontinuously mantled by eolian sand and loess; discontinuously to continu-
ously frozen with low to moderate ice content (Péwé and Holmes, 1964; Holmes, 1965)

OUTWASH ALLUVIUM—Polymictic sand and gravel deposited by former proglacial streams; may be terraced;
mantled by loess and eolian sand; locally subject to seasonal stream icings; sporadically to discontinuously

frozen with low ice content

OUTWASH OF DELTA GLACIATION (Péwé and Holmes, 1964; Holmes, 1965)

OUTWASH OF DONNELLY GLACIATION (Péwé and Holmes, 1964; Holmes, 1965)

DEPOSITS OF ICE-SHOVED RAMPARTS—Chiefly well-sorted and complexly deformed polymictic pebble–
cobble gravel with some medium to coarse sand pushed into a system of double 3- to 5-ft-high ridges around

the northwestern margin of Quartz Lake by wind-driven, drifting lake ice (Péwé and Reger, 1983a, figs. 22A,
B); contains numerous cobbles of Alaska Range lithologies that are faceted, grooved, and polished by wind-
blown sand into ventifacts, many of which bear caliche rinds; discontinuously frozen with low ice content

SWAMP DEPOSIT—Primarily fibrous and locally woody autochthonous peat with organic silt and sand depos-
ited in lowland sites (Kreig and Reger, 1982); up to 8 ft thick; discontinuously to continuously frozen with
moderate to high ice content

Bedrock

QUARTZITE AND SCHIST—Chiefly quartzite with common quartz–mica schist and lesser feldspathic quartz-

ite; generally garnetiferous, locally actinolitic and gneissic (Weber and others, 1977, 1978)

AUGEN GNEISS AND BIOTITE GNEISS—Chiefly medium- to coarse-grained, foliated and typically mylonitic
augen gneiss with subordinate augen schist and biotite gneiss of amphibolite metamorphic facies in bedrock

uplands of southern Yukon–Tanana terrane (Weber, 1971; Weber and others, 1977, 1978; Foster and others,
1973; Aleinikoff and others, 1986); generally unfrozen on south-facing slopes, sporadically to discontinuously
frozen on lower east- and west-facing slopes, and continuously frozen on north-facing slopes, all with low ice

content

QUARTZ–BIOTITE GNEISS—Medium-grained, well-foliated and banded to massive gneiss interbedded with
quartzite in bedrock uplands of the southern Yukon–Tanana terrane (Weber, 1971; Weber and others, 1977;

1978; Foster and others, 1973; Aleinikoff and others, 1986); weathered as deep as 50 ft; generally unfrozen on
south-facing slopes, sporadically to discontinuously frozen on lower east- and west-facing slopes, and con-
tinuously frozen on north-facing slopes, all with low ice content

Discussion

The Big Delta A-4 Quadrangle is situated at the junction of the lower Delta River valley and the upper Tanana
River valley. For millennia, people living in east-central Alaska have passed through this area on their jour-
neys to the southern coast or farther into central Alaska. At the settlement of Delta Junction in the south-

central part of the quadrangle is the junction of the Alaska Highway (commonly known as the “Alcan”), which
has provided road access into Canada and the contiguous United States since the 1940s, and the Richardson
Highway, a historic route between Fairbanks and Valdez on the shore of Prince William Sound. During the
early 1970s the trans-Alaska oil pipeline (TAPS) was built through this area to carry petroleum from huge

reservoirs beneath Alaska’s North Slope to the southern shipping terminal at Valdez. A modest, state-sup-
ported agriculture effort, based mostly on the growing of feed crops, like barley, was begun in the area in the
late 1970s and has marginally persisted. Currently, ambitious plans are being developed for an extension of
the Alaska Railroad southeastward from Fairbanks to the Canadian border and for construction of a high-

pressure natural-gas pipeline that closely follows the Alaska Highway. Just south of this quadrangle, the
military facility of Fort Greely is being seriously considered for expansion as part of the strategic missile-
defense system.

The climate in the Big Delta A-4 Quadrangle is continental, characterized by extreme temperatures ranging
from the high 80s to low 90s°F in summer to as cold as -65°F in winter (Péwé and Holmes, 1964). Mean

annual temperature at Delta Junction is about 27°F (de Percin and others in Péwé and Holmes, 1964). Per-

mafrost is generally discontinuous. However, coarse-grained outwash alluvium away from modern streams

contains relatively shallow, small bodies of modern permafrost (Wilcox, 1980), and at greater depths there are
isolated masses of relict permafrost (Péwé, 1955b). In near-surface silty sand capping the outwash fan north
of Delta Junction, where microclimates are exceptionally cold, small ice wedges are actively forming (Péwé and
Reger, 1983a). In the northern third of the quadrangle, there are continuous, ice-rich masses in retrans-

ported organic silt and sand and in peat-rich bog deposits covering treads of higher terraces (Kreig and Reger,
1982).

Annual precipitation is �11 inches, two-thirds of which falls as rain, and average annual snowfall is �3 ft.

Because of its location at the junction of two large topographic corridors, the Big Delta A-4 area is subject to
considerable strong-wind activity in contrast to most of the Interior (Mitchell, 1956). During a 20-yr period

between 1949 and 1969 and considering only winds blowing more than about 11 mph, about 70 percent of
these strong winds come from the south down the Delta River corridor during the summer in contrast to 40 to
>95 percent from the east–southeast in the winter (Wendler and others, 1980). Wind velocities in excess of 95
mph have been recorded at the FAA station just south of Delta Junction (Péwé and Holmes, 1964).

In the past, strong surface winds passing across the unvegetated fluvial bars and floodplain surfaces of the
Delta River picked up and spread considerable sand and silt across leeward surfaces east and west of the
Delta River (Péwé, 1951; fig. 1). Eolian deposits are much thicker and widespread west of the Delta River

than to the east. Similarly, winds from the south deposited eolian sand in a narrow belt of cliffhead dunes
along the east side of the Tanana River before 8,000 14C yr ago (Péwé and Reger, 1983a)(table 1, A) and in late
Wisconsin time blanketed upland and lowland sites near the Tanana River with eolian sand and loess
(Holmes, 1996; Holmes and others, 1996). Loess deposition continues today in the area (fig. 1). We speculate

that a thin, white tephra near the base of thick loess sections along the eastern floodplain margin of the Delta
River near its junction with the Tanana River is part of bed G of the Hayes tephra set H (Riehle and others,
1990; Riehle, 1994, fig. 1) [=Jarvis Ash Bed of Reger and others (1964) and Péwé (1975b) and Jarvis Creek

Ash of Begét and others (1991)]. Although the Hayes tephra set has been radiocarbon dated at between 3,500
and 3,800 14C yr B.P. (Riehle and others, 1990), a series of dates in the central Alaska Range (Begét and
others, 1991) places deposition of lobe G at close to 3,660 ± 125 14C yr B.P.

Major streams crossing the Big Delta A-4 Quadrangle are the Tanana River and the Delta River, which are
large, glacier-fed, braided streams draining the eastern and central Alaska Range, respectively (Anderson,
1970; Dingman and others, 1971; Nelson, 1995). Active bars and the floodplain of the Tanana River are sur-

faced by silty sand, resulting in liquefaction conditions that necessitated the special elevated design of the
Tanana River crossing (Péwé and Reger, 1983a). Based on the records taken from a single gage maintained
by the U.S. Geological Survey from 1948 to 1957, the flow of the Tanana River at the highway and TAPS
crossing ranged from 3,720 cfs to 62,800 cfs and averaged 14,950 cfs (Wilcox, 1980). The more intensively

braided bars of the Delta River are composed of �60 percent gravel and �40 percent sand, although local sur-

faces are underlain by �90 percent sand and �10 percent silt (Péwé and Holmes, 1964). Periodic summer

measurements of the discharge of the Delta River indicate considerable flow variation, from 24 to 9,930 cfs
(Wilcox, 1980), and Dingman and others (1971) thought there was no surface flow for half the year. Jarvis
Creek, a small, glacier-fed tributary stream, enters the Delta River just south of the Big Delta A-4 Quadrangle;

it has a history of flooding in response to the buildup of winter icings on the floodplain. Flood waters formerly
coursed down the obvious abandoned channel to enter the Delta River about 1 mi north of Delta Junction,
and each spring floodwaters from ice-blocked Jarvis Creek flow along the base of the high escarpment 2 mi
northeast of Delta Junction (Salcha–Big Delta Soil and Water Conservation District, 1985). Flooding in 1976

left mud rinds on tree trunks up to 3 ft above ground level along the base of the escarpment.

Widespread, coarse-grained outwash alluvium in the southern portion of the quadrangle provides excellent
supplies of groundwater (Péwé, 1955b; Wilcox, 1980). The regional water table slopes gently northward

toward the Tanana River beneath scattered permafrost bodies and is probably recharged by water from sev-
eral surface streams (Wilcox, 1980). The high-discharge spring system feeding Clearwater Lake provides an
important and dependable spawning and overwintering habitat for fish. Extensive areas of the floodplain of
the Delta River are inundated by stream icings due to groundwater seepage each winter (Sloan and others,

1976).

Surface evidence of at least two major glaciations is preserved in the Big Delta A-4 Quadrangle. The type ter-
minal moraine and associated outwash alluvium of the earlier Delta glaciation are breached by the Delta

River. Till of this advance contains numerous rock types cropping out in the Alaska Range to the south.
Cobbles of Alaska Range lithologies litter the surface of proximal outwash of Delta age beneath discontinuous,
thin dunes of medium to coarse sand along Jack Warren Road (Péwé and Reger, 1983b), where they are pit-
ted, faceted, grooved, and polished into classic ventifacts. A prominent linear scarp along the southern shore

of Clearwater Lake between outwash of Delta age and modern floodplain deposits has been identified as a
possible fault scarp by various workers in the past (for example, Weber, 1971; Carter and Galloway, 1978) but
careful examination of extensive trench exposures and geophysical surveys across this lineament found no
evidence of a fault (Alyeska Pipeline Service Company, unpublished data). Among others, Lindholm and

others (1959, p. 40) concluded that the Clearwater Lake scarp was cut along the margin of the braided
Tanana River.

Primary evidence in the Big Delta A-4 Quadrangle for the younger Donnelly glaciation is the extensive out-

wash fan and terrace system bordering the Delta and Tanana rivers. These glaciofluvial deposits can be
traced southward up the Delta River to the type terminal moraine of the Donnelly glaciation in the Mount
Hayes D-4 Quadrangle (Péwé and Holmes, 1964). A broad fan of outwash of Donnelly age and postglacial
stream alluvium spreads northward from Delta Junction to the Tanana River. Abandoned channels of small

meandering streams thread across this fan surface and pass beside and between two bands of postglacial
sand dunes east of the Richardson Highway (Lindholm and others, 1959). To the northwest, lateral tracing
indicates that coarse outwash alluvium, which is overlain by up to 14 ft of frozen, ice-rich silt and peat to
form the extensive Shaw Creek Flats (Kreig and Reger, 1982), is Donnelly in age, not Delta in age as earlier

proposed by Péwé in Péwé (1965a) and Péwé and Reger (1983a). This surface was the source of the sand
swept by strong winds into the distinctive and episodically reactivated Rosa Creek dune field north of the Big
Delta A-4 Quadrangle during the Donnelly glaciation (Kreig and Reger, 1982). During this time, the outwash

alluvium beneath modern Quartz Lake was exposed, and the ventifacted cobbles now found in the ice-shoved
ramparts bordering the lake were fashioned by windblown sand.

The age of the Delta glaciation has long been debated. Péwé and others (1953) initially assigned the Delta

advance to the early Wisconsin glaciation, but later, on the basis of semiquantitative relative-age criteria, the
Delta glaciation and its correlatives were reassigned to the earlier Illinoian glaciation (Péwé and Reger, 1983b,
fig. 33). However, others working in valleys along the northern flank of the central Alaska Range and in the
nearby Yukon–Tanana Upland have continued to advocate an early Wisconsin age for the Delta glaciation

(Weber and others, 1981; Hamilton, 1982, 1994; Ten Brink, 1983; Weber and Hamilton, 1984; Thorson,
1986; Weber, 1983, 1986). More recent tephrochronological results provide important evidence to perhaps
resolve this controversy. Reworked angular fragments of tephra at the base of unit 5 in the Canyon Creek
section northwest of this quadrangle were initially and tentatively identified as the Dome Ash Bed of Péwé

(1975a) by tephrochronologist John Westgate and determined to overlie (and therefore postdate) outwash
alluvium assigned to the upper terrace of the Tanana River, which was correlated with the Delta glaciation
(Weber and others, 1981, p. 177). The tephra in unit 5 of the Canyon Creek cut was later correlated with the
Sheep Creek tephra in the Fairbanks area, not the Dome Ash Bed (Hamilton and Biscoff, 1984). A question

unanswered by the evidence in the Canyon Creek section is how soon after its initial deposition was the
Sheep Creek tephra retransported and redeposited in unit 5. Clearly, reworking occurred prior to deposition
of unit 6, which is crosscut by ice-wedge casts and may represent cold conditions during the Donnelly glacia-
tion (Weber and others, 1981, p. 177). Near Fairbanks the Sheep Creek tephra is found stratigraphically in

the upper Gold Hill Loess beneath the Eva Forest Bed of the last interglaciation and beneath the widespread
Old Crow tephra, which is dated by the fission-track method at 140,000 ± 10,000 yr B.P. (Péwé and others,
1997; Preece and others, 1999). Subsequently, the Sheep Creek tephra has been dated by the thermolumi-
nescence method at 190,000 ± 20,000 yr B.P. (Berger and others, 1996), also confirming its deposition prior

to the last interglaciation. In the western Yukon Territory, Hughes (1989) reported the Sheep Creek tephra
overlying outwash attributed to the Reid glaciation and, as a result, correlated the Reid glaciation with the
Delta glaciation. Therefore, both the Reid glaciation in the western Yukon Territory and the Delta glaciation
must also predate the last interglaciation. In a recent paper, Westgate and others (2001) cite stratigraphic

evidence in the central Yukon that indicates the Reid glaciation is at least as old as oxygen-isotope stage 8

(�250,000 yr) and could be older. However, in most valleys beyond the heavy rain of eolian material from the
lower Delta River, moraines of Delta and Donnelly ages have very similar morphologies and do not appear to

be weathered much differently. Also, in the type area of the Delta glaciation, there is an inner and an outer
moraine of Delta age (Péwé and Holmes, 1964). We speculate that the inner Delta-age moraine may represent
a recessional moraine of late Illinoian age.

Although Péwé initially assigned the Donnelly glaciation to the late Wisconsin glaciation (Péwé and others,
1953), in subsequent papers (Péwé, 1961, 1965b, 1968, 1975a; Péwé and Holmes, 1964; Péwé and Reger,

1983b) he consistently proposed that the Donnelly and its correlatives spanned all of Wisconsin time, and
Fernald (1965a, b), Holmes (1965), and Holmes and Foster (1968) concurred. However, on the basis of several
limiting radiocarbon dates and other supporting evidence, most workers assign the Donnelly glaciation to late
Wisconsin time (Wahrhaftig, 1958; Ten Brink and Ritter, 1980; Hamilton, 1982, 1994; Ten Brink, 1983; Ritter

and Ten Brink, 1986; Kline and Bundtzen, 1986; Weber, 1986). As first publicly reported in Weber and
others (1981, p. 177), deposition of outwash gravels of Donnelly age on the large fan north of Delta Junction
ended close to 18–20,000 yr ago. This age is based on three internally consistent radiocarbon dates from the
upper part of the outwash gravel (Alyeska Pipeline Service Company, unpublished data). This outwash fan

clearly relates to the culmination of the Donnelly glaciation (=McKinley Park stade I of Ten Brink, 1983) as

represented by the type terminal moraine. Therefore, the Donnelly glaciation must be late Wisconsin in age.

The small meandering channels crossing the outwash fan north of Delta Junction were still active after 8,100
14C yr B.P. (table 1, B and C).
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Radiocarbon age

(14C yr B.P.)

Calibrated mean age

and 1 σ rangea

(cal. yr B.P.) Source

A GX-0255 Wood charcoal from

depth of 4 ft near

base of surface loess
and above tan, cross-

bedded eolian sand

Maximum age for initiation

of loess deposition on this

terrace. Minimum age for
deposition of underlying

eolian sand

8,040 ± 190 9,000

9,260–8,600

Péwé and

Reger

(1983a, p. 40)

B GX-4293 Wood charcoal from

top of 2.5-inch-thick

pinkish paleosol at
the top of the lower

yellowish fluvial silt

8 inches above con-

tact with underlying
sand and gravel;

overlain by 6 ft of

yellowish fluvial silt

Dates pinkish paleosol; pro-

vides minimum age for

deposition of lower fluvial
silt and maximum age for

deposition of the upper flu-

vial silt

8,125 ± 260 9,030

9,470–8,610

This study

C GX-4292 Wood charcoal from
pinkish paleosol at

top of lower yellow-

ish fluvial silt 12

inches above contact
with underlying sand

and gravel; overlain

by 6 ft of yellowish

fluvial silt

Dates pinkish paleosol; pro-
vides minimum age for

deposition of lower fluvial

silt and maximum age for

deposition of the upper flu-
vial silt

8,150 ± 255 9,080, 9,060, 9,050,
9,030

9,470–8,640

This study

a Rounded to nearest 10 yr. Combines standard deviation in radiocarbon age and a conservative laboratory error multiplier, square root of (sample
standard deviation squared plus curve standard deviation squared) (Stuiver and Reimer, 1993). Data set used in calibration can be found in

Radiocarbon, v. 40, p. 1041-1083 (1998).
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Figure 1. Oblique aerial photograph (looking north) showing clouds of silt being transported from the braided
floodplain of the lower Delta River by strong east winds. Photograph taken by U.S. Navy in 1948

(Péwé, 1975a, fig. 21).

Table 1. Summary of radiocarbon dates associated with late Quaternary deposits in the Big Delta A-4 Quadrangle, Alaska.


