STATE OF ALASKA

DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL AND GEOPHYSICAL SURVEYS

Bill Sheffield, Governor

Esther C. Wunnicke, Commissioner

Pedro Denton, Director

September 1986

This report is a preliminary publication of DGGS. The author is solely responsible for its content and will appreciate candid comments on the accuracy of the data as well as suggestions to improve the report.

Report of Investigations 86-22 SUMMARY OF ALASKA EARTHQUAKES FOR THE PERIOD APRIL, MAY, AND JUNE 1985

Compiled by Hans Pulpan and J.N. Davies

STATE OF ALASKA Department of Natural Resources DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS

According to Alaska Statute 41, the Alaska Division of Geological and Geophysical Surveys is charged with conducting 'geological and geophysical surveys to determine the potential of Alaskan land for production of metals, minerals, fuels, and geothermal resources; the locations and supplies of ground water and construction materials: the potential geologic hazards to buildings, roads, bridges, and other installations and structures; and shall conduct such other surveys and investigations as will advance knowledge of the geology of Alaska.'

In addition, the Division of Geological and Geophysical Surveys shall collect, record, evaluate, and distribute data on the quantity, quality, and location of underground, surface, and coastal water of the state; publish or have published data on the water of the state and require that the results and findings of surveys of water quality, quantity, and location be filed; require that water-well contractors file basic water and aquifer data, including but not limited to well location, estimated elevation, welldriller's logs, pumping tests, flow measurements, and water-quality determinations; accept and spend funds for the purposes of this section, AS 41.08.017 and 41.08.035, and enter into agreements with individuals, public or private agencies, communities, private industry, and state and federal agencies; collect, record, evaluate, archive, and distribute data on seismic events and engineering geology of the state; and identify and inform public officials and industry about potential seismic hazards that might affect development in the state.

DGGS offices are located at:

(Basement) Fairbanks, 99709 (907)474-7147

.400 Willoughby Center (3rd fl.) Juneau, 99801 (907)465-3400

.794 University Ave. .3601 C St. (8th fl.) P.O. Box 7028 Anchorage, 99510 (907) 561-2020

> .Fish Hatchery Road P.O. Box 772116 Eagle River, 99577 (907)688-3555

This report is for sale by DGGS for \$2. DGGS publications may be inspected at the following locations. Mail orders should be addressed to the Fairbanks office.

> .794 University Ave. (Basement) Fairbanks, 99709

.3601 C St. (8th f1.) P.O. Box 7028 Anchorage, 99510

.400 Willoughby Center (4th fl.) Juneau, 99801

CONTENTS

			Page
			1
		ion	1
		ing	1
•		els	6 7
_		agnitude	8
		thquakes	-
		events	13
	_	nts	13
		ited	15
Appendix	B -	Modified Mercalli scale	16
dur	ing	the second quarter 1985	18
		Data for Alaska earthquakes of all magnitudes that were	
loc	ated	during the second quarter 1985	21
		FIGURES	
Figure	ı.	Map of all seismic-network stations operated by the	
		University of Alaska and by other organizations	_
		whose data were used in this report	2
	2.	Station-use record	4
	3.	Graph showing the typical response of a seismic-network station operated by the University of Alaska	
		Geophysical Institute	5
	4.	Map showing epicenter locations of earthquakes that occurred north of lat 61° N. during the second	
		quarter of 1985	9
	5.	Map showing epicenter locations of earthquakes of M \geq 3 that occurred north of lat 61° N. during the second	
		quarter of 1985	10
	6.	Map showing epicenter locations of earthquakes that occurred south of lat 61° N. during the second	
		quarter of 1985	11
	7.	Map showing epicenter locations of earthquakes of $M_L \ge 3$ that occurred south of lat 61° N. during the second	
	,	quarter of 1985	12
	8.	Map showing epicenter locations of earthquakes that	
		occurred in the second quarter of 1985 and are not	
		shown in figures 4 or 5	14
		TABLES	
Table	1.	Names and parameters of seismic-network stations used	_
		to prepare this report	3
	2.	Velocity model 1	6
	3.	Velocity model 2	7
	4.	Velocity model 3	7

SUMMARY OF ALASKA EARTHQUAKES FOR THE PERIOD APRIL, MAY, AND JUNE 1985

Compiled by Hans Pulpan and J.N. Davies 2

INTRODUCTION

This report lists the parameters of earthquakes that occur in and near areas encompassed by the network of seismograph stations operated or recorded by the University of Alaska Geophysical Institute (UAGI) (fig. 1; table 1). The goal of this report is to provide a convenient reference source for earthquake activity in the seismic-network area and quantitative information that researchers, administrators, planners, and other interested people can use. Therefore, this report contains hypocentral parameters and information about the quality of data and precision of the parameters. Because of the substantial quantity of data, this report is based on routine data processing. However, earthquakes are located as accurately and with as many useful data as possible. Additional data and more sophisticated methods of analysis might lead to more accurate locations.

DATA COLLECTION

The data used in this report are derived from two principal sources: seismic stations operated by UAGI and seismic stations operated by other agencies whose data are continuously recorded by UAGI under data-sharing or data-exchange agreements. For earthquakes of local magnitude $(M_L) \geq 3$, we receive records of earthquake arrival times at several stations of the Alaska Tsunami Warning System that is operated by the National Oceanic and Atmospheric Administration (NOAA).

Signals from various stations are transmitted by UAGI-operated VHF-radio links and leased commercial-telephone circuits to one of two recording centers in Homer and Fairbanks that are operated by the University of Alaska. Remote stations are serviced and calibrated annually; stations easily accessible by road are serviced more frequently if necessary. Difficult access to many stations can result in lengthy data losses if instruments have malfunctioned. Significant data losses result in lower detection thresholds and poorer solution qualities for earthquakes in the affected regions. To discern such conditions, a station-use record is provided in figure 2.

Data are recorded on 16-mm film on several Teledyne Geotech Develocorders that have a 20-channel capacity. Satellite-linked clocks provide time marks that are superimposed on the records. Figure 3 shows the typical response of the seismic-network system from transducer to recorder.

DATA PROCESSING

Arrival times of body waves are read from the 16-mm film with Geotech filmviewers that provide a time resolution of 0.1 s/mm. Thus, the impulsive arrivals can be read to 0.05 s.

University of Alaska Geophysical Institute, Fairbanks, Alaska 99775.

DGGS, 794 University Ave., Basement, Fairbanks, Alaska 99709.

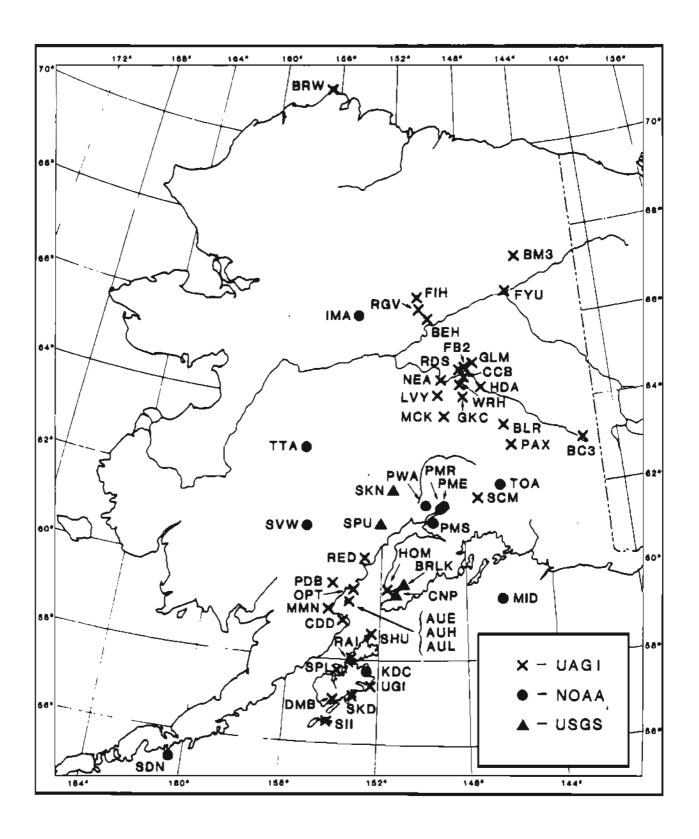


Figure 1. All seismic-network stations operated by the University of Alaska and by other organizations whose data were used in this report. See table 1 for station names.

Table 1. Names and parameters of seismic-network stations used to prepare this report.

Code	Station	Latitude (N.)	Longitude (W.)	Elevation (m)	Velocity model	Operator
AUE	Augustine East	59° 21.54'	153° 22.33'	172	2	UAGI ^b
HUA	Augustine Hill	59° 21.83'	153° 26,61'	900	2	UAGI
AUL	Augustine Lava Flow	59° 22.93'	153° 26,07'	360	2	UAGI
BC3	Beaver Creek	63° 4.00'	141° 45.50'	762	ī	UAGI
BEH	Bench	66° 0,90'	141° 48,70'	961	ī	UAGI
BLR	Black Rapids	63° 30,10'	145° 50.70'	810	ī	UAGI
BM3	Burnt Mountain	67° 17.18'	144° 25,171	305	1	UAGI
BRLK	Bradley Lake	59° 45.851	150° 53.13'	631	2	USGS
BRW	Barrow	71° 18.40'	156° 44.90'	13	1	UAGI
CCB	Clear Creek Butte	64° 38.80'	147° 48.33'	219	1	UAGI
CDD	Cape Douglas	58° 55.79'	153° 38.58'	622	2	UAGI
CNP	China Poot Bay	59° 31.55'	151° 14.16'	564	2	USGS
DMB	Deadman Bay	57° 5.23'	153° 57.631	300	3	UAGI
FB2	Fairbanks	64° 54.00'	147° 47.60'	320	1	UAGI
FIH	Fish	66° 31.67'	150° 25.25'	1102	1	UAGI
FYU	Fort Yukon	66° 33.96'	145° 13.90'	137	1	UAGI
GKC	Gold King Creek	64° 10.72'	147° 56.08'	490	1	UAGI
GLM	Gilmore Dome	64° 59.24'	147° 23.34'	820	1	UAGI
HDA	Harding Lake	64° 24.35'	146° 57,23'	450	1	UAGI
MOH	Homer	59° 39.50'	151° 38.60'	198	2	UAGI
IMA	Indian Mountain	66° 4.10'	153° 40.72'	1380	1	NOAA
KDC	Kodiak	57° 44.87'	152° 29.50'	13	3	NOAA
LVY	Levy	64° 13.00'	149° 15.20'	230	ī	UAGI
MCK	McKinley Park	64° 43,94'	148° 56.10'	618	1	UAGI
MID	Middleton Island	59° 25.67'	146° 20.33'	37	4	NOAA
MMN	McNeil River	59° 11.11'	154° 20.20'	442	2	UAGI
NEA	Nenana	64° 34.63'	149° 4.63'	364	1	UAGI
OPT	Oil Point	59° 39.16'	153° 13.78'	450	2	UAGI
PAX	Paxson	62° 58.25'	145° 28.12'	1130	1	uagi ua/usgs ^d
PDB PME	Pedro Bay Palmer East	59° 47.27' 61° 37.70'	154° 11.55' 149° 1.90'	305	2	DA / USGS
PMR	Palmer Observatory	61° 35.53'	149° 1.90' 149° 7.85'	232 100	2 2	NOAA NOAA
PMS	Palmer - Arctic Valley	61° 14.68'	149° 33.63°	716	2	NOAA
PNL	Peninsula	59° 40.06'	130° 23.82'	585	5	USGS
PWA	Palmer West - Houston	61° 39.05'	149° 52,72'	137	2	UAGI
RAI	Raspberry Island	58° 3.63'	153° 9.55'	520	3	UAGI
RDS	Richard D. Siegrist	64° 49,591	148° 8.68'	930	ĭ	UAGI
RED	Redoubt Volcano	60° 25.14'	152° 46,32'	1087	ž	UAGI
RGV	Remote Gate Value	66° 15.87'	150° 19,931	506	ī	UAGI
SCM	Sheep Mountain	61° 50.00'	147° 19.66'	1020	4	UAGI
SDN	Sand Point	55° 20,40'	160° 29.83'	19	6	NOAA
SHU	Shuyak Island	58° 37.68'	152° 20,93'	10	3	UAGI
SII	Sitkinak Island	56° 33,60°	154° 10.92'	500	3	UAGI
SIT	Sitka	57° 09.85'	135° 19,47'	19	2	NOAA
SKD	Sitkalidak Island	57° 9.85'	153° 4.821	135	3	UAGI
SKN	Skwentna	61° 58.86'	151° 31.78'	- 564	2	USGS
SMY	Shemya	52° 43.851	174° 6.18'	58	6	NOAA
SPL	Spiridon Lake	57° 45,55'	153° 46.28'	600	3	UAGI
SPU	Mount Spurr	61° 10.90'	152° 3.26'	800	2	USGS
SVW	Sparrevohn	61° 6.49'	155° 37.30'	762	2	NOAA
TOA	Tolsona	62° 6.29'	146° 10.34'	909	4	NOAA
TTA	Tatalina	62° 55.80'	156° 1.32'	914	2	NOAA
UGI	Ugak Island	57° 23.67'	152° 16.90'	213	3	UAGI
WRH	Wood River Hill	64° 28.28'	148° 5.39'	314	1	UAGI
YKU	Yakutat	59° 32.721	139° 43.73'	15	5	NOAA

a See tables 2, 3, and 4. University of Alaska Geophysical Institute. National Oceanic and Atmospheric Administration. U.S. Geological Survey.

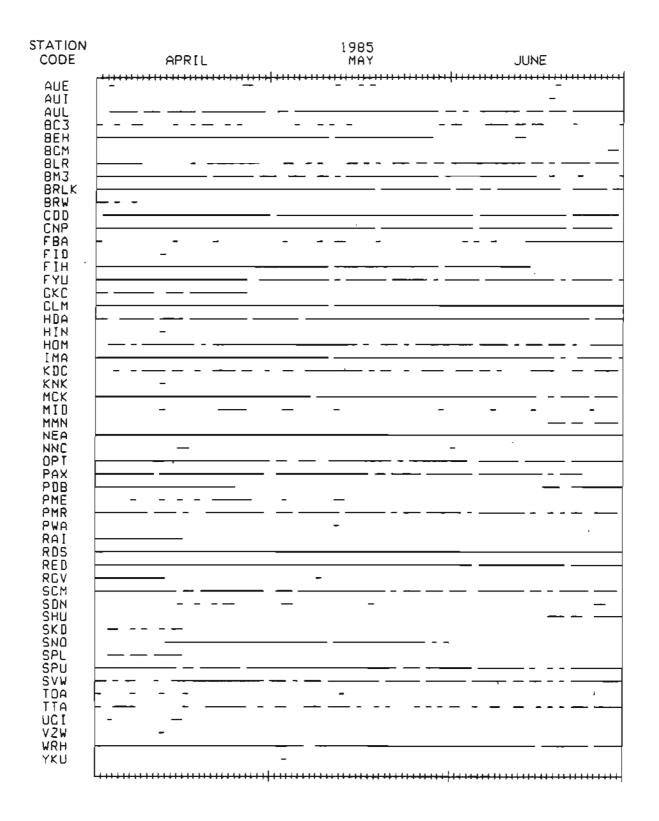


Figure 2. Station-use record. Lines indicate that at least one arrival-time was read from a specific station operating on a specific day. Nonuse does not imply that a station was malfunctioning, but rather that no data were required to locate earthquakes. See table 1 for station names.

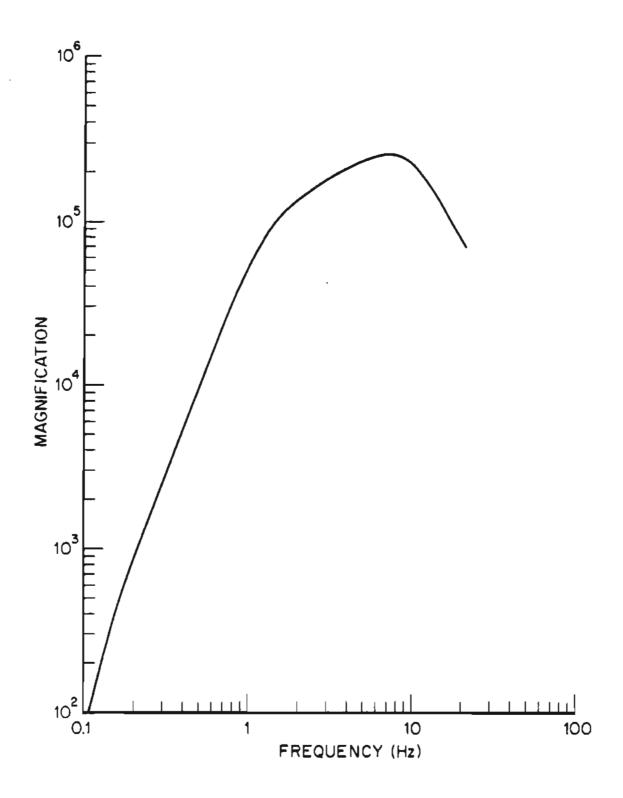


Figure 3. Typical response of a seismic-network station operated by the University of Alaska Geophysical Institute. Magnification is the ratio of the amplitude measured on the filmviewer to that of the actual ground motion recorded. Actual values vary with station.

Earthquake locations are based on arrival times of P and S waves. As many S arrivals as possible are used to help determine hypocentral depth. Most S readings are obtained from vertical components because few three-component systems are recorded. When large earthquakes occur, traces overlap on multichannel-film recorders; consequently, S arrivals are difficult to identify.

After earthquakes are identified and arrival times are determined, phase data are processed with the HYPOELLIPSE computer program (Lahr, 1980) to obtain earthquake parameters. Each solution is checked for the root-mean-square (RMS) error of travel-time residuals and the spatial distribution of stations used. Solutions that have residuals 0.5 s or greater are reread. If the stations used are poorly distributed, additional data are sought from stations not recorded by UAGI. Events recorded by fewer than six stations receive less attention. Data for earthquakes of M \geq 3.5 are processed more carefully, sometimes by changing control parameters in the computer program.

VELOCITY MODELS

The tectonic regime and geologic setting vary greatly throughout the area covered by the UAGI seismic network. Although our knowledge of the seismic-velocity structure is limited, significant variations exist. To account for these variations, each UAGI station is associated with one of three velocity models (tables I through 4), depending on the station's location. The models vary only with depth; lateral variation of velocity is not considered. For stations outside the UAGI seismic network, we generally use models adopted by the station's operators (table I). For all models, S velocity = P velocity.

Model 1 is used primarily in central and northern Alaska (figs. 4 and 5) and is based on unpublished data by Biswas (oral commun., 1978). The upper mantle structure is based on travel-time studies by Biswas and Bhattacharya (1974).

Table 2. Velocity model 1.

Layer	Depth (km)	P velocity (km/sec)
1	0-24	5.9
2	24-40	7.4
3	40-76	7.9
4	76-300	8.3
5	301-545	10.4
6	>54 5	12.6

Model 2 is associated with stations located in the Cook Inlet - Kenai Peninsula area (figs. 6 and 7) and is used by the USGS for locating earthquakes in the same area. It is a modified version of the model determined by Matumoto and Page (1969) from travel-time studies of aftershocks of the 1964 Great Alaska earthquake.

Table 3. Velocity model 2.

Layer	Depth (km)	P velocity (km/sec)
1	0-2	2.75
2	2-4	5.3
3	4-10	5.6
4	10-15	6.2
5	15-20	6.9
6	20-25	7.4
7	25-33	7.7
8	33-47	7.9
9	47 – 65	8.1
10	>65	8.3

Model 3 is used on Kodiak Island and the Alaska Peninsula. The depth and velocity of the first three layers are based on refraction experiments in the central Aleutian Islands (Engdahl and Tarr, 1970). The remaining layers are based on work by Herrin and others (1968).

Table 4. Velocity model 3.

Layer	Depth (km)	P velocity (km/sec)
1	0-1.6	4,2
2	1.6-12	5.5
3	12-42	6.6
4	42-60	8.06
5	60-80	8.09
6	80-100	8.11
7	100-150	8.14
8	150-200	8.27
9	200-250	8.41
10	250-300	8.50
11	300-350	8.74
12	>350	9.02

EARTHQUAKE MAGNITUDE

Earthquake magnitudes are determined from the maximum amplitude of the body-wave trace. Because regional body-wave phases are used, we determine local magnitudes (M₁). The relationship we use was derived by Richter (1958) using earthquake data recorded on standard horizontal Wood-Anderson seismographs in California. Corrections were made for differences in response and magnification between the standard instruments used by Richter and the instruments we used. Rowever, no corrections were made for differences in attenuation properties between California and Alaska. Additionally, no corrections were made for measuring vertical ground motion rather than horizontal ground motion.

The magnitude of each earthquake is usually calculated at several seismic-network stations and then averaged. When large earthquakes occur,

the instrument response saturates the maximum trace amplitude of the recorder at most of our stations. Therefore, we frequently list local magnitude determined by NOAA's Palmer Observatory. Felt reports and intensity observations based on the Modified Mercalli Intensity Scale (app. A; Richter, 1958) are also listed. The intensity levels are defined in appendix A.

RECORDED EARTHQUAKES

Appendix B lists hypocenter, magnitude, and quality parameters for each earthquake of $M_L \ge 3$ that was located during the second quarter of 1985 (see also figs. 5, 7, and 8). Appendix C lists the same parameters for all earthquakes that were located during the same period (see also figs. 4 and 6). Detection threshold and solution quality vary throughout the areas shown in figures 4, 6, and 8. Appendix B is probably complete for $M_L > 3$. As shown in figure 1, the distribution of stations varies significantly; thus detection-threshold levels also vary significantly.

The reliability of a hypocenter location can be assessed from two sets of information: the quality of the input data and the results of statistical tests. The number of P and S phases used to locate the earthquake (NP and NS), the largest azimuthal separation between stations as measured from the epicenter (GAP), and the distances from the epicenter to the closest and third closest station (Dl, D3) are the most important parameters that control the reliability of the hypocenter location. A GAP of more than 180° means that the epicenter is located outside the seismic network; therefore, locations will generally be less reliable. Also, as D1 exceeds hypocentral depth, the reliability of hypocentral depth decreases. Magnitude threshold and location reliability vary throughout the state because of the uneven distribution of stations (fig. 1).

The RMS travel-time residual and the horizontal (ERH) and vertical (ERZ) projections of the maximum axes of the one-standard-deviation confidence ellipsoid reflect the precision of the solution. Because we use simplified velocity models, the RMS residuals probably measure the inaccuracy of these models with respect to the real crust and upper mantle; they only secondarily account for random reading errors and phase misidentifications. Although the precision of hypocentral locations is fairly well indicated by ERH and ERZ, their absolute accuracy is difficult to determine because adequate calibration studies with known sources, such as explosions, have not been performed in the region.

Seismicity south of lat 61° N. (fig. 6) dominantly reflects the subduction of the North Pacific plate beneath the North American plate. A well-defined Benioff zone dips about 45° NW. below Cook Inlet and the Alaska Peninsula. Near lat 60° N., high seismic activity at depths greater than 70 km is typical of the area. The Benioff zone terminates at about lat 64° N. A cluster of hypocenters at an intermediate depth (>50 km) near lat 63° N. (below Mt. McKinley) pinpoints where the strike of the Benioff zone changes from north-northeast to more northeast. The cluster of shallow hypocenters near Fairbanks is characteristic of the seismic activity in central Alaska. Although the seismic-station distribution near Fairbanks is dense and provides the lowest detection threshold throughout the network (with the

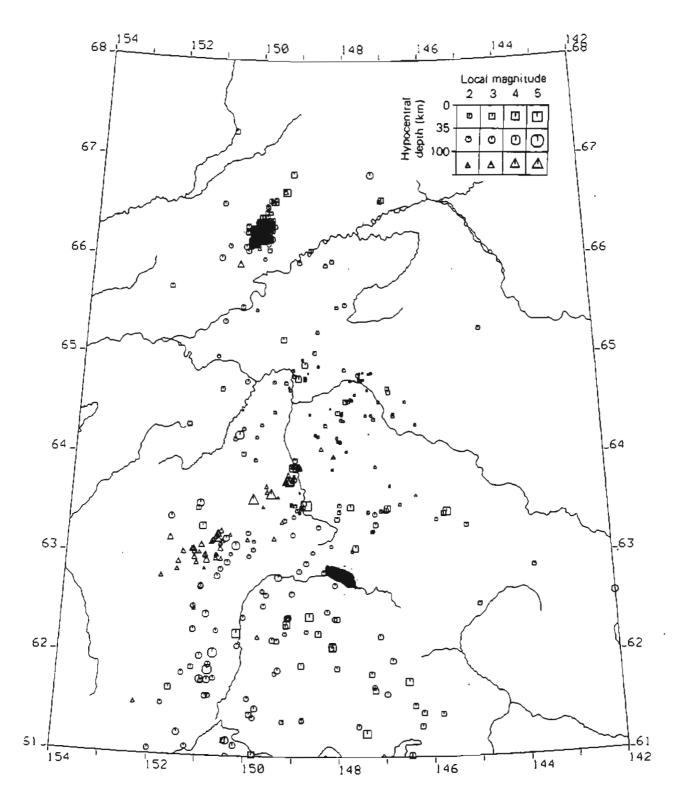


Figure 4. Epicenters of earthquakes that occurred north of lat 61° N. during the second quarter of 1985. Symbol sizes are shown for local magnitudes 2 through 5. Symbols larger or smaller than those shown reflect local magnitudes that must be interpolated relative to the symbol sizes shown.

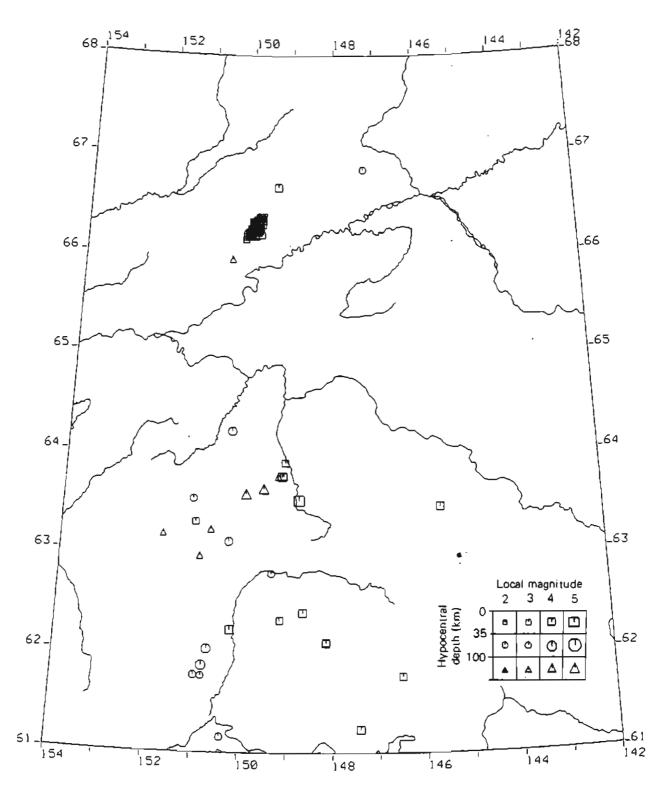


Figure 5. Epicenters of earthquakes with M ≥3 that occurred north of lat 61° N. during the second quarter of 1985. Symbol sizes are shown for local magnitudes 2 through 5. Symbols larger or smaller than those shown reflect local magnitudes that must be interpolated relative to the symbol sizes shown.

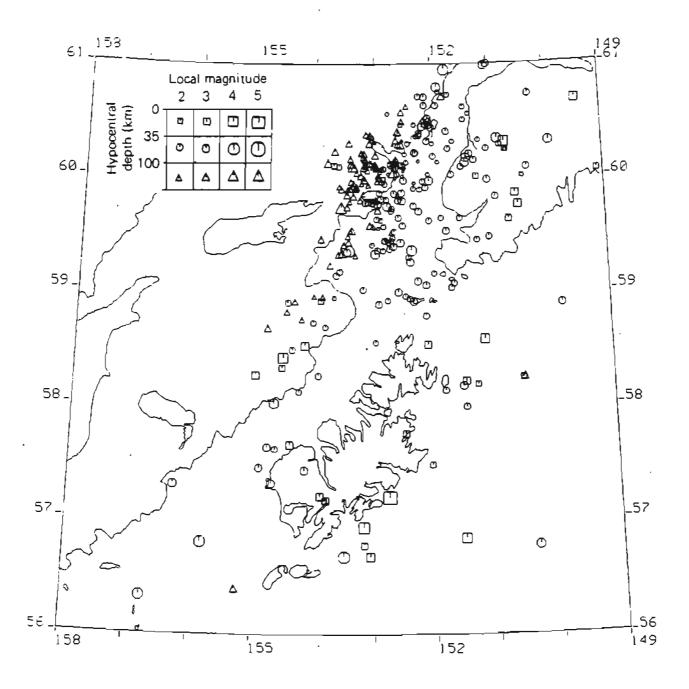


Figure 6. Epicenters of earthquakes that occurred south of lat 61° N. during the second quarter of 1985. Symbol sizes are shown for local magnitudes 2 through 5. Symbols larger or smaller than those shown reflect local magnitudes that must be interpolated relative to the symbol sizes shown.

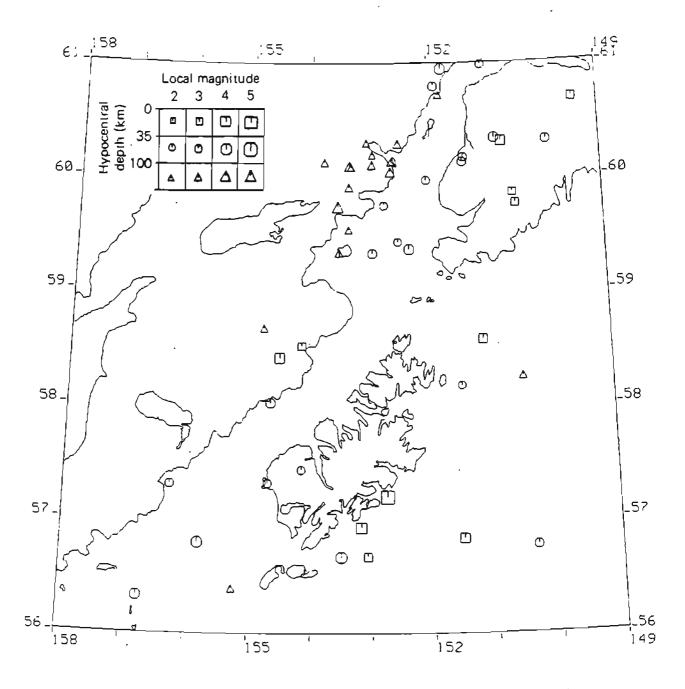


Figure 7. Epicenters of earthquakes with M ≥3 that occurred south of lat 61° N. during the second quarter of 1985. Symbol sizes are shown for local magnitudes 2 through 5. Symbols larger or smaller than those shown reflect local magnitudes that must be interpolated relative to the symbol sizes shown.

exception of Augustine Volcano), the concentration of epicenters indicates a very active seismic zone.

SIGNIFICANT EVENTS

The largest event during this quarter was the magnitude 5.1 (NEIS, m₂) earthquake of April 21 offshore of Kodiak Island (fig. 7). Other significant activity in the subduction zone occurred near the Shumagin Islands and around Prince William Sound. On April 15, 21, and 24, earthquakes of magnitude 4.9, 4.8, and 5.1, respectively, occurred southeast of the Shumagin Islands (fig. 8); the latter was felt in Chignik. Several events occurred in and around Prince William Sound (fig. 8); the magnitude 4.4 earthquake of May 20 was felt in Valdez and Anchorage.

Clusters of deep events occurred along the Wadati-Benioff zone beneath Mount Illiamna (fig. 7), the lower Susitna River, and Denali National Park (fig. 5). The event of June 28 in the perennial Illiamna cluster and a shallower one on May 12 were felt in Homer. Events along the Susitna River on May 2, 3, and 30 were felt in the Anchorage-Palmer area; the May 3rd event was shallow. Events near Denali National Park on June 13, 20, and 27 were felt in the park and variously from Healy to Talkeetna. The events of June 13, near the park, and May 9, near the Canadian border (fig. 8) and felt in Beaver Creek and Koidern, were shallow and probably on the Denali fault.

In northern Alaska, the Dall City aftershock (see the previous bulletin) continued to produce many events (fig. 5). Five of these aftershocks were larger than magnitude 4.0, the largest being a magnitude 4.7 event on April 1. Also on April 1, a magnitude 4.8 event on the Koyukuk River (fig. 8) occurred near the epicenter of the 1958 Huslia earthquake ($M_{\rm g}$ - 7.3).

ACKNOWLEDGMENTS

We thank Tom Sokolowski and the staff of the NOAA Tsunami Warning System in Palmer for helping us record several of their station signals on a continuous basis. We also thank John Lahr of the USGS for sharing information with us and providing the HYPOELLIPSE computer program.

The operation of the seismic networks and preparation and publication of this report were made possible by support from the Alaska Division of Geological and Geophysical Surveys and the University of Alaska Geophysical Institute.

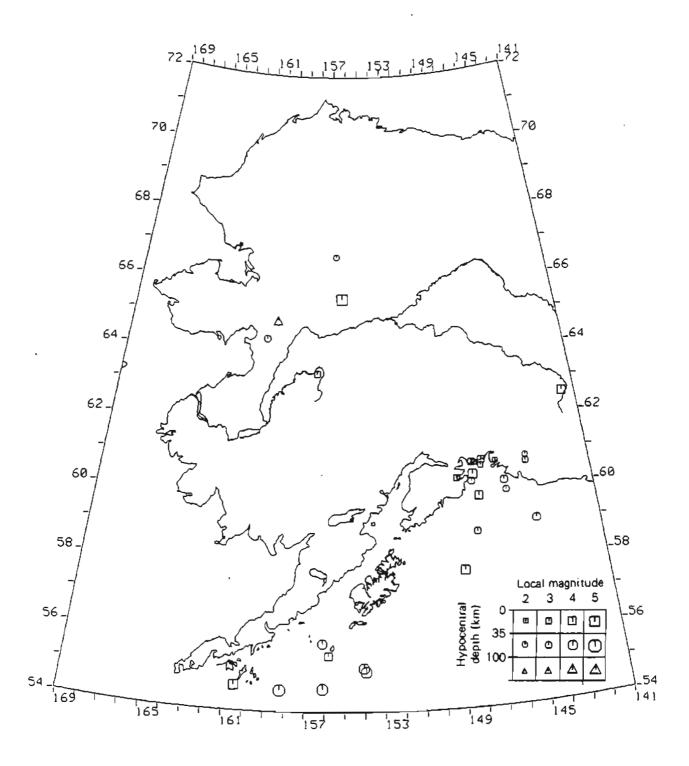


Figure 8. Epicenters of earthquakes that occurred in the second quarter of 1985 and are not shown in figures 4 or 5. Symbol sizes are shown for local magnitudes 2 through 5. Symbols larger or smaller than those shown reflect local magnitudes that must be interpolated relative to the symbol sizes shown.

REFERENCES CITED

- Biswas, N.N., and Bhattacharya, B., 1974, Travel-time relations for the upper mantle from central Alaskan data: Bulletin of the Seismological Society of America, v. 64, p. 1953-1966.
- Engdahl, E.R., and Tarr, A.A., 1970, Aleutian seismicity Milrow seismic effects: U.S. Coast and Geodetic Survey Publication CGS-746-102, p. 1-54.
- Herrin, E., Arnold, E.P., Bolt, B.A., and Engdahl, E.R., 1968, Seismological tables for P phases: Bulletin of the Seismological Society of America, v. 58, p. 1223-1226.
- Lahr, J.A., 1980, HYPOELLIPSE/MULTICS: A computer program for determining local earthquake hypocentral parameters, magnitude and first motion pattern: U.S. Geological Survey Open-file Report 80-59, 68 p.
- Matumoto, T., and Page, R.A., 1969, Micro aftershocks following the Alaska earthquake of 28 March 1964: determination of hypocenters and crustal velocities in the Kenai Peninsula Prince William Sound area, in The Prince William Sound Alaska earthquake of 1964: Washington, D.C., U.S. Government Printing Office, v. 2B, p. 157-174.
- Richter, C.F., 1958, Elementary Seismology: San Francisco, W.H. Freeman and Co., 768 p.

APPENDIX A

Modified Mercalli scale, 1956 version.

- I. Not felt. Some very low frequency effects, such as seiching in lakes, may be observed resulting from large, distinct earthquakes.
- II. Felt by persons at rest, on upper floors, or favorably placed.
- III. Felt indoors. Hanging objects swing. Vibration like passing of light trucks. Duration estimated. May not be recognized as an earthquake.
- IV. Hanging objects swing. Vibration like passing of heavy trucks; or sensation of a jolt like a heavy ball striking the walls. Standing motor cars rock. Windows, dishes, doors rattle. Glasses clink. Crockery clashes. In the upper range of IV, wooden walls and frame creak.
- V. Felt outdoors; direction estimated. Sleepers wakened. Liquids disturbed, some spilled. Small unstable objects displaced or upset. Doors swing, close, open. Shutters, pictures move. Pendulum clocks stop, start, change rate.
- VI. Felt by all. Many frightened and run outdoors. Persons walk unsteadily. Windows, dishes, glassware broken. Knickknacks, books, etc., off shelves. Pictures off walls. Furniture moved or overturned. Weak plaster and masonry D cracked. Small bells ring (church, school). Trees, bushes shaken (visibly, or heard to rustle--CFR).
- VII. Difficult to stand. Noticed by drivers of motor cars. Hanging objects quiver. Furniture broken. Damage to masonry D, including cracks. Weak chimneys broken at roof line. Fall of plaster, loose bricks, stones, tiles, cornices (also unbraced parapets and architectural ornaments--CFR). Some cracks in masonry C. Waves on ponds; water turbid with mud. Small slides and caving in along sand or gravel banks. Large bells ring. Concrete irrigation ditches damaged.
- VIII. Steering of motor cars affected. Damage to masonry C; partial collapse. Some damage to masonry B; none to masonry A. Fall of stucco and some masonry walls. Twisting, fall of chimneys, factory stacks, monuments, towers, elevated tanks. Frame houses moved on foundations if not bolted down; loose panel walls thrown out. Decayed piling broken off. Branches broken from trees. Changes in flow or temperature of springs and wells. Cracks in wet ground and on steep slopes.
 - IX. General panic. Masonry D destroyed; masonry C heavily damaged, sometimes with complete collapse; masonry B seriously damaged. (General damage to foundations—CFR.) Frame structures, if not bolted, shifted off foundations. Frames racked. Serious damage to reservoirs. Underground pipes broken. Conspicuous cracks in ground. In alluviated areas, sand and mud ejected, earthquake fountains, sand craters.

³CFR refers to supplemental comments by Charles F. Richter.

- X. Most masonry and frame structures destroyed with their foundations. Some well-built wooden structures and bridges destroyed. Serious damage to dams, dikes, embankments. Large landslides. Water thrown on banks of canals, rivers, lakes, etc. Sand and mud shifted horizontally on beaches and flat land. Rails bent slightly.
- XI. Rails bent greatly. Underground pipelines completely out of service.
- XII. Damage nearly total. Large rock masses displaced. Lines of sight and level distorted. Objects thrown into the air.

APPENDIX B

Data for Alaska earthquakes of M ≥3 that were located during the second quarter 1985.

ORI 1985 ER APR O1 2 O1 14 O1 14 O1 16 O1 19	14 32.4 30 31.0 37 27.9 27 44.8	LAT N DEG MIN 66 18.9 65 43.3 65 43.9 68 43.8 68 47.4	LONG W DEG MIN 149 50.1 154 20.6 155 12.3 154 83.3 154 56.1	DEPTH EM 12.3 10.0 8.4 10.5 14.4	MAG NP 4.7° 13 4.1° 7 4.8° 18 4.3° 13 4.2° 7	8к 0 0 0 0	GAF D1 DEG KM 100 22 270 49 172 79 225 67 306 65	39 199 234 221	RMS SEC 0.21 0.16 0.34 0.15 0.29	ERH EM 1.6 23.5 5.8 6.8 37.6	ERZ Q EM 1.7 B 7.3 D 4.2 D 3.8 D 6.1 D
03 3 04 2	32 16.0 28 14.6 53 54.0 14 46.1 25 10.8	65 47.0 60 58.8 60 5.7 60 24.9 66 21.2	154 55.3 151 2.3 153 30.2 147 47.0 149 45.8	15.8 49.8 140.1 66.8 14.4	4.0° 12 3.2 15 3.1 6 3.1 11 4.0° 10	0 4 3 1 0	170 65 114 59 155 48 210 150 84 27	123 134 187	0.28 0.36 0.13 0.17 0.14	12.3 1.4 2.3 8.2 1.6	3.1 D 5.7 C 5.0 C 16.8 D 1.8 B
04 6 04 18 08 6	32 12.1 6 7.7 34 40.6 42 27.3 24 32.1	62 20.2 66 14.8 69 45.2 89 56.2 66 20.0	149 9.0 149 58.3 152 46.8 163 22.6 149 57.3	15.8 0.2 94.0 133.2 1.4	3.3 14 3.1 9 3.2 12 3.4 9 3.1 9	0 9 5 1	60 83 98 16 88 56 138 31 104 19	37 74 60	0.42 0.40 0.33 0.37 0.43	2.3 1.6 1.5 3.7 1.5	4.7 D 2.6 C 2.9 B 4.0 C 2.3 C
05 13 08 17 06 17		66 12.4 60 47.7 61 46.4	149 59.3 151 83.4 150 58.3	1.1 61.3 74.8	4.2° 9 3.3 10 3.4 18 PALMER 1	2	106 17 168 44 78 88	127	0.44 0.27 0.29	2.3 1.6 2.1	2.4 C 2.5 C 3.3 B
07 10 07 16		65 4.7 60 18.6	159 27.5 150 43.3	177.3 34.6	4.1 8 3.9 14 NEIS HB	0	270 289 187 62		0.32 0.24	74.9 2.6	42.0 D 12.6 D
08 2 05 11 05 20 09 8 09 10	32 B6.2 37 36.7	66 12.8 66 12.4 63 18.8 66 20.0 66 18.3	149 59.9 150 3.4 181 2.7 149 58.0 149 56.3	0.2 0.6 1.1 1.1 0.1	3.1 7 3.0 8 3.0 10 3.1 8 3.0 9	0 0 1 0	107 16 102 14 201 116 124 18 101 19	39 181 36	0.36 0.44 0.26 0.35 0.38	2.9 2.9 3.5 1.7	3.8 C 3.0 C 1.7 D 2.6 C 2.8 C
09 14	40 9.1	80 80.8	150 50.3	64.6	3.7 13 PALMER	3 KT. = 1	150 64 3.4	94	0.32	2.1	5.2 D
10 10 10 20		66 12.6 66 11.0 68 12.4 59 26.0	149 56.0 160 6.8 150 5.6 182 33.0	6.6 0.3 0.5 80.5	3.9° 9 3.2 9 3.6° 9 3.0 10	0	99 19 103 13 101 13 97 51	41 39	0.35 0.38 0.45 0.18	2.0 2.0 1.9 1.6	1.8 C 2.8 C 2.8 C 2.7 B
11 8 11 8 11 21 12 2	28 51.8 33 38.5	60 40.2 66 19.6 59 58.6 60 6.9 56 23.9 59 59.1	149 26.3 149 47.7 182 2.6 182 68.9 188 18.0 147 26.9	33.6 10.7 72.1 112.2 105.8 9.2 8.9	3.3 11 3.8 10 3.1 9 3.5 10 3.2 7 3.8 9 PALMER 4.1 13	8 8 0	177 104 131 28 148 42 89 36 313 188 199 70 3.7, NEIS	36 60 86 224 98 WE =	0.34 0.18 0.34 0.11 0.36 4.4 0.27	1.8 2.2 1.7 58.2 3.3	8.8 D 1.8 C 2.7 C 2.1 B 35.5 D 3.6 D
14 8		60 12.1 87 19.3 66 18.7 60 18.7 84 39.8	152 56.3 154 41.7 149 60.0 149 55.8 156 5.9	124.4 64.7 1.4 63.5 42.3	3.0 10 3.2 8 3.5° 9 3.4 15 4.8° 11 NEIS MB	0 2 0	148 27 266 74 91 14 157 81 250 291	123 35 120	0.34 0.28 0.41 0.39 0.43	2.7 10.4 1.7 2.8 20.6	2.6 C 6.4 D 2.7 C 3.6 D 13.7 D
17 6	49 36.3 7 80.1 16 54.1		150 7.1 149 55.6 156 6.0	1.0 7.2 49.3	4.1 9	٥					2.5 C 2.6 C 18.9 D
19 21 21 16			180 1.6 183 86.0	10.3 48.7	Reis Me 3.4° 8 4.8° 8 Neis Me	0	103 13	422	0.26 0.62	2.3 15.8	1.5 B 13.3 D
21 15	28 32.3	57 12.0	152 45.1	23.7	5.3° 10			274	0.79	4.9	4.9 D
21 15	46 56.4	86 18.8	184 2.1	42.4	NEIS ME 4.6° 9 NEIS MB	٥	255 293	411	0.48	14.7	11.8 D
	0 41.4	66 20.1	183 29.8 149 54.8 153 10.5		4.4 7 3.2° 4 4.4 7	1	320 134 246 172	377 478 310	0.07		25.2 D 99.0 D 6.9 D

^aSee explanation of column headings at end of appendix C.

1985			TIME	LAT N DEG MIN	LONG W DEG MIN	DEPTH KM	MAG NP NS GAP D1 D3 RMS ERH ERZ DEG KM KM SEC KM KM	Q
APR 2	1 22	14	56 .5	62 24.9	148 39.3	22.8	3.6 16 1 73 95 148 0.41 2.3 4.3 NEIS MB = 4.3	
2	2 8 2 16 2 17 2 20	11 50	41.9 26.0 19.4 24.0	62 48.4 60 8.6 60 56.8 59 44.9	149 20.7 152 38.6 151 45.2 153 34.0	76.4 105.1 85.0 140.8	3.0 16 0 88 105 151 0.33 1.9 5.8 3.4 8 4 125 32 78 0.21 2.2 2.5 4.0 13 3 94 31 140 0.33 1.9 4.5 4.6* 13 0 95 22 41 0.31 2.5 5.8 NEIS MB = 4.5	B C
	2 22 3 5	2 45	19.8 47.8	63 14.5 56 48.0	150 42.4 155 48.7	126.8 41.5	3.3 17 0 123 104 188 0.33 2.4 7.3 4.2* 10 0 182 226 334 0.45 9.6 14.0 NEIS MB = 4.6	
2	3 6	32	2.7	59 9.0	144 26.7	38.2	3.6 10 0 238 112 375 0.42 11.5 7.5 PALMER ML = 3.8, NEIS MB = 4.3	D
2	3 23 4 1 4 3 4 17	28	40.5 54.0 40.3 46.3	66 17.0 56 40.7 66 14.1 60 6.3	149 47.2 153 4.2 150 3.0 153 22.0	8.4 11.8 7.1 158.5	3.1 9 0 104 24 39 0.38 2.4 2.0 3.4 5 0 333 124 367 0.06 99.0 99.0 3.0 9 0 99 11 37 0.48 1.8 1.7 4.0* 13 3 80 48 58 0.40 2.5 3.5	D
2	4 22	6	46.8	54 36.9	158 12.7	42.1	5.1 10 0 257 167 556 0.49 29.4 21.3 NEIS MB = 5.0, MS = 4.5,	D
2	5 2	41	50.3	61 52.3	150 48.8	72.2	FELT (II) IN CHIGNIK 4.2 19 1 79 94 101 0.31 1.8 3.6 PALMER ML = 4.2, NEIS MB = 4.1	С
2	5 12 6 1 6 2		58.3 2.0 56.6	66 15.9 66 14.4 60 18.0	149 57.1 149 50.8 152 31.8	1.5 3.0 101.8	3.3 9 0 94 16 36 0.35 1.5 2.5 3.9*10 0 96 20 41 0.20 1.6 2.3 3.5 9 4 167 19 87 0.28 2.1 5.1 PALMER ML = 3.7	C
2	6 23	23	41.3	58 1.5	154 39.8	94.3	3.8 13 1 249 117 166 0.28 8.2 9.2 PALMER ML = 4.4, NEIS MB = 4.7	D
3	8 13 0 5 0 5 2 0	38	22.3 21.5 32.1 28.7	60 43.0 66 13.7 66 13.5 66 12.2	151 47.9 150 2.7 150 3.8 149 45.1	155.9 0.9 0.5 0.6	3.1 8 0 169 54 118 0.40 5.9 17.5 3.5* 9 0 100 11 37 0.44 1.5 2.4 3.1 9 0 100 11 37 0.46 1.5 2.4 3.2 8 0 116 21 47 0.17 1.8 2.9	C
0		40 47	34.0 51.6	60 60.0 61 9.3	147 6.5 150 22.2	17.6 43.4	3.0 8 1 215 94 236 0.27 5.2 4.1 3.2* 9 1 127 82 154 0.18 2.1 5.1	
0	3 10 3 10 3 12	0 4 7	38.9 50.2 31.9	55 36.4 63 28.4 57 54.3	155 49.3 145 36.5 148 35.3	31.8 7.9 33.5	FELT (II) IN ANCHORAGE 3.6 9 0 227 297 393 0.39 36.3 30.8 3.6* 10 0 199 12 123 0.52 3.4 2.0 4.2 14 0 231 214 237 0.44 19.0 15.6 PALMER ML = 4.5 , NEIS MB = 4.7	D
	3 13 3 23		41.0 1.0	64 14.2 62 14.3	150 18.0 150 13.6	38.3 8.2	3.8* 14 0 128 70 110 0.27 1.8 3.1 3.7 15 0 85 92 158 0.40 2.0 3.9 PALMER ML = 3.4, FELT IN PALMER	
0	4 4	18	35.5	56 50.2	151 31.5	0.2	3.9 11 1 213 117 300 0.44 5.0 1.6 PALMER ML = 4.1, NEIS MB = 4.5	D
	6 1 6 6	6 7	11.3 44.7	66 16.4 59 45.7	149 55.7 150 30.6	9.3 26.1	3.5* 9 0 97 17 36 0.24 1.9 1.8 3.2 11 3 202 21 65 0.41 2.0 2.8	
0	8 4	1 38 1 42 9	57.9 30.1 47.9 22.9 24.0	66 17.1 60 18.5 66 11.7 63 11.5 62 33.1	149 49.8 153 4.3 150 1.2 151 45.3 141 45.6	10.0 133.9 6.8 169.0 22.2	3.1* 9 0 123 22 38 0.20 1.8 1.8 3.0 10 2 112 21 105 0.26 2.4 3.6 3.5* 9 0 102 13 41 0.24 2.5 1.7 3.1* 7 0 185 153 225 0.41 8.5 17.7 3.8* 10 0 254 57 232 0.40 15.2 6.3 NEIS MB = 4.3, FELT (IV) IN BEAVER CREEK	CCDD
0	9 9	33	12.5	66 51.5	147 15.6	40.2	AND KOIDERN AND IN THE YUKON TERRITORY, CANAD 3.1 12 0 164 95 144 0.29 2.3 99.0	
1	9 9 2 17 2 21	7	30.4 0.9 56.3	66 16.0 58 31.6 59 22.0	149 47.3 154 9.8 152 21.5	10.5 1.2 98.4	3.4 10 0 102 23 41 0.20 1.9 1.8 3.2 13 0 214 54 104 0.44 9.3 11.0 4.0* 13 0 96 52 61 0.13 2.1 4.5 NEIS MB = 4.6, FELT (III) IN HOMER	D
	3 10 3 10		27.6 19.2	66 22.9 66 40.8	149 46.5 149 21.4	5.7 15.0	3.3* 8 0 210 29 41 0.39 3.2 2.5 3.4* 5 0 267 205 100 0.31 74.4 99.0	
1 1 1	3 10 3 21 4 10 5 3 5 10	7 19 0	3.8 50.1 53.2 31.2 18.2	66 22.6 58 40.9 63 7.2 66 15.7 56 46.4	149 47.7 154 47.6 150 17.8 149 58.7 150 20.9	5.9 131.3 99.5 0.9 41.6	3.4* 8 0 208 28 40 0.42 3.1 2.5 3.2 11 1 224 72 140 0.34 5.3 2.9 3.6* 20 0 67 96 181 0.37 1.9 6.1 3.2* 7 1 172 15 36 0.40 1.9 2.6 3.5 12 0 291 169 330 0.45 31.4 19.3	D B C
1	5 19 8 3 8 22	56	40.0 17.6 56.2		149 59.4 150 2.3 154 31.5	1.6 0.1 19.5	3.5* 8 0 111 14 36 0.37 1.6 2.4 3.7 8 0 104 12 38 0.47 2.3 2.8 4.0* 10 0 120 124 142 0.45 8.0 21.4 NEIS ME = 4.3	C

ORIGIN TIM 1985 ER MN SE MAY 19 7 17 39. 20 13 84 30.	DEG HIN DEG HIN 0 81 48.0 150 49.0	39.5	HAG NP NS GAP D1 D3 RMS ERH ERZ Q DEG KM KM SEC KM KM 3.0° 14 0 108 91 184 0.39 2.5 8.6 D 4.0 9 0 200 138 201 0.27 5.6 5.3 D PALMER ML - 4.4, NEIS MB - 4.3, FELT (III) IN VALDEZ AND (II) ANCHORAGE
21 5 50 2. 24 6 8 23. 26 8 16 44. 26 17 12 0. 26 17 14 55.	7 58 10.5 181 30.9 7 61 14.0 147 24.7 7 62 6.3 148 9.1	44.8 20.9 25.8	3.1 8 0 279 105 321 0.30 19.6 17.3 D 3.0 7 2 220 75 181 0.29 25.3 83.8 D 3.6 13 0 203 67 219 0.24 3.7 2.7 D 3.5 8 0 103 53 168 0.38 2.9 7.3 D 3.4 13 0 88 53 168 0.32 2.6 5.5 D
28 8 48 9. 28 7 84 38. 28 17 11 33. 30 12 4 44. 30 16 85 0.	0 58 34.8 151 8.8 1 66 20.5 149 51.4 2 60 20.9 145 56.0	24.6 15.1 64.8	3.3 11 2 100 84 73 0.26 1.7 4.4 8 3.3 10 2 191 108 123 0.61 2.7 6.6 D 4.0 8 0 192 33 187 0.20 6.7 2.9 D 3.4 11 0 189 105 222 0.38 3.0 5.1 D 4.1 18 0 68 97 179 0.32 2.0 4.7 C MEIS MB = 4.6, FELT (IV) IN WILLOW AND (II) ANCEORAGE
31 11 38 59. JON 01 19 8 20. 01 19 55 10. 02 4 55 64.	83 48.7 149 8.6 88 21.0 149 47.8	8.2	3.6° 9 0 122 31 181 0.26 1.7 3.1 C 4.0° 14 0 64 12 93 0.34 2.2 1.4 C 3.3 12 0 135 34 186 0.32 2.6 4.6 C 3.6° 11 0 131 39 181 0.42 8.2 8.0 C
02 9 46 4. 03 6 12 31. 06 6 52 58.	8 59 51.8 180 33.4 3 66 58.1 154 40.8	30.4	3.9 8 0 106 38 183 0.46 6.3 9.0 C 3.1 10 2 189 21 68 0.39 6.2 3.7 D 3.4 14 0 280 110 370 0.30 18.5 8.1 D PALMER ML = 3.6
06 1 26 24. 07 8 20 14.			3.2° 8 1 198 22 78 0.29 10.1 11.8 D 3.8 9 1 94 26 59 0.27 2.2 3.5 C PALMER ML = 3.6
09 1 22 58. 09 11 23 18.	2 60 3.1 152 39.8	100.7	3.2 16 2 69 131 201 0.36 2.2 8.5 C 4.0 10 3 115 41 72 0.31 2.3 8.0 C PALMER ML = 4.2 NEIS MB = 4.4
13 4 19 28.	0 63 32.3 148 48.7	14.3	4.7° 17 O 76 23 117 O.31 1.7 1.9 C MEIS MB - 4.9, FELT (IV) IN CANTWELL, HEALY, DENALI NATIONAL PARK, AND BROAD PASS
13 8 37 42. 18 18 49 52.			3.3 5 0 204 64 167 0.42 20.3 55.8 D 3.3 11 0 189 94 200 0.37 3.6 7.4 D PALMER ML = 3.3
18 8 47 35.			3.3 13 1 152 16 95 0.18 3.0 5.2 C
18 22 3 82. 19 18 33 15.			3.2° 8 0 238 10 92 0.18 4.9 1.6 D 3.2 8 4 211 48 68 0.38 4.8 7.3 D
20 8 80 35.	0 63 39.5 149 32.6	120.5	4.7° 23 0 67 31 108 0.37 1.8 4.3 B NEIS MB = 4.8, FRLT IN CANTWELL AND DEWALL NATIONAL PARK
22 12 6 13.	61 46.7 146 30.4	31.0	3.4 16 0 207 44 148 0.29 4.4 2.7 D PALMER ML = 3.7
23 19 31 29.	62 16.6 154 47.7	83.9	3.6 8 0 120 93 192 0.41 4.3 11.9 C PALMER ML - 3.7
26 12 44 88.	84 42.8 180 27.1	32.1	4.4° 8 0 305 70 621 0.43 67.3 19.6 D
26 13 42 58.			3.3 12 4 78 8 46 0.27 1.8 4.0 B
26 23 56 11. 27 0 26 13.	7 88 18.3 180 29.7 3 63 36.1 149 86.3		3.2 3 1 323 148 221 1.83 15.2 48.3 D 4.9 16 0 70 52 133 0.37 2.4 5.4 B
			NEIS MB - 4.7, FELT (IV) IN TALKEETMA AND DENALI NATIONAL PARK
	3 56 19.6 156 44.8		4.1 11 0 190 289 344 0.29 23.8 44.7 D NEIS MB = 4.7
28 4 42 52. 28 16 35 2.			3.3 12 1 289 232 238 0.32 10.8 6.6 D 3.1 11 4 67 15 53 0.32 2.0 2.4 B
29 1 30 34.	63 32.8 181 7.2	52.0	PALMER HL = 3.5, FELT (II) IN HOMER 3.2° 7 0 248 110 181 0.21 9.6 24.0 D
29 21 55 50.	8 60 8.0 151 24.8	81.3	3.4 14 1 96 81 82 0.30 1.9 8.0 C PALMER ML - 3.8, NEIS MB - 4.6
30 1 10 50.	68 14.8 149 58.9	64.3	3.1° 9 0 184 168 181 0.40 2.8 81.9 D

APPENDIX C
Data for Alaska earthquakes of all magnitudes that were located during the second quarter 1985.

1985 HR MM APR 01 2 14 01 2 48 01 4 27 01 4 55 01 7 45	SEC DEG 32.4 66 1 10.8 66 26.7 61 2 46.7 66 1 19.0 64 3	15.9 149 50.1 9.1 150 9.0 25.6 146 48.3 16.1 149 50.2	12.3 0.4 11.2 0.2 2.9	4.7° 13 2.9 7 2.3 7 1.9 5 2.2 7	DEG 0 100 0 121 0 272 2 182 0 88	EM EM 22 39 15 44 93 178 22 39 16 46	SEC 0.21 0.33 0.32 0.23 0.23	EM 1.6 2.2 14.1 2.4 1.1	1.7 B 2.7 C 5.9 D 3.0 C 3.3 C
01 11 40 01 11 44 01 12 7 01 13 41 01 14 30	37.7 60 17.4 59 5	7.7 161 3.1	94.0 89.1 121.8 116.8 10.0	2.0 4 1.2 4 2.2 5 2.9 12 4.1* 7	3 148 3 129 2 133 0 170 0 270	36 96 43 102 53 124 125 198 49 199	0.81 0.08 0.11 0.29 0.16	2.8 3.1 4.3 3.7 23.5	3.8 C 5.4 C 7.6 C 8.8 D 7.3 D
01 14 35 01 14 37 01 14 48 01 16 27 01 19 39	54.8 64 2 27.9 65 4 50.3 65 4 44.5 65 4 51.1 65 4	43.9 155 12.3 46.7 154 59.5 43.8 154 53.3	15.0 8.4 14.8 10.8 14.4	1.1 6 4.8 16 2.1 6 4.3 13 4.2 7	0 120 0 172 0 308 0 225 0 300	23 39 79 234 68 223 67 221 68 220	0.22 0.34 0.09 0.15 0.29	2.1 5.5 50.9 6.5 37.8	9.9 C 4.2 D 9.4 D 3.8 D 6.1 D
02 0 24 02 0 20 02 6 46 02 8 16 02 8 63	8.7 66 1		111.0 0.2 194.3 0.6 3.2	2.6 7 2.0 7 2.1 9 2.1 7 2.0 7	6 145 0 173 0 119 1 189 0 226	36 122 17 36 26 49 23 36 80 129	0.28 0.45 0.11 0.41 0.34	2.3 2.4 3.9 2.5 4.9	3.6 C 2.7 C 8.4 C 2.8 D 4.8 D
02 10 5 02 10 20 02 11 32 02 15 16 02 15 22	24.3 64 2 19.6 61 6 16.0 66 4 59.9 66 1 3.2 66 1	38.4 148 49.2 47.0 154 55.3 48.8 149 59.8	3.8 21.9 15.8 0.6 0.3	1.2 9 2.8 8 4.0° 12 2.1 7 1.9 8	0 201 1 160 0 170 1 173 0 107	33 88 40 202 65 220 15 34 15 38	0.12 0.27 0.26 0.49 0.40	2.3 5.8 12.3 2.1 2.7	2.2 C 7.8 C 3.1 D 2.7 C 3.2 C
02 21 9 03 2 28 03 3 83 03 8 4 03 5 10	21.8 66 1 14.6 60 6 54.0 60 9.9 59 4 7.2 66 1	58.8 151 2.3 5.7 153 20.2 47.6 153 6.1	0,2 49.8 140.1 114.8 0.1	2.0 9 5.2 15 3.1 6 2.5 7 1.6 7	0 98 4 114 3 166 5 106 2 163	16 37 59 123 48 134 17 61 15 40	0.44 0.36 0.13 0.22 0.47	1.6 1.4 2.3 3.0 2.2	2.8 C 5.7 C 5.0 C 4.5 C 2.4 C
03 6 56 03 7 50 03 9 51 03 11 35 03 12 4	18.4 66 1 1.8 60 1 10.7 66 1 43.9 66 1 9.5 65 4	16.8 182 51.0 16.0 149 89.0	0.3 103.3 1.3 0.1 9.5	2.1 7 0.6 4 2.5 9 1.9 8 2.0 4	1 169 3 141 0 113 0 105 0 328	16 37 16 123 16 35 21 34 101 118	0.32 0.10 0.46 0.42 0.42	2.8 3.8 1.8 2.7 99.0	4.7 C 5.8 C 2.8 C 3.2 C 63.0 D
03 13 8 03 13 48 03 16 35 03 16 56 03 18 48		15.5 150 0.8	33.7 0.5 65.4 0.7 93.8	2.5 7 2.0 6 2.4 4 2.2 7 1.3 4	3 273 0 98 2 303 1 160 3 198	19 55 14 35 54 107 17 35 76 96	0.29 0.48 0.11 0.49 0.22	3.9 1.8 5.6 2.1 4.6	3.6 D 2.6 C 3.6 D 2.7 C 3.9 D
03 19 54 03 22 17 03 22 40 03 23 29 04 2 14	20.6 59 5 13.6 66 1 23.3 66 1	16.0 150 0.5 84.3 153 27.1 19.3 149 55.1 19.1 149 58.5 24.9 147 47.0	0.9 117.3 0.3 0.3 68.8	1.6 7 2.0 6 2.3 8 1.7 8 3.1 11	0 171 4 140 0 125 1 100 1 210	15 34 31 69 20 35 17 35 180 187	0.49 0.27 0.41 0.48 0.17	2.5 3.1 2.2 1.7 5.2	2.6 C 3.4 C 2.9 C 2.7 C 18.8 D
04 2 25 04 2 34 04 3 32 04 3 53 04 5 20	48.5 66 2 12.1 62 2 52.0 66 2	21.2 149 45.8 22.1 149 56.6 20.2 149 9.0 20.9 149 57.0 21.0 149 57.6	14.4 3.0 16.8 1.2 0.6	4.0° 10 2.4 5 3.3 14 1.9 9 2.0 9	0 84 1 132 0 60 2 107 1 106	27 38 21 40 63 156 20 36 19 36	0.14 0.40 0.42 0.48 0.43	1.6 1.8 2.3 1.5	1.6 E 2.9 C 4.7 D 2.6 C 3.7 C
04 8 38 04 6 5 04 6 31 04 12 34 04 13 38	7.7 66 1 22.6 60 1 33.1 66 2	19.1 181 37.7 14.5 149 58.3 12.5 181 20.1 20.9 149 58.8 19.9 149 58.8	89.7 0.2 41.4 0.1 0.4	1.8 4 3.1 9 2.8 8 2.2 10 2.4 9	3 225 0 98 5 172 1 105 1 102	64 91 16 37 56 76 18 38 15 36	0.10 0.40 0.25 0.45 0.45	4.0 1.6 1.8 1.5 1.5	3.7 D 2.6 C 4.1 C 2.8 C 2.8 C
04 13 52 04 15 0 04 15 54 04 17 25 04 18 34	32.6 62 1 59.5 60 4 14.6 66 1	6.3 152 28.1 19.0 149 10.2 45.6 161 41.9 16.4 149 56.7 45.2 162 46.8	84.7 18.6 76.4 0.5 94.0	1.8 4 2.0 8 2.0 5 2.2 7 3.2 12	4 136 1 129 5 178 1 174 9 88	41 96 81 158 84 116 16 35 56 74	0.17 0.34 0.11 0.42 0.33	2.1 2.1 2.1 1.5	3.1 C 4.7 D 3.7 C 2.7 C 2.9 B

^aSee explanation of column headings at end of appendix C.

ORIGIN 1985 HR MN APR 04 18 43 04 19 6 04 19 56 04 21 35 04 23 56	TIME SEC 51.8 53.7 38.8 56.3 19.6	LAT N DEG MIN 66 14.4 66 20.1 58 8.3 59 48.4 59 27.2	LONG W DEG MIN 150 4.2 149 54.5 151 48.8 152 58.1 151 14.1	DEPTH KM 2.2 0.5 45.6 100.8 44.9	MAG 1.8 2.3 2.6 2.6 2.2	NP 7 9 6 8 6	NS 1 0 2 7 4	GAP DEG 104 107 199 100 238	D1 KM 28 21 59 23 8	D3 KM 164 36 132 69 115	RMS SEC 0.41 0.35 0.36 0.23 0.22	ERH KM 2.0 1.6 2.2 1.6 3.3	ERZ Q KM 2.4 C 2.7 C 8.8 D 2.4 B 3.4 C
05 3 48 05 6 42 05 7 24 05 9 26 05 10 46	5.8 27.3 32.1 41.2 43.4	66 13.8 59 55.2 66 20.0 65 33.4 66 17.8	150 3.0 153 22.6 149 57.3 147 54.7 150 1.1	0.6 133.2 1.4 8.0 1.5	2.3 3.4 3.1* 1.7 2.3	9 9 9 10 8	1 5 1 1	100 138 104 113 94	13 31 19 68 15	37 60 36 101 33	0.48 0.37 0.43 0.26 0.46	1.6 3.7 1.5 1.6 2.2	2.5 C 4.0 C 2.5 C 1.7 C 3.4 C
05 13 0 05 13 4 05 13 29 05 13 54 05 16 15	14.2 53.9 4.4 24.6 40.4	66 12.4 66 13.7 61 52.5 59 57.4 62 12.9	149 59.3 150 0.2 149 19.4 152 18.3 147 6.8	1.1 0.7 43.7 84.1 51.1	4.2* 2.2 2.8 1.3 2.5	9 8 15 4 8	0 1 0 4 4	105 107 70 133 150	17 15 33 58 44	41 38 165 82 127	0.44 0.38 0.38 0.23 0.33	2.3 2.6 2.0 2.4 3.3	2.4 C 3.2 C 3.6 B 3.8 C 4.9 C
05 17 52 05 19 16 05 23 43 06 1 18 06 3 28	13.7 3.6 27.5 18.7 41.6	60 47.7 60 6.4 59 32.0 66 15.1 66 14.3	151 53.4 153 9.6 151 45.7 149 59.2 149 58.7	81.3 119.8 59.5 0.9 0.5	3.3 2.0 2.8 2.0 2.2	10 6 9 9	6 6 1	165 153 115 98 102	44 41 15 16 16	127 68 56 36 38	0.27 0.21 0.24 0.48 0.31	1.6 3.1 1.2 1.5 2.7	2.5 C 5.1 C 2.0 B 2.5 C 3.6 C
06 4 50 06 12 41 06 13 35 06 14 26 06 14 50	5.5 35.4 14.6 18.8 14.8	66 12.8 60 27.3 59 58.3 60 0.0 64 20.6	149 59.3 152 3.6 152 56.6 153 10.7 148 20.9	1.6 82.8 112.7 115.0 21.2	2.3 1.2 2.2 1.9 1.5	6 4 5 4 6	0 3 4 3 0	166 235 116 138 104	16 39 39 52 19	40 113 73 121 44	0.48 0.11 0.19 0.05 0.04	2.8 10.2 3.6 4.4 1.4	2.7 C 4.0 D 4.0 C 7.0 D 1.5 B
06 15 21 06 15 40 06 17 55	57.9 37.0 46.7	60 20.1 62 52.2 61 46.4	152 30.3 148 53.5 150 58.3	102.4 78.3 74.5	1.3 2.2 3.4	4 7 18	2 2 2	182 274 78	18 96 88	112 174 180	0.09 0.39 0.29	4.3 5.6 2.1	5.4 D 4.3 D 3.3 B
06 22 26 06 23 35	13.6 7.0	59 8.7 63 53.7	153 38.6 149 0.4	93.1 12.5	PALM 2.4 2.2	6 7	3 0	3.5 157 189	24 19	78 76	0.32	4.0 2.4	5.9 C 1.8 D
06 23 48 07 3 27 07 3 49 07 6 30 07 7 48	43.7 49.8 14.9 50.2 51.4	63 50.2 57 12.6 64 14.0 66 18.1 66 12.6	149 2.8 153 53.6 148 30.7 149 59.8 149 46.7	11.3 29.0 15.2 0.2 8.1	1.0 3.0 1.2 1.7 2.0	5 6 7 8	0 3 2 1	204 261 124 96 116	13 49 29 16 22	83 104 47 33 46	0.23 0.13 0.27 0.48 0.24	3.1 3.0 1.0 1.7 1.8	2.6 D 5.3 D 1.9 B 2.6 C 1.9 C
07 9 22 07 9 47 07 9 53 07 10 07 07 10 30	3.2 59.1 47.3 28.9 22.0	62 57.1 59 38.5 66 13.1 65 4.7 66 13.0	148 44.3 152 57.5 150 2.9 159 27.5 150 2.2	74.3 93.3 0.9 177.3 0.1	2.5 2.2 2.3 4.1* 2.2	9 5 8 5 6	3 3 0 0 2	131 100 103 270 176	88 71 14 289 14	144 98 38 483 39	0.43 0.16 0.40 0.32 0.42	1.6 2.6 1.8 74.9 2.4	3.0 C 5.5 C 2.4 C 42.0 D 2.5 C
07 11 29 07 14 27 07 15 22 07 16 24	47.4 40.1 25.7 0.6	59 54.4 59 46.7 66 20.5 60 18.6	153 33.7 153 1.4 149 57.8 150 43.3	137.2 96.0 0.6 34.6	2.6 2.1 2.4 3.9* NEIS		3 3 1 0	148 99 105 157	34 66 19 62	72 105 37 92	0.35 0.14 0.43 0.24	3.4 3.0 1.6 2.6	2.9 C 5.2 C 2.8 C 12.6 D
07 16 48 07 18 41 07 20 4 07 20 40	7.4 52.5 10.2 33.7	63 1.9 60 8.9 66 12.8 64 35.6	150 57.7 152 13.5 150 1.1 147 44.2	131.8 73.5 0.8 0.2	2.7 1.3 2.3 1.2	11 4 9 6	1 4 0 3	192 164 100 98	128 43 15 22	196 89 39 43	0.34 0.12 0.44 0.18	3.8 3.5 2.6 0.7	8.7 D 4.7 C 2.8 C 99.0 C
07 21 43 07 23 29 07 23 51 08 2 21 08 2 25	28.9 50.1 1.8 32.2 20.2	66 13.6 63 31.3 63 55.8 66 35.3 66 12.5	149 49.1 147 45.6 149 2.1 147 1.9 149 59.4	0.9 8.3 0.9 7.1 0.8	2.1 2.9 2.4 1.8 2.0	9 16 11 6 7	2 2 1	96 119 177 139 166	24 63 23 80 17	43 95 72 141 41	0.35 0.47 0.29 0.27 0.33	1.6 1.3 1.9 2.2 3.3	2.5 C 1.5 D 2.2 C 3.8 C 5.3 C
08 2 29 08 2 34 08 4 5 08 5 1 08 5 19	45.1 5.4 49.1 39.0 17.8	66 12.8 66 12.8 66 13.5 66 12.6 59 37.8	150 1.0 149 59.9 149 57.8 149 59.1 152 53.0	0.2 0.2 0.9 1.6 94.3	2.3 3.1 1.8 2.0 1.9	8 7 6 6	0 0 1 1 3	105 107 169 106 90	15 16 17 17 76	39 40 40 40 94	0.41 0.36 0.31 0.34 0.28	2.8 2.9 3.0 2.8 2.6	3.3 C 3.5 C 5.2 C 3.5 C 5.1 B
08 8 45 08 9 1 08 10 30 08 11 13 08 11 49	33.7 7.5 58.8 55.3 7.9	66 15.7 63 24.1 64 26.2 58 57.6 66 12.4	149 57.7 148 3.7 146 47.3 153 52.5 150 3.4	1.0 28.6 12.2 108.8 0.6	2.3 2.2 1.6 2.5 3.0	8 8 8 8	1 2 2 5 0	97 202 211 172 102	17 57 9 14 14	36 119 63 94 39	0.45 0.34 0.12 0.31 0.44	1.8 5.2 1.6 2.3 2.9	2.5 C 27.8 D 2.1 C 2.3 C 3.0 C

80 80	13 42 14 35	TIME SEC 12.0 6.4 11.7 8.8 20.1	LAT N DEG MIN 64 48.3 68 15.2 60 4.8 66 16.7 60 11.2	LONG W DEG MIN 147 34.9 149 56.8 152 50.2 149 57.7 153 10.8	DEPTE EM 9.8 0.2 97.8 0.4 129.2	MAG 0.0 2.8 2.2 2.4 2.6	NP 6 8 5 9	NS	GAP DEG 122 113 118 96 168	D1 KM 22 17 38 17 34	D3 RM 45 37 109 35 131	RMS SEC 0.33 0.39 0.27 0.40 0.14	ERH 2.2 2.3 2.1 2.1 3.6	ERZ Q EM 13.6 C 2.9 C 2.9 B 2.8 C 8.6 C
80 80 80	20 1 20 32 20 58 21 34 23 25	58.2 56.2 14.1 25.3 44.5	66 15.5 63 18.8 59 1.2 60 5.3 62 6.3	149 55.1 161 2.7 163 11.3 160 20.3 147 39.2	0.3 1.1 70.7 46.0 27.4	1.7 3.0 2.5 2.6 2.8	8 10 6 7	1 4 3 1	95 201 117 150 148	19 115 26 47 95	38 181 103 140 112	0.35 0.26 0.24 0.25 0.47	2.3 3.8 1.6 2.8 2.4	2.9 C 1.7 D 5.1 C 8.0 D 4.3 D
09 09 09	3 38 4 10	37.9 89.4 34.7 8.8	66 15.9 66 15.6 66 14.2 60 43.6	149 57.6 149 58.3 150 1.0 150 16.2	0.9 0.2 0.1 39.1	1.8 1.9 1.6 2.8	6 8 8	2 2 4	174 97 179 147	17 16 15 109	36 36 37 114	0.43 0.34 0.43 0.30	2.8 2.3 2.3 1.3	3.0 C 3.2 C 2.5 C 11.4 D.
09 09 09	7 33 8 37 9 11	28.9 33.6 36.7 6.6 20.9	89 22.0 80 34.0 86 20.0 89 5.6 86 18.3	162 56.4 182 45.6 149 58.0 152 15.4 149 58.3	\$3.9 90.0 1.1 63.2 0.1	2.3 1.0 3.1 2.8 3.6	7 8 9	5 2 0 5 0	106 267 124 155 101	36 108 18 72 19	86 137 36 75 33	0.34 0.28 0.38 0.25 0.38	2.4 9.7 1.7 1.4	3.4 C 11.3 D 2.6 C 3.3 C 2.8 C
09 09	10 27 10 57 11 33 11 37 11 63	33.6 29.1 13.9 16.3 3.6	66 17.9 57 10.3 59 10.7 60 8.3 66 19.4	149 59.3 163 49.4 163 36.0 162 39.4 149 56.5	0.7 30.0 94.3 99.6 0.8	2.3 2.1 2.4 1.8 1.8	9 5 4 4 6	0 0 2 4 2	97 272 146 123 183	16 45 28 32 19	33 107 127 105 35	0.48 0.00 0.18 0.18 0.44	1.7 99.0 4.9 2.3 3.0	2.6 C 99.0 D 6.7 C 2.9 B 4.0 D
08	12 37 13 30 13 87 14 40	20.5 58.2 43.9 9.1	60 20.6 62 31.0 60 37.3 60 20.5	149 55.6 149 39.4 151 25.6 150 50.3	0.2 65.6 65.7 64.6	1.7 2.5 2.1 3.7	10 5 13	1 0 4 3	186 146 269 150 3,4	20 107 77 64	37 143 123 94	0.44 0.36 0.09 0.32	3.0 2.6 4.4 2.1	4.0 D 11.2 D 4.8 D 8.2 D
09	10 2	1.3	66 14.6	149 59.4	3.0	1.6	6	L -	170	18	37	0.36	3.2	7.7 C
08 08	16 49 18 26 19 0 19 9 19 16	31.3 20.0 11.3 35.3 58.8	62 37.6 64 20.5 66 15.1 59 49.9 60 18.2	149 36.1 149 48.1 149 59.2 150 53.9 152 24.8	68.6 11.5 0.5 54.6 62.1	2.2 1.6 2.3 2.7 1.8	10 7 7 7 4	0 1 0 2 4	147 265 170 231 181	118 44 16 8 24	148 84 36 123 109	0.31 0.26 0.46 0.31 0.17	2.5 4.1 2.4 5.5 2.8	11.2 D 2.1 D 2.7 C 6.2 D 3.0 C
	0 12	2.0 58.9 30.5 20.0 28.5	66 16.1 68 15.7 63 28.4 62 84.3 60 34.9	149 56.3 149 58.7 148 0.8 148 14.4 152 31.1	0.1 0.4 16.1 80.5 110.8	2.1 2.1 1.7 1.6 2.7	7 8 6 7	0 2 2 4	176 172 190 284 153	18 16 54 99 23	36 36 111 175 128	0.32 0.35 0.20 0.15 0.21	2.4 2.4 2.2 3.5 2.3	2.8 C 2.6 C 1.6 D 6.6 D 5.7 C
10 10 10 10	4 19 7 38 9 80	39.8 0.6 11.0 36.2 22.6	60 30.3 66 15.3 64 49.0 66 19.5 66 12.6	152 7.4 149 57.5 148 49.7 149 54.3 149 56.0	82.2 0.9 18.4 0.5 6.6	1.7 1.5 1.5 1.6 3.9	5 6 7 9	2 1 1 0	244 173 230 105 99	37 17 29 20 19	113 37 52 35 42	0.22 0.40 0.33 0.42 0.35	5.4 2.9 3.2 3.2 2.0	2.8 D 3.0 C 2.1 D 6.0 C 1.6 C
10 10	10 17 15 20 16 32 15 47	23.3 66.5 17.2 4.2	66 11.0 66 19.3 63 32.6 66 6.7	150 6.8 149 59.0 149 5.3 149 59.5	0.3 1.1 12.1 0.9	3.2 2.2 1.8 1.6	9 9 8 6	0 1 0 1	103 100 208 157	13 17 23 14	41 35 115 50	0.38 0.40 0.13 0.29	2.0 1.5 3.4 4.2	2.6 C 2.3 C 1.7 D 3.0 C
10 10	16 59 17 29 20 34 21 36 0 16	65.3 62.6 19.8 0.9 50.5	59 52.2 58 32.2 66 12.4 66 20.3 59 18.4	152 31.6 152 6.1 150 5.6 149 57.8 152 24.6	88.2 30.0 0.5 0.3 62.2	2.8 2.8 3.8 1.7 2.1	8 9 9 5	5 0 0 5	109 168 101 104 128	46 82 13 19 71	63 122 39 37 114	0.17 0.34 0.45 0.47 0.14	1.6 3.1 1.9 1.5 3.2	2.2 B 10.8 D 2.6 C 2.7 C 4.8 C
11 11 11 11	2 49 3 31 5 28	31.9 4.0 16.2 58.9 23.9	58 43.7 59 26.0 60 15.3 60 40.2 66 19.6	154 1.6 152 33.0 161 42.5 149 26.3 149 47.7	82.7 80.8 63.4 33.6 10.7	2.2 3.0 2.3 3.3 3.8	6 10 7 11 10	3 4 4 4 0	184 97 212 177 131	38 51 62 104 95	109 75 66 153 36	0.24 0.18 0.25 0.34 0.15	4.0 1.6 3.2 1.8	4.1 D 2.7 B 3.0 D 5.5 D 1.8 C
11		24.0 33.1 22.7 32.7 54.4	66 19.9 69 88.5 66 19.6 66 18.8 66 19.6	149 56.5 152 2.6 149 56.9 149 58.7 149 59.9	0.4 72,1 0.4 0.5 1.3	1.9 3.1 1.7 2.2 2.2	8 7 9	0 0 0	165 148 164 99 100	19 42 19 17	36 88 35 34 36	0.42 0.18 0.41 0.40 0.46	2.4 2.2 2.3 1.5	2.8 D 2.7 C 2.7 D 2.6 C 2.5 C

1985 XX APR 11 15 11 16 11 18	59 20 16 16	71MB 8BC 7.7 34.7 40.3 50.0 50.1	DE(60 66 66	AT N 3 MIN 57.8 7.3 9.6 19.1	DE 147 153 150	NG W G MIN 42.0 9.6 1.6 51.6	DEPTH EM 23.0 115.5 0.8 0.1 0.7	MAG 3.0 2.2 1.0 2.0 1.8	NP 8 8 6 7	NS 0 2 1 1	GAP DEG 215 155 159 188 171	D1 EM 99 39 18 22 16	D3 XM 221 127 45 34 34	RMS SEC 0.16 0.33 0.42 0.31 0.45	ERH XH 28.5 4.0 3.7 2.9 2.0	ERZ Q XM 4d.8 D 5.9 C 3.0 C 3.4 D 2.6 C
12 2 12 2	18	4.8 53.4 51.6 38.5	59	6.9 1.0 23.9 59.1	149 155 147	58.9 48.9 18.0 26.9	112.2 11.7 105.8 9.2	3.5 2.8 3.2 3.8 PALM 2.4	10 11 7 9 ER H	5 3 0 0	89 149 313 199 3.7.	36 74 188 70 NEIS 18	86 152 224 95 KB - 38	0.34 0.37 0.11 0.36 4.4 0.38	1.7 1.9 68.2 3.3	2.1 8 2.6 D 35.8 D 3.6 D
12 7 12 10 12 11 12 13	20 33 20	51.8 10.1 64.4 67.2 22.8	65 60 69	39.0 29.5 1.0 52.1	149	50.7 59.9 30.2 54.7	59.7 16.4 72.0 92.8 0.9	2.1 1.3 1.3 2.2 2.2	5 4 5 9	5 1 2 3 0	166 194 129 104 102	11 00 47 62 14	56 111 98 102 41	0,21 0,28 0,09 0,08 0,42	2.0 7.0 3.0 3.4 1.7	2.5 C 13.3 D 6.3 C 4.3 C 2.3 C
12 19 12 21 12 22 12 23	27	46.3 43.9 49.8 33.8	59 66	31.7 45.5 12.1 12.7	145 162 160 160	5.8 19.3 5.7 2.2	8.7 66.9 0.3 0.2	1.8 2.5 2.7 2.4	6 6 7 7	0400	206 108 102 111	69 63 24 24	95 78 163 165	0.39 0.19 0.36 0.21	3.1 1.7 2.2 1.8	3.3 D 4.1 B 2.7 C 2.7 C
13 C	24 27 14 52	7,4 24.1 36.6 33.8 62.0	60	2.7 14.8 59.7 17.1 57.1	150	6.4 1.4 43.8 1.4 23.0	6.5 0.5 122.3 1.2 18.5	2.3 2.2 2.2 2.0 1.7	6 7 11 9 6	2 0 0 1 1	220 99 185 92 113	104 27 122 14 65	221 166 192 32 112	0.36 0.39 0.25 0.48 0.17	7.8 2.1 3.6 1.5 4.2	6.4 D 2.6 C 9.5 D 2.6 C 2.3 D
13 6 13 10 13 10 13 10 13 13	13 22 37	40.6 31.8 6.8 44.7 52.3	66 66	14.2 B1.1 18.8 18.0 12.8	149	2.0 35.6 56.9 57.2 0.6	1.0 0.4 0.1 0.5 0.4	1.9 1.4 2.1 1.8 1.5	7 8 9 7 8	0 0 1 0 1	166 108 101 99 165	12 64 18 17 13	37 85 34 33 40	0.48 0.34 0.45 0.60 0.37	2.1 1.8 1.2 1.8 2.6	2.8 C 36.3 D 1.8 C 2.7 D 3.3 C
13 13 13 13 13 12 13 14 13 16	38 55 56	44.3 62.4 25.7 12.2 18.7	66 63	24.7 59.6 11.9 15.3 46.0	150 149 150	35.1 59.6 54.6 41.0 27.9	108.0 49.8 8.9 137.6 138.4	3.0 2.8 4.1 2.1 2.7	11 7 13 8 8	3002	108 125 97 293 111	10 61 18 102 17	92 120 43 170 41	0.40 0.36 0.27 0.18 0.39	1.7 1.9 1.9 22.2 5.4	4.0 C 8.7 C 1.0 C 14.8 D 8.6 G
14 1 14 3	21 47 19 30 27	20.8 52.2 12.0 39.0 47.1	60 63	14.6 12.1 0.7 21.1 7.6	162 149 149	57.7 58.3 59.9 12.6 24.1	0.3 124.4 95.7 30.8 153.6	1.7 3.0 1.9 1.8 2.8	7 10 9 5	0 4 2 0 3	171 148 166 203 162	18 27 96 27 48	38 82 180 184 58	0.38 0.34 0.15 0.30 0.37	2.2 2.7 2.0 4.7 2.4	2.6 C 2.6 C 3.4 C 3.2 D 3.0 C
14 6 14 6 14 7	14	16.8 48.8 38.0 54.3 24.9	66 66	25.1 17.2 54.8 14.8 34.7	149	31.0 67.5 24.5 55.5 7.4	113.4 1.7 114.9 0.0 4.4	2.6 2.0 2.4 1.9	8 7 6 6	3 3 0 8	130 96 138 174 172	16 30 17 21	55 34 59 38 48	0.29 0.40 0.36 0.39 0.25	2.4 1.8 2.7 2.3	8.4 C 2.3 C 2.9 C 2.9 C 9.6 C
	4	16.4 32.6 38.7 46.5 9.6	67 66 60	12.4 19.3 15.7 19.8 18.8	184 149 151	40.7 41.7 80.0 10.4 51.1	0.1 64.7 1.4 40.3 1.3	1.9 3.5 3.5 1.9 1.6	7 6 9 4	1 0 0 2 3	184 266 91 248 106	22 74 14 65 22	49 123 35 90 35	0.19 0.28 0.41 0.12 0.45	2.5 10.4 1.7 3.8 1.2	3.2 C 6.4 D 2.7 C 10.5 D 2.8 C
14 12 14 14 14 14 14 15 14 15	26 50	48.2 55.6 2.3 3.7 58.6	60 66 68	20.0 18.7 16.8 16.5 49.9	150 149 150 150 149	8.8	0.3 63.5 6.8 6.8 13.3	1.7 3.4 1.7 1.0	6 15 7 6 7	1 2 0 0	180 157 87 110 256	17 81 11 12 28	37 120 32 33 62	0.40 0.39 0.45 0.27 0.11	1.8 2.5 2.3 2.2 4.1	1.9 C 3.5 D 1.9 C 2.1 C 1.8 D
14 16 14 16 14 16 14 18 18 2	20	47.3 30.1 26.7 3.9 40.5	60 58	2.9 38.4 14.4 19.5 88.0	154 150 153	11.8 48.1 41.2 19.3 19.9	13.6 80.9 35.7 105.0 67.7	2.0 3.0 1.8 2.2 3.0	8 4 6 11	2 1 3 2 3	263 251 271 114 142	71 61 64 46 76	111 115 117 121 91	0.39 0.17 0.21 0.27 0.31	3.7 5.1 3.4 2.1 1.4	2.1 D 7.0 D 7.0 D 6.1 C 6.7 D
16 -	7	43.0	54	39.8	156	6.9	42.5	4.6° WRIS	11 MB	4.9	250	291	374	0.43	20.6	13.7 D
16 4 15 10 16 12 16 12	42	8.6 2.3 13.3 32.6	64 66	16.0 51.9 13.7 59.9	147 150	86.2 17,3 2.9 35.3	73,4 17,4 0.1 88.3	2.4 1.2 2.2 2.8	4 6 9 10	2 0 1 5	188 182 88 146	81 14 11 61	76 64 26 82	0.16 0.03 0.42 0.37	8.9 2.3 1.9 1.4	8.1 D 2.1 C 2.9 C 3.0 D

1985	RIGIN R MN	TIME SEC	LAT N DEG MIN	LONG W	DEPTH KM	MAG	NP	ns	GAP DEG	D1 KM	D3 KM	RMS SEC	ERH KM	erz Q Km
APR 15 15 15 15 15	3 51 4 16 5 13 7 2 1 10	12.1 59.9 31.3 8.6 27.0	66 16.7 66 20.8 63 11.1 66 15.9 59 54.0	149 56.1 149 52.0 150 2.5 150 1.0 152 12.7	0.1 0.1 100.1 1.6 78.4	1.9 2.1 2.0 1.9 2.0	9 10 7 8 5	0 3 1 1 3	97 111 283 170 129	17 23 82 13 64	30 32 173 29 69	0.37 0.47 0.22 0.47 0.16	2.1 1.2 8.4 1.7 2.8	3.1 C 2.4 C 7.1 D 2.2 C 4.8 C
15 15 15 16 16	1 36 2 12 2 28 3 40 4 24	11.7 51.4 19.1 22.8 11.9	66 16.9 66 20.1 60 17.7 59 22.8 66 15.1	149 53.1 149 59.3 152 40.5 152 44.3 150 0.9	0.1 0.3 108.0 87.8 1.1	1.5 1.5 1.0 2.3 2.2	6 7 4 6 10	1 2 6 1	194 182 141 148 89	19 18 15 41 13	37 37 116 87 28	0.28 0.38 0.02 0.28 0.45	3.0 2.1 4.2 1.5 1.5	3.7 D 2.7 D 5.5 C 3.1 C 2.4 C
16 16 16 16 16	4 54 9 11 0 53 0 53 3 44	39.8 52.0 57.0 42.6 33.7	60 7.1 60 18.5 66 16.7 66 21.5 66 12.1	152 42.3 153 26.0 150 1.8 149 49.7 150 1.8	88.7 158.1 0.6 0.6 0.0	2.8 2.9 1.8 1.8 2.0	8 9 9 6 9	6 3 0 1 0	117 123 91 209 101	34 39 13 25 13	79 74 33 38 40	0.24 0.25 0.47 0.30 0.35	1.4 3.2 1.4 3.0 2.4	2.0 B 7.6 C 2.5 C 3.0 D 2.9 C
16 16 16	4 0 4 3 4 32	1.7 52.4 31.8	59 56.9 59 35.3 61 25.4	152 49.0 153 4.3 149 54.0	90.5 100.2 27.9	2.2 2.9 2.4	6 7 14 IER M	3 4 1	105 120 126 2.9.	40 12 45	73 67 144	0.17 0.18 0.49 CHORAG	3.2 2.4 1.7	7.0 C 5.0 C 2.8 C
16 16	5 30 7 3	28.8 12.8	66 17.8 61 13.6	150 4.9 151 24.1	74.8 66.4	1.5	12	0 2	169	12 36	34 128	0.39	5.5 2.2	4.7 D 3.3 C
1€ 17 17	8 59 1 18 3 49	13.2 15.1 36.3	66 18.1 63 12.2 66 9.4	150 5.3 149 27.5 150 7.1	0.7 109.8 1.0	1.6 2.3 3.0	7 11 9	1 0 0	169 223 104	12 65 12	34 154 44	0.47 0.25 0.50	1.8 5.4 2.0	2.5 C 7.1 D 2.5 C
17 17 17 17 17	5 45 6 7 6 7 8 49 1 7	17.6 50.1 35.5 6.1 6.9	60 1.5 66 16.6 66 20.8 66 14.6 66 21.0	153 13.4 149 55.6 149 55.3 149 58.0 149 51.5	124.2 7.2 0.2 0.5 4.5	2.9 3.8* 2.0 1.8 1.5	9 8 7 8 7	8 0 1 1 2	76 155 189 98 193	41 17 21 15 24	60 171 37 38 37	0.28 0.20 0.44 0.34 0.39	1.5 4.3 1.4 2.0 2.7	2.3 B 2.6 C 2.7 D 2.8 C 6.5 D
17 17 17 17	1 36 3 31 5 6 6 3 6 51	5.7 24.5 3.5 37.8 32.5	59 21.8 63 40.5 60 8.3 66 12.4 66 11.9	152 51.0 149 38.7 151 53.5 150 4.7 150 2.5	74.9 139.0 53.5 0.8 3.8	2.0 2.1 1.5 2.0 1.5	6 8 4 9 6	4 0 2 2 0	145 266 183 101 161	39 36 58 10 12	89 104 77 39 40	0.22 0.07 0.09 0.52 0.38	2.2 10.5 3.2 1.6 3.9	4.8 C 11.9 D 7.3 D 2.2 D 6.8 C
17 17 17 17 18	6 58 1 24 1 50 3 25 2 41	12.1 36.5 54.7 4.9 51.7	66 19.9 60 7.3 66 7.9 60 14.4 66 13.9	149 58.5 152 43.9 150 4.0 153 40.3 149 58.6	0.7 99.6 1.0 175.0 1.2	1.7 1.5 1.5 3.0 1.9	7 5 7 9	0 3 0 1 2	183 114 154 189 99	18 33 15 54 15	36 90 47 70 39	0.47 0.09 0.44 0.12 0.40	2.2 3.1 3.3 3.2 1.5	2.6 D 4.9 C 3.2 C 6.9 D 2.0 C
18 18 18 18 18	3 45 3 58 4 36 5 25 6 16	50.3 2.2 5.8 8.3 54.1	66 10.6 66 17.4 59 59.7 65 12.0 55 57.2	150 5.7 149 58.9 152 50.1 149 21.0 156 8.0	0.1 0.9 83.2 13.3 49.3	2.1 2.0 1.7 2.5 4.1 NEIS	9 8 4 10 9 8 MB	1 2 3 0 0	103 96 134 169 211	11 16 47 71 283	42 33 104 93 364	0.48 0.47 0.13 0.35 0.36	1.8 1.7 3.1 2.1 11.9	2.1 C 2.3 C 5.1 C 1.7 D 18.9 D
18 18 18 18 18	6 47 0 33 6 58 1 1 2 2	27.8 13.7 50.4 23.4 10.9	66 12.7 66 18.9 60 3.4 66 19.0 63 43.9	150 9.6 149 56.5 152 53.6 150 9.5 149 39.4	0.3 1.0 93.6 0.3 131.5	1.7 1.7 2.0 2.2 2.0	6 6 6 7	2 3 1 0	154 182 96 164 266	7 19 41 11 36	37 34 79 37 142	0.41 0.42 0.17 0.25 0.09	2.2 3.0 2.8 1.9 15.7	2.8 C 3.8 D 4.0 B 2.4 C 15.9 D
18 19 19 19	3 0 2 8 7 45 2 0 5 38	59.4 30.4 19.1 22.0 19.4	60 1.9 66 13.2 66 17.3 66 13.4 66 13.9	152 3.7 150 2.0 149 53.8 150 1.5 149 58.3	75.5 0.4 0.2 0.3 0.6	1.6 2.5 1.9 2.1 2.0	4 9 7 7	3 0 2 3 1	156 100 181 100 169	58 12 19 12 15	73 38 36 38 39	0.12 0.44 0.43 0.55 0.44	2.7 1.5 2.1 1.3 2.0	5.0 D 2.5 C 2.5 D 2.8 D 2.6 C
19 19 19 19	6 3 :0 33 :1 36 :1 53	48.4 38.0 6.8 29.4	66 6.0 60 27.0 66 12.0 60 28.1	148 44.3 152 9.6 150 1.6 152 17.9	17.6 81.1 10.3 83.2	1.8 2.9 3.4* 1.7	6 9 8 5	1 8 0 4	127 133 103 201	50 34 13 27	89 93 41 121	0.47 0.29 0.26 0.24	2.1 1.3 2.3 2.5	1.7 C 2.2 B 1.5 B 3.3 D
19 19 20 20 20	32 6 33 16 0 17 3 46 5 43	45.3 46.5 20.1 6.4 8.4	64 19.8 66 21.5 59 47.6 60 30.1 66 12.9	151 27.6 149 59.6 153 25.2 152 1.8 150 1.6	2.5 0.6 120.6 80.6 0.2	2.1 1.7 2.0 2.1 2.0	7 8 6 4 8	0 1 3 4 1	310 106 117 244 104	118 20 19 42 12		0.32 0.41 0.21 0.10 0.33	26.1 1.6 2.9 3.0 2.2	8.9 D 2.7 C 3.0 C 2.8 D 3.2 C

1985 HR APR 20 6 20 11 20 12 20 18	8 42 58 45 45 52	TIME SEC 18.9 49.6 49.1 51.3 38.9	LAT DEG M 64 39 66 7 61 58 66 16	IIN D 0.1 14 7.9 15 1.4 14 3.6 14	ONG W EG MIN 7 40.4 0 42.2 8 51.1 9 58.2 3 11.1	DEPTH EM 12.3 39.1 38.1 1.1	MAG 1.1 1.9 2.8 1.9 2.0	MP 6 6 15 7 5	NS 2 1 0 1 3	GAP DEG 108 113 160 178 118	D1 KH 28 21 29 16 55	D3 EM 40 46 132 34 66	RMS SEC 0.29 0.34 0.42 0.35 0.19	ERE 1.0 8.3 3.0 2.0 3.1	ERZ Q KM 7.9 C 7.0 C 2.8 C 2.8 C 4.0 C
	52	0.8 4.2 29.8 22.4 47.4	63 4 64 83 66 16 58 20 59 47	3.3 14 3.3 15 3.0 15	7 43.3 9 6.6 0 0.4 4 32.4 3 2.7	2.5 18.7 0.1 25.2 94.8	1.3 1.3 2.0 2.5 1.3	7 8 7 6 4	0 0 2 1 3	226 264 171 249 164	95 35 14 86 65	123 67 34 137 106	0.35 0.04 0.49 0.79 0.27	4.7 5.4 1.9 9.5 3.6	2.8 D 1.8 D 2.3 C 47.1 D 4.3 D
21 2 21 4 21 4	43 1 3 23 43	26.9 0.8 21.9 47.8 11.8	64 26 59 55 66 20 66 15 66 16	1.6 16 1.2 14 1.2 16	7 58.7 3 18.2 9 57.2 0 2.0 9 58.9	6.8 125.7 0.2 0.7 0.3	0.7 2.6 1.8 2.0 2.0	6 9 7 7 8	0 4 1 1 0	110 71 188 187 93	6 31 19 12 16	43 61 36 35 35	0.02 0.34 0.35 0.47 0.44	1.3 2.3 2.4 1.8 2.0	3.8 B 3.3 B 2.8 D 2.8 C 2.7 C
21 6 21 13 21 16	5 4	82.6 82.8 24.8 46.1).6 15).6 18).7 18	0 2.8 0 25.1 4 22.5 3 56.0	0.7 15.9 86.4 48.7		MB .	4.	100 290 238 257 7, 16	. 4	8	0.41 0.38 0.27 0.62	1.5 18.9 6.7 15.8	2.4 C 7.1 D 3.7 D 18.3 D
21 16		32.3	57 12 55 18		2 45.1			MB .		1. MS	5 - 4			4.9	4.9 D
21 15 21 16 21 16 21 16 21 20	3 44 9 0 27	56.4 5.5 41.4 17.5 1.4	86 40 66 20 66 56 61 29).6 15).1 14 3.0 15	4 2.1 3 29.8 9 64.8 3 10.5 9 47.6	42.4 43.3 34.9 17.2 79.2	4.6° NEIS 4.4 3.2° 4.4 2.7			255 7 320 246 320 259	134 172 100 200	411 377 478 310 232	0.48 0.53 0.07 0.16 0.11	14.7 14.0 99.0 9.2 8.2	28.2 D 99.0 D 6.9 D 30.5 D
21 21 21 22		1.5	60 8 62 24		3 4.1 8 39.3	124.5 22.6	2.7 3.6	8	3	148 73	36 96	74	0.41	3.0	3.4 C 4.3 D
		29.5 2.9 34.4 42.6	60 2 56 46 66 17 66 14	.6 15	2 29.7 3 9.9 9 59.6 0 0.9	81.2 14.6 1.5 0.8	PALM 1.1 2.5 1.8 2.3	8N MI 4 5 6 7	0 0 1	4.3, 130 329 186 188	43 116 16 15	36 100 33 36	0.18 0.22 0.43 0.35	3.5 99.0 2.7 1.9	9.0 D 99.0 D 4.1 D 2.6 C
22 8 22 7 22 7	50 56 41 42 53	44.6 47.5 8.8 50.4 41.9	66 13 60 18 60 22 63 15 62 48	1.1 18 1.8 15 1.1 18		0.5 67.7 136.0 96.0 76.4	1.7 1.7 3.0 2.1 3.0	6 4 9 8 16	2 4 3 0	173 207 167 212 86	10 46 17 77 105	38 96 91 166 151	0.39 0.21 0.24 0.07 0.33	2.0 3.8 2.2 8.3 1.9	2.4 C 3.1 D 5.6 C 6.5 D 5.8 C
32 10 22 12 22 14 22 16 22 17	37 41 11	3.2 14.8 58.8 26.0 19.4	58 56 66 15 66 20 60 8 60 8	1.4 14 1.6 15	3 40.3 9 59.3 9 56.8 2 38.6 1 48.2	0.6 0.1 1.1 105.1 88.0	1.5 2.1 2.6 3.4 4.0	6 9 8 13	1 0 0 4 3	201 171 105 125 94	3 14 20 32 31	82 36 37 78 140	0.37 0.42 0.40 0.21 0.33	4.2 2.1 1.6 2.2 1.9	2.3 D 2.8 C 2.7 C 2.8 B 4.8 C
22 18 22 20		5.5 24.0	62 16 59 44		1 9.5 3 34.0	75.9 140.8	2.7 4.6* WEIS		3	136 96	130	198 41	0.33	3.4 2.3	7.2 D 5.8 C
	2		89 88 63 14 62 82	.8 18		108.6 126.8 130.0			3		80 104 163		0.17 0.33 0.23	2.5 2.4 38.3	4.4 C 7.3 C 17.4 D
25 2 23 3	30 29 329 329	23.5 8.0 6.7 14.7 7.0	60 33 63 32 66 19 66 18 60 37	1.3 14 1.1 14 1.9 14	20.6 9 0.4 9 56.2 9 57.9 2 25.8	60.6 6.2 0.3 0.8 108.7	1.7 1.6 1.6 1.6 2.4	8 9 6 9	3 0 1 0 3	193 950 183 100 271	79 22 19 18 30	92 113 34 34 118	0.06 0.32 0.36 0.45 0.23	3.4 4.9 2.2 1.8 4.8	8.9 D 2.4 D 2.7 D 2.7 C 2.8 D
23 6	48	47.8	56 48	.0 15	8 48.7	41.8	4.2° N218			6 182	226	334	0.48	9.6	14.0 D
23 6 23 6	3 1 6 3 2 2	54.5 46.7 2.7	60 13 69 9	3.4 15 3.0 14	3 27.7 2 17.4 4 26.7	99.2 80.2 38.2	2.8 2.7 3.6 PALM	7 8 10 RR M		127 173 238 3.6,	ME18	82 376 108 -		2.2 2.1 11.5	2.7 C 3.6 C 7.6 D
	3 42		60 13		3 13.1 8 45.7	132.3	2.3	8 7	2	179	33	73 84	0.25	3.8 2.9	B.7 C 2.5 D
25 (31		1		,	,	-			0 1		0	

1985 1 APR 23 23 23 23	HR MN 10 8 11 41 11 48	3 18.1 43.6 51.5 3 25.8	DEG MIN 57 59.7 66 19.2 59 26.5 63 8.5	149 58.2 153 26.3 150 38.4	DEPTH KM 89.3 1.3 114.5 121.7 30.0	MAG 2.7 1.6 2.7 2.1 2.0	NP 6 9 7 10 4	NS 0 1 5 0	GAP DEG 237 101 121 293 270	D1 KM 67 18 7 108 55	D3 KM 171 35 58 178 115	RMS SEC 0.07 0.41 0.17 0.27	ERH KM 26.9 1.5 2.5 21.6 99.0	ERZ Q KM 57.5 D 2.3 C 4.2 C 11.9 D 99.0 D
23	19 12 19 51 21 24 23 8	15.6 8.2 3 40.5	64 45.7 59 19.8 66 17.0	149 15.9 153 36.7 149 47.2	12.4 21.2 118.3 8.4 0.2	2.6 1.6 2.6 3.1 1.9	8 7 7 9 6	0 0 6 0 0	144 261 145 104 174	35 23 12 24 15	64 65 45 39 35	0.21 0.12 0.26 0.38 0.45	1.5 4.8 1.7 2.4 2.1	1.9 C 1.3 D 2.2 C 2.0 C 2.8 C
24 24 24 24 24	1 42 2 57 3 28 6 22 6 23	7 26.4 3 40.3 3 9.1	58 55.5 66 14.1 60 30.6	152 46.3 150 3.0 151 25.9	11.8 84.2 7.1 42.4 108.6	3.4 2.2 3.0 2.1 1.9	5 9 7 5	0 2 0 3 3	333 219 99 184 111	124 50 11 75 52	367 110 37 89 104	0.06 0.35 0.48 0.42 0.09	99.0 2.6 1.8 1.9 2.7	99.0 D 4.7 D 1.7 C 5.6 D 4.1 C
24 24 24	6 26 6 34 9 33	34.	66 17.1	149 58.6	64.9 0.4 131.5	2.3 1.6 3.0	7 7 19 ER MI	0 0	250 176 120 3.0	96 16 106	148 34 175	0.31 0.39 0.36	13.4 2.1 2.1	7.4 D 2.6 C 7.2 C
	13 3: 16 49				30.9 54.7	2.7	7 8	3	208 218	121 72	160 84	0.27 0.21	2.9 1.8	3.5 D 4.1 C
24	17 17 17 46 20 50 22 6	5 15.4 5.4	60 42.5 63 32.6	152 6.8 148 0.8	158.5 84.4 15.1 42.1	4.0* 2.5 1.8 5.1 NEIS	8 10 10 8 MB		80 143 126 257 0, MS		58 125 104 556	0.40 0.18 0.33 0.49	2.5 2.0 1.8 29.4	3.5 B 2.5 C 2.2 D 21.3 D
	22 3				16.7	1.9	8	0	72	2	40	0.05	1.2	1.6 B
25 25	1 13 2 43	50.3	61 52.3	150 48.8	126.1 72.2		8 19 1er mi		191 79 4.2,	38 94 NEIS	101 MB =	0.14 0.31 4.1	3.1	3.5 D 3.6 C
25 25 25	5 40 5 54 6 30	31.6	59 29.6	153 26.8	102.5 106.7 0.3	2.4 2.3 1.6	6 6 7	3 3 0	179 190 177	36 12 18	86 64 38	0.15 0.23 0.42	2.7 3.7 2.3	4.9 C 4.5 D 2.8 C
25 25	7 49 8 40 11 25 12 32 19 38 23 13	19.8 7 5.0 2 58.3 3 49.6	88 57.8 66 14.0 66 15.9 64 27.3	152 27.9 150 2.3 149 57.1 146 47.0	21.1 59.3 0.0 1.5 2.2 0.1	2.1 2.2 2.2 3.3 1.4 2.0	6 8 9 7 8	0 2 0 0 0 0	209 220 105 94 182 106	31 68 12 16 10	176 88 37 36 64 32	0.31 0.23 0.47 0.35 0.17 0.48	3.9 3.9 1.7 1.5 1.9	2.3 D 6.2 D 2.7 C 2.5 C 11.4 D 2.6 C
25 26 26 26	23 33 1 11 1 11 2 48	36.! 7 2.0	66 15.7 66 14.4	149 60.0 149 50.8	116.8 0.2 3.0 101.8	2.1 1.7 3.9 3.5 PALM	13 6 10 9 MER MI	0 1 0 4	115 171 96 167 3.7	119 14 20 19	191 35 41 87	0.28 0.46 0.20 0.28	2.3 1.9 1.6 2.1	8.9 C 2.8 C 2.3 C 5.1 C
26	3 2				0.5	2.0	9	0	98	17	33	0.43	1.5	2.6 C
26 26 26 26 26	4 31 4 4: 5 ' 8 2: 9 4:	2 56.4 7 2.6 0 26.0	66 12.7 64 24.2 66 9.3	150 2.8 147 14.5 150 7.0	0.2 0.7 30.0 1.5 89.0	1.4 2.3 1.5 1.7 2.5	7 8 6 7 7	0004	111 100 145 153 120	12 12 14 12 40	39 39 42 44 69	0.29 0.15 0.39 0.35 0.16	2.6 1.8 4.7 3.8 2.3	3.7 C 2.4 C 8.7 C 4.2 C 4.5 C
26 26 26	12 2' 19 4- 20 3' 21 2' 21 5	4 29.3 38.8 46.8	66 17.0 66 20.6 66 15.6	149 58.0 149 55.8 149 59.5	92.9 0.1 0.7 0.6 96.2	2.2 1.9 2.1 2.0 1.8	10 6 7 7 5	0 2 0 0 2	230 188 188 171 155	127 16 21 14 29	204 34 37 36 101	0.24 0.37 0.40 0.41 0.16	5.9 2.3 2.4 2.1 3.1	10.3 D 2.7 D 2.7 D 2.7 C 5.3 C
26	23 2				94.3	3.8 PALE		1 -		117 NEIS	166 MB =	0.28 4.7	8.2	9.2 D
27 27 27 27	4 4 2 5 2 5	3 56.3 1 44.3	66 16.8 60 4.7	149 49.9 152 51.1	116.1 0.0 110.6 21.1	2.9 1.4 1.9 3.0	8 6 5 8	4 2 2 2	166 197 162 266	13 22 38 114	93 38 84 232	0.20 0.28 0.08 0.49	4.2 3.2 3.1 6.9	3.9 D 3.7 D 5.5 C 18.7 D
	7 56 8 46 9 45 13 25 13 36	3 16.6 5 24.3 7 44.3	3 58 11.2 3 64 46.2 5 66 15.3	151 16.6 149 32.5 150 1.0	0.2 30.0 10.3 0.1 20.6	1.8 2.3 1.5 2.1 2.0	8 5 7 6	0 0 0	104 229 270 169 209	20 87 31 13 31	36 161 77 35 176	0.37 0.24 0.20 0.41 0.17	1.8 44.9 11.4 2.1 3.8	2.7 C 86.6 D 6.4 D 2.6 C 2.3 D

	3	ORIGIN ER MON 2 86 4 14 4 48	TIME SEC 23.4 53.4 20.0	D&1 66 69	AT X S MIN 14.8 48.5 15.8	LONG W DEG MIN 149 59.7 153 14.2 150 1.4	DEPTH EN 0.2 125.1 0.7	1.8 2.6 2.0	NP 7 8 7	NS 1 5 0	GAP DEG 169 125 169	D1 KM 14 17 13	D3 KM 37 73 35	RMS SEC 0.39 0.25 0.48	ERE KM 2.1 1.6 2.0	ERZ Q EM 2.3 C 2.3 B 2.6 C
2 2 2	8.9	5 15 5 36 10 12 12 6 13 47	11.1 23.1 21.6 43.6 22.3	64 60 66	13.9 34.8 10.4 13.1 43.0	149 56.4 146 30.7 153 9.3 149 59.2 151 47.9	0.3 2.3 129.3 0.1 155.9	1.6 1.3 2.7 1.7 3.1	7 8 7 8	0 2 0	171 206 196 167 169	16 29 35 14 84	40 77 90 40 118	0.38 0.03 0.24 0.25 0.40	2.3 3.0 2.2 2.8 5.9	2.7 C 43.7 D 9.3 D 3.5 C 17.5 D
2 2	18 18	14 48 15 50 19 27 23 10 23 12	36.9 48.8 4.3 37.8 44.2	60 68 62	23.5 2.1 16.1 10.6 50.6	148 3.8 152 36.1 149 57.0 149 27.2 153 21.4	28.5 92.8 0.3 14.5 129.1	2.5 2.2 1.7 2.2 2.9	10 6 7 10 8	0 0 0	105 134 175 132 196	73 44 16 67 22	148 95 36 176 72	0.40 0.28 0.40 0.16 0.24	2.5 2.5 2.2 2.6 2.1	5.8 D 5.3 C 2.7 C 4.5 C 2.7 C
2 2 2	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 12 5 3 6 80 7 8 8 16	34.0 17.6 86.4 31.5 87.3	63 60		148 49.1 150 49.8 150 88.6 151 54.6 153 23.7	15.7 140.1 138.7 75.2 181.5	1.0 2.4 2.3 2.5 2.5	6 18 13 8	3 3 0	226 121 117 109 206	28 114 130 63 37	51 196 197 110 68	0.09 0.20 0.30 0.29 0.22	3.6 2.5 2.3 2.1 3.1	1.7 D 8.2 C 9.0 C 3.0 B 8.4 D
2 2	58 58 58	13 80 14 1 16 18 18 22 23 7	17.4 10.4 58.5 8.3 53.4	66 66	13.6 12.1 17.3 16.1 20.5	180 2.2 149 48.7 180 11.3 180 0.2 149 88.3	0.1 0.7 0.0 2.9 0.3	1.5 1.7 1.8 1.8	6 8 8 8	1 0 0	164 179 81 92 187	12 21 8 14 20	38 47 38 38 37	0.20 0.27 0.32 0.49 0.37	2.1 2.4 1.8 1.6 2.3	2.8 C 3.0 C 2.8 C 2.3 C 2.7 D
2	50 50 50 50	4 8 4 26 4 27 8 4 3 20	17.4 11.3 21.8 44.2 30.4	66 66 60	38.3 19.8 20.1 9.3 10.4	148 59.5 149 58.1 149 88.2 151 15.4 183 47.8	5.1 0.5 1.3 41.5 6.7	2.4 2.0 2.2 2.5 2.8	7 9 9 6	0 0 4 0	140 103 103 173 312	78 18 19 48 101	143 36 36 70 278	0.23 0.46 0.80 0.32 0.14	2.2 1.7 1.8 2.6 99.0	4.4 C 2.8 C 2.5 D 5.8 C 99.0 D
3 3 3	50 50 50 50	5 38 5 47 6 21 6 41 8 18	21.8 32.1 0.7 14.7 34.8	88 88 88	13.7 13.5 17.2 11.9 23.3	180 2.7 180 3.8 149 88.6 149 48.1 147 85.7	0.9 0.5 0.2 0.2 17.8	3.5* 3.1 2.1 1.6 1.1	9 8 7 8	0 0 0	100 100 188 179 127	11 11 16 21 12	37 37 34 47 80	0.44 0.46 0.40 0.28 0.07	1.8 1.5 2.3 2.8 1.8	2.4 C 2.4 C 3.0 D 3.0 C 2.3 B
3	30	10 43	35.6 45.1 47.1 44.6 2.0	66 66	23.9 13.1 10.4 13.6 24.0	147 59.2 149 43.5 149 51.0 149 55.3 182 33.7	18.0 0.1 0.3 0.9 102.4	1.3 1.9 1.5 1.8 2.2	6 8 7 7 6	0 0 0 2	124 119 114 169 109	10 23 18 15 12	80 46 47 39 97	0.05 0.30 0.34 0.36 0.19	1.7 1.8 2.9 2.3 4.7	2.2 B 3.0 C 4.1 C 2.8 C 6.8 C
MAY C	30	19 40 21 36 2 40 2 53 2 59	21.8 18.6 39.8 36.5 7.4	66 64	14.6 16.2 15.4 53.9 17.5	149 59.6 149 59.5 149 56.5 147 56.1 149 86.6	0.4 1.0 0.3 29.6 0.5	1.6 1.9 1.7 1.5	7 7 7 8 7	0 0 1	169 172 178 190 176	14 14 17 13	37 35 37 48 170	0.40 0.43 0.40 0.21 0.36	2.2 2.1 2.3 3.4 2.8	2.7 C 2.6 C 2.8 C 4.6 D 3.5 C
Č		3 6 8 18 8 58 11 29 13 18	28.4 59.2 37.4 27.2 12.1	66 60 64	20.8 12.1 42.9 28.1 16.1	149 86.0 149 45.8 182 13.3 149 30.7 149 88.4	0.3 0.5 87.6 13.6 0.9	2.2 1.6 2.2 1.4 1.8	9 7 6 6 7	0 1 3 0	107 179 138 287 173	21 21 45 24 16	37 47 122 77 38	0.41 0.26 0.17 0.17 0.42	1.8 2.4 2.8 5.3 2.0	2.8 C 2.9 C 3.0 C 1.8 D 2.8 C
0	02 03 03 01	14 10 0 5 1 30 3 28 3 32	37.2 25.7 46.5 19.0 17.4	66 65	14.6 12.2 14.8 1.0 11.9	149 58.2 149 45.1 150 3.4 150 52.0 149 43.0	0.5 0.6 1.1 86.3 3.2	1.7 3.2 1.9 1.7	5 8 6 6	1 0 1 0	183 116 106 282 181	15 21 11 98 21	38 47 35 131 48	0.43 0.17 0.47 0.21 0.35	2.7 1.8 1.5 12.1 4.5	3.1 D 2.9 C 2.5 C 16.3 D 5.3 D
)3)3)3	4 23 7 40 7 47	58.3 34.0 51.6	60	12.2 60.0 9.3	149 59.7 147 6.5 150 22.2	0.3 17.6 43.4	1.7 3.0 3.2* FELT	8 9 9	0 1 1 1 IM	165 215 127 ANCE	14 94 82 ORAGE	41 236 184	0.45 0.27 0.18	2.7 5.2 2.1	3.0 C 4.1 D 5.1 C
		11 19 11 38	42.6 56.8		39.2 18.8	152 35.0 180 5.6	89.6 2.8	2.4	ិទ 5	0	128	37 13	87 3 8	0.10 0.12	3.0 2.0	3.4 C 2.5 C
C C)2)2)2	16 34 18 28 20 12 21 29 1 26	1.8 38.9 38.9 16.8 54.4	66 59 86	29.0 16.6 57.6 19.8 14.3	181 9.1 149 89.7 183 21.0 149 37.8 149 47.3	133.6 0.6 142.3 8.1 1.1	1.9 1.9 2.3 1.9	8 7 7 8	0 4 0 0	184 173 128 202 119	153 15 38 32 23	285 34 68 42 43	0.18 0.39 0.25 0.27 0.24	18.7 2.1 2.3 3.1 1.8	19.8 D 2.7 C 3.0 C 2.4 D 2.8 C

ORIGIN 1985 HR MW MAY 03 2 26 03 7 12 03 8 39 03 9 10 03 9 10	TIME SEC 46.1 18.7 25.8 50.4 46.7	LAT N DEG MIN 60 5.6 61 47.2 58 57.8 63 27.1 61 30.8	LONG W DEG MIN 153 11.0 180 41.0 154 1.1 145 41.2 146 23.2	DEPTH EM 123.1 48.4 100.2 10.0 30.7	MAG MP 2.6 6 2.4 11 2.2 5 2.2 7 2.3 6	NS 2 2 0 0	GAP DEG 120 79 241 193 289	D1 VH 43 85 22 10	D3 EM 126 177 199 123 169	RMS SEC 0.31 0.38 0.11 0.18 0.35	ERH EM 2.7 1.9 11.1 3.4 11.0	ERZ Q EM 6.1 C 9.2 C 14.7 D 1.6 D 5.6 D
03 10 0 03 10 4 03 10 8 03 12 2 03 12 7	38.9 50.2 52.5 32.8 31.9	58 36.4 63 28.4 63 3.3 66 16.0 57 84.3	188 49.3 145 36.8 151 26.9 150 0.3 148 35.3	31.8 7.9 148.2 1.6 33.6	3.6 9 3.6 10 2.8 9 2.2 8 4.2 14 PALMER 1	ਜ 00000	227 199 273 111 231 4.5, 1	297 12 147 14 214 NEIS	393 123 229 35 237	0.39 0.52 0.30 0.43 0.44	36.3 3.4 15.1 1.7 19.0	30.8 D 2.0 D 13.9 D 2.5 C 15.6 D
03 13 35 03 23 40 04 1 21	41.0	64 14.2 62 14.3 86 16.7	150 18.0 150 13.6 149 59.8	88.3 8.2 0.7	3.8° 14 3.7 15 PALMER 1	۵	173	15	34	0.42	2.0	3.1 B 3.9 D 2.7 C
04 1 51 04 4 7	6.3	66 18.3 66 18.0	180 B.4 180 11.4	0.1	2.2 9	0	87 82	11	36 36	0.41	1.5	2.6 C 2.5 C
04 6 20 04 8 38 04 14 80	36.5 36.7 66.6 17.4	56 50.2 63 28.3 63 14.1 66 18.1	181 31.5 149 1.8 180 25.4 180 0.5	94.3 107.4 0.9	3.9 11 PALMER 1 1.9 6 1.9 6 2.3 6	0 0 1 1	213 4.1, 1 264 289 111	117 NEIS : 36. 93 14	300 150 179 34	0.44 4.6 0.03 0.04 0.36	5.0 13.2 29.2 1.6	1.6 D 12.3 D 12.0 D 2.6 C
04 16 33 04 18 27 04 22 37 06 4 9 08 11 41	52.9 17.2 41.2 24.6 30.9	59 37.7 66 14.3 61 38.3 64 87.5 59 87.3	162 5.5 149 52.1 146 58.4 139 34.4 153 12.9	68.2 9.1 37.7 29.8 121.8	2.4 5 1.7 6 2.6 6 2.5 7 2.1 5	4 1 0 0 2	127 177 235 245 193	24 19 29 237 57	65 41 168 387 117	0.21 0.48 0.24 0.22 0.14	3.4 3.7 7.0 8.9 2.9	8.4 C 2.9 C 2.4 D 99.0 D 6.1 D
05 12 17 05 14 50 05 15 37 05 16 37 05 19 20	8.6 46.7 50.8 3.2 35.5	60 19.4 59 55.0 66 16.2 66 16.4 66 14.1	152 59.9 152 6.6 149 86.6 180 0.8 150 1.1	113.3 88.9 0.7 0.0 0.3	2.1 6 2.3 5 1.9 7 2.1 7 2.2 8	2 3 1 1 0	109 136 174 171 107	16 39 16 14	133 67 37 34 37	0.27 0.14 0.43 0.45 0.33	3.2 2.3 2.0 1.9 2.0	5.8 C 4.5 C 2.6 C 2.8 C 2.7 C
05 20 14 06 1 6 06 2 13 06 6 7 08 8 35	24.3 11.3 21.0 44.7 44.5	60 10.4 66 16.4 60 5.7 59 45.7 62 23.9	183 24.3 149 88.7 161 29.1 150 30.6 149 8.1	157.8 9.3 55.6 26.1 39.3	2.7 6 3.5* 9 2.3 8 3.2 11 2.0 7	0 2 3 0	207 97 200 202 131	45 17 50 21 90	135 36 80 65 149	0.13 0.24 0.09 0.41 0.35	6.7 1.9 4.5 2.0 6.2	14.1 D 1.8 B 4.6 D 2.8 D 20.9 D
06 11 4 06 13 55 08 14 19 06 21 1 06 21 10	14.6 3.6 89.8 57.9 17.0	66 12.2 66 19.8 66 14.2 66 17.1 60 11.4	150 6.3 149 54.2 150 4.8 149 49.8 151 58.1	0.8 0.7 0.7 10.0 88.3	2.2 9 2.4 9 2.0 8 3.1° 9 2.3 4	0 0 0 3	102 106 103 123 188	9 21 10 22 61	39 38 36 38 77	0.48 0.35 0.49 0.20 0.14	1.8 1.6 1.6 1.8 4.6	2.5 C 2.7 C 2.4 C 1.8 C 3.9 D
06 21 37 07 0 21	56.4 34.1	59 34,5 66 18.2	162 50.3 149 57.1	91.8 1.7	2.0 4 1.6 8	0	149 120	85 18	94 33	0.06	2.9 1.7	6.7 D 2.6 C
07 1 1 07 3 10 07 6 12 07 7 14 07 8 38	47.0 55.8 44.1 46.8 30.1	66 16.8 62 39.9 66 17.7 62 6.8 60 18.5	149 58.0 149 41.4 150 0.0 150 12.0 153 4.3	0.1 62.4 0.6 78.3 133.9	1.9 7 2.0 8 1.8 7 2.3 7 3.0 10	0	175 169 175 154 112	16 123 16 143 21	34 154 32 192 105	0.33 0.06 0.44 0.27 0.28	2.1 2.6 2.1 5.4 2.4	2.8 C 15.4 D 2.8 C 20.9 D 3.6 C
07 22 38 08 1 20 08 4 1 08 4 32 08 12 0	83.3 14.7 47.9 7.5 40.7	66 16.1 59 54.4 66 11.7 59 24.9 66 17.6	150 0.2 152 19.2 150 1.2 153 2.2 150 0.1	0.3 75.8 6.8 93.6 1.3	2.3 8 2.0 5 3.6 9 1.9 4 1.7 7	0 2 0 2 1	110 124 102 154 175	14 62 13 64 15	36 82 41 113 168	0.45 0.25 0.24 0.16 0.33	2.2 2.5 2.6 3.6 2.1	2.9 C 5.2 C 1.7 C 6.9 B 3.4 C
08 12 40 08 13 10 08 14 0 08 16 8 09 0 42	41.7 46.0 32.1 56.1 22.9	89 31.7 59 58.7 61 49.9 66 12.8 63 11.5	152 39.5 152 29.2 151 21.9 149 58.0 161 43.3	76.6 92.0 55.6 0.6 169.0	2.2 5 2.7 9 2.3 9 2.0 6 3.1° 7	1 3 1 0	131 122 81 168 185	47 52 81 15 153	87 50 175 41 225	0.08 0.21 0.33 0.41 0.41	2.3 2.2 1.7 2.4 8.5	8.3 C 2.8 B 7.9 C 2.7 C 17.7 D
09 2 3 09 2 41 09 3 39 09 4 9	43.2 38.8 15.7 24.0	66 18.1 63 37.4 61 86.5 62 33.1	149 58.3 149 23.3 150 48.0 141 45.6	0.4 107.4 41.1 22.2	2.1 9 1.4 6 2.6 13 3.8 10 NEIS MB	- 4						
09 7 44	82.9	85 41.5	153 49.4	91.1	AND KOI		AND 1 234			O.33	ITORY,	CANADA 6.6 D

ORIGIN 1985 HR MN MAY 09 7 48 09 8 15 09 9 27 09 9 33 09 9 42	TIME SEC 19.1 18.9 46.4 12.5 30.4	LAT N DEG MIN 66 17.0 63 1.6 66 19.4 66 51.5 66 16.0	LONG W DEG MIN 150 9.9 180 41.9 149 69.0 147 15.6 149 47.3	DEPTH KM 1.1 118.5 1.0 40.2 10.5	MAG 2.2 1.6 2.3 3.1 3.4	NP 8 10 9 12 10	0 0 0 8 8	GAP DEG 83 184 100 164 102	D1 8 8 118 17 95 23	D3 EM 34 190 35 144 41	RMS SEC 0.44 0.23 0.36 0.29 0.20	ERH 1.4 4.0 1.5 2.3	ERZ Q EM 2.0 C 9.2 D 2.5 C 99.0 D 1.6 C
09 10 48 09 22 28 10 6 31 10 7 19 10 7 84	46.1 53.0 7.7 52.8 34.0	89 34.7 64 12.9 66 18.2 60 86.8 69 42.6	153 1.1 149 54.5 160 4.8 147 31.4 182 14.0	107.1 0.3 0.0 20.3 67.6	2.4 1.4 1.9 2.2 2.7	6 6 10 6	3000	141 266 170 212 114	32 57 13 100 34	81 92 34 227 76	0.26 0.24 0.40 0.23 0.15	2.9 7.7 2.1 4.4 1.8	3.4 C 2.8 D 3.3 C 2.9 D 4.6 B
10 9 36 10 10 24 10 20 33	36.7 41.7 33.2	66 20.6 57 27.6 66 16.9	149 58.6 154 53.8 149 59.5	0.3 89.0 0.8	1.8 3.0 1.8	7 12 9	0	188 303 94	21 147 15	37 231 34	0.40 0.48 0.47	2.6 24.0 2.0	2.9 D 7.4 D 2.5 C
11 0 14 11 2 20 11 3 28 11 12 12 11 13 49	29.4 28.4 81.9 49.4 34.4	60 13.6 61 36.7 63 27.9 62 30.2 61 0.7	153 13.1 150 48.4 148 54.1 151 10.4 146 28.8	133.8 38.0 11.0 76.1 2.0	2.4 2.1 1.2 2.3 2.6	8 8 13 6	000	201 121 315 100 231	33 87 30 147 102	124 184 124 178 226	0.19 0.37 0.18 0.31 0.24	2.6 4.4 31.7 2.5 10.8	6.1 D 3.9 D 4.3 D 12.9 C 3.4 D
11 21 29 12 1 41 12 4 36 12 10 17 12 12 12	58.0 29.5 58.0 36.9 49.1	89 88.8 86 18.7 66 14.7 66 18.4 88 33.4	151 1.9 150 0.9 150 6.0 150 3.3 182 56.7	59.0 0.2 0.8 1.1 61.3	2.8 1.8 1.9 2.1 2.1	12 7 11 9 6	3 2 0 1 2	118 170 96 90 185	25 13 9 11 57	82 35 38 34 147	0.35 0.35 0.66 0.46 0.36	1.6 1.8 1.5 1.5	2.8 C 2.4 C 2.3 C 2.4 C 12.8 D
12 12 52 12 12 58 12 13 34 12 17 7 12 20 51	33.0 53.2 47.9 0.9 34.6	88 14.6 64 30.7 66 13.0 58 31.6 62 42.7	180 31.1 148 14.3 149 59.9 154 9.8 151 1.7	25.0 18.0 1.0 1.2 78.4	2.4 0.9 1.9 3.2 2.3	8 7 13 14	1 0 1 0	252 159 166 214 106	129 8 14 54 188	171 41 40 104 179	0.18 0.02 0.45 0.44 0.40	32.3 1.9 2.0 9.3 2.2	39.7 D 3.8 C 2.8 C 11.0 D 12.4 D
12 21 10 12 21 14 12 21 16 12 21 18	28.4 46.0 18.3 56.3	66 22.8 66 20.9 68 20.8 59 22.0 63 3.2	149 54.8 149 58.7 180 0.0 182 21.5	0.8 1.8 0.5 96.4	2.4 2.0 2.1 4.0 NEIS 2.3		0 1 2 0 - 4.	115 105 182 96 6, FE	24 19 18 52 LT (I	41 38 37 61 11) 1 220	0.44 0.34 0.43 0.13 N HOME 0.06	1.7 1.6 2.1 2.1 R	2.9 C 2.6 C 2.3 D 4.8 C
13 3 50 13 8 45 13 10 21 13 10 25 13 10 49	42.1 5.2 27.6 19.2 38.9	66 12.8 60 22.4 66 22.9 66 40.8 63 36.1	150 2.9 152 13.1 149 46.5 149 21.4 156 45.7	0.6 81.7 5.7 15.0	2.3 2.4 3.3 3.4	6 8 8 5 4	0 2 0 0	162 212 210 267 219	12 31 29 205 284	39 98 41 100 453	0.39 0.32 0.39 0.31 0.18	2.3 4.5 3.2 74.4 24.0	2.7 C 3.3 D 2.5 D 99.0 D 99.0 D
13 10 55 13 21 7 14 4 26 14 10 19 14 13 55	3.8 50.1 12.7 83.2 48.3	66 22.6 88 40.9 89 24.0 63 7.2 66 13.8	149 47.7 154 47.6 152 40.0 180 17.8 180 4.3	5.9 131.3 75.9 99.5 0.7	3,4° 3,2 2,7 3,6° 2,2	8 11 9 20 9	0 1 8 0	208 224 97 67 100	28 72 43 96 10	40 140 68 181 37	0.42 0.34 0.28 0.37 0.47	3.1 5.3 1.9 1.9	2.5 D 2.9 D 3.4 B 6.1 B 2.3 C
14 18 6 14 20 27 14 20 29 14 21 22	29.6 17.4 22.8 41.7	63 12.8 63 3.5 59 44.0 60 4.3	150 44.7 148 35.9 182 41.9 183 6.6	122.8 90.0 89.4 120.1	1.9 1.8 2.3 2.4	6 9 5	0 0 6 2	294 194 122 192	107 77 31 43	192 182 77 121	0.01 0.13 0.32 0.21	38,9 3,7 1,8 2,9	16.7 D 7.7 D 2.5 C 6.0 D
14 23 47 15 0 21 15 1 48 15 2 50 15 3 0	7.6 15.0 6.6 49.7 31.2	66 19.8 66 19.7 66 19.0 66 14.9 66 16.7	149 59.3 149 58.7 149 58.7 150 0.7 149 58.7	1.0 0.5 0.6 0.9	2.2 1.9 2.0 2.3	9 9 8 8	0 0 0 0	101 102 100 106 172	17 18 17 13	36 36 34 36 36	0.41 0.37 0.38 0.34 0.40	1.6 1.7 1.8 1.7 1.9	2.6 C 2.9 C 2.7 C 2.6 C
15 3 15 15 4 27 16 7 59 15 10 33 15 10 48	7.2 69.7 16.8 18.2 3.7	66 16.0 89 35.0 66 20.9 56 46.4 66 15.1	149 59.6 152 30.8 149 59.4 180 20.9 149 56.7	0.3 81.2 0.8 41.6 0.9	2.3 2.5 1.6 3.5 1.9	6 6 12 7	1 8 0 0	184 127 104 291 173	14 80 19 169 16	36 73 36 330 37	0.35 0.24 0.40 0.45 0.39	2.1 1.3 1.8 31.4 2.2	2.9 D 2.9 B 2.8 C 19.3 D 2.8 C
15 11 9 15 13 33 15 14 14 15 16 8 15 19 2	31.0 6.9 6.8 39.4 40.0	63 33.1 59 48.2 59 38.9 63 3.1 66 15.5	146 39.0 152 38.4 161 31.4 161 3.4 149 59.4	27.9 62.8 62.2 137.5 1.6	1.4 2.3 2.3 1.8 3.8	6 6 7 8	1 4 2 0	178 106 108 198 111	40 40 7 132 14	96 87 38 214 36	0.32 0.15 0.22 0.16 0.37	4.3 2.1 2.7 6.1 1.6	18.5 C 4.7 B 3.2 C 11.7 D 2.4 C

ORI 1985 ER MAY 15 21 16 23 16 1 16 3 16 5	59 53.5 24 6.6 0 13.5	LAT N DEG MIN 63 54.2 66 16.4 66 19.9 59 64.3 62 56.9	LONG W DEG MIN 148 63.2 180 0.1 149 54.2 153 18.2 150 28.2	DEPTH EM 6.4 0.9 0.8 117.0 91.2	MAG 1.0 2.4 2.3 2.2 2.6	NP 6 8 9 6	#8 0 0 0 2	GAP DEG 186 112 106 197 108	D1 EM 19 14 21 28 116	D3 EM 76 34 36 64 194	RMS SEC 0.20 0.41 0.34 0.15	ERH 2.4 1.7 1.6 2.8 2.1	ERZ Q EM 3.0 C 2.7 C 2.9 C 8.7 D 7.9 C
16 17 16 23 17 1 17 8 17 7	7 42.1 26 42.4 88 7.4	60 6.7 58 45.5 61 42.5 60 6.0 58 54.2	153 41.3 154 13.2 147 14.7 153 36.1 184 27.4	0.2 123.1 37.9 2.0 37.3	2.2 2.4 2.2 2.1 2.5	7 8 7 6	0 0 0 0	138 207 227 135 260	57 38 15 64 47	83 115 168 81 109	0.31 0.12 0.37 0.23 0.30	2.4 7.8 6.2 3.7 9.0	16.9 D 7.8 D 2.1 D 8.3 D 16.5 D
17 8 17 11 17 13 17 15 17 16	45 50.4 53 34.0	66 16.3 60 21.1 60 13.2 66 21.5 61 23.3	150 1.7 183 2.3 152 16.3 149 88.8 149 49.6	0.3 2.6 79.3 2.5 47.3	1.7 1.6 2.2 1.5 2.4	8 8 8 7	0 1 3 1	91 121 174 107 192	13 17 38 20 43	34 164 93 39 142	0.43 0.20 0.21 0.44 0.25	1.9 6.3 3.8 1.6 4.3	2.7 C 7.3 C 4.8 C 2.5 C 5.5 D
17 18 17 18 17 19 17 20 17 23	58 21.4 6 47.3 2 3.7	66 20.3 66 22.1 66 20.5 64 56.0 66 20.0	149 58.3 149 57.8 149 57.9 148 31.4 150 2.2	1.6 0.2 0.0 13.5 0.1	2.3 1.6 1.6 1.1	9 7 6 6 7	0 1 2 0 1	104 190 197 120 99	19 21 19 22 16	37 40 37 54 37	0.33 0.38 0.38 0.28 0.44	1.7 2.4 2.5 2.4 1.7	2.8 C 2.8 D 2.8 D 4.1 B 2.7 C
18 3 18 3 18 4 18 6 18 14	86 17.6 11 32.7 23 13.1	66 15.7 66 13.8 64 51.3 66 17.8 63 29.8	149 56.7 150 2.3 147 20.8 149 58.8 151 9.3	0.1 0.1 11.6 1.6 9.7	1.6 3.7 0.9 1.8 2.2	7 8 9 6	0 0 3 1 0	175 104 167 97 246	16 12 15 16 113	37 38 54 32 185	0.40 0.47 0.16 0.46 0.38	2.4 2.3 1.5 1.5 19.2	3.2 C 2.8 C 4.8 C 2.8 C 12.4 D
18 16 18 16 18 16 18 18 18 19	45 30.0 48 47.7 3 56.3	64 27.1 89 66.3 66 10.9 89 28.0 66 13.6	148 42.3 153 5.6 150 9.8 153 54.6 150 0.9	10.7 113.7 0.4 139.1 0.3	1.0 2.2 2.4 3.0 1.8	6 5 9 7	2 0 2 0	120 181 103 168 166	25 56 6 29 13	50 114 40 62 38	0.20 0.13 0.48 0.18 0.34	1.2 3.9 2.0 3.6 2.5	3.2 C 11.0 D 2.6 C 4.9 C 3.4 C
18 22 18 23 18 23		58 25.3 58 55.1 66 15.1	154 31.5 183 54.0 150 1.3	19.5	4.0° MRIS 2.2 1.9	10 MB -	0 4.3 0	120 300 168	124 15 13	144 90 35	0.48 0.19 0.43	8.0 35.6 1.8	21.4 D 80.7 D 2.6 C
19 D		64 35.0 66 18.9	147 49.8 150 5.0	12.1	1.8	7	0	90	18	46 36	0.30	1.2	1.8 C 2.5 C
19 5 19 7 19 8 19 9 19 11	17 39.0 12 17.7 11 9.2	66 13.7 61 46.0 66 19.9 61 35.0 63 4.8	150 0.7 150 49.0 149 52.7 149 57.3 149 54.4	0.4 59.5 0.7 45.7 92.9	1.5 3.0° 1.7 2.4 2.1	7 14 7 6	1 0 0 1 0	166 106 108 161 165	13 91 22 44 87	38 184 36 142 172	0.30 0.39 0.35 0.10 0.06	1.9 2.5 1.6 12.1 3.5	3.4 C 5.6 D 3.0 C 5.8 D 7.0 D
19 17 19 21 19 23 20 0 20 2	44 46.3	63 59.5 66 14.8 62 23.9 66 14.6 66 16.9	149 1.6 149 57.2 150 5.3 149 56.1 149 84.1	0.6 0.6 88.5 0.3 1.6	2.0 1.7 2.3 2.2 2.0	11 8 6 6 7	0 0 0 1	104 97 296 186 180	29 10 100 16 19	102 38 248 39 36	0.85 0.39 0.04 0.30 0.25	1.7 2.2 34.3 2.6 2.3	1.5 D 2.6 C 17.9 D 2.9 D 2.7 C
20 4 20 8 20 8	11 32.3	66 15.6 66 20.9 68 12.8 63 9.9 66 17.6	149 89.9 149 81.4 149 83.8 149 84.1 149 87.6	0.0 3.6 6.2 97.7 0.5	2.3 2.4 2.6 1.5	9 7 8 8	0 0 0 0	91 132 96 166 98	14 24 19 80 17	30 37 42 171 33	0.39 0.19 0.18 0.14 0.44	1.6 2.3 2.5 4.6 2.1	2.8 C 3.8 C 2.0 C 6.6 D 2.7 C
20 12 20 13		64 28.2 60 36.3	147 57.4 147 40.5	9.7 16.5	1.0 4.0 PALM PELT	9 8R MI (111	4	4.4.	HEIS	201 HB -	0.22 0.27 4.3, I) ANG	1.3 5.6 HORAGE	3.2 C 6.3 D
20 18 20 19 20 21 20 21 20 22	18 4.3 26 6.9 31 17.2	60 27.7 66 14.9	151 58.8 152 2.6 149 59.8 149 56.3 152 4.8	60.1 86.3 0.5 6.1 77.0	2.1 2.6 2.3 2.6°	5 6 8	3 2 0 0 2	210 140 109 111 99	59 40 14 15 39	91 92 37 37 94	0.06 0.23 0.30 0.26 0.26	4.3 3.2 2.1 2.3 2.0	5.3 D 3.9 C 2.7 C 2.0 C 2.6 B
21 5 21 8	42 52.4	64 26.5 57 26.3 64 48.3	150 39.7 147 58.4 154 9.2 148 59.1 149 52.9	74.1 22.4 51.6 19.5 0.1	2.2 0.8 2.8 2.0	6 8 7 7	0 0 0 1	174 192 279 180 182	110 7 105 26 20	181 49 321 87 36	0.31 0.05 0.30 0.19 0.24	2.6 2.9 19.6 1.6 2.2	5.7 D 2.0 D 17.3 D 1.4 C 3.0 C

ORIGIN 1985 HR MN MAY 21 15 22 21 16 39 22 6 43 22 12 51 22 12 58	TIME SEC 31.4 46.2 28.2 38.5	LAT N DEG MIN 60 14.1 59 43.5 66 21.5 60 1.7 66 12.8	LONG W DEG MIN 149 51.6 152 56.0 149 55.5 151 39.6 149 45.2	DEPTH EM 3.9 103.4 1.1 66.2 1.1	#AG 2.1 2.9 2.2 2.6 1.7	8 9 9 7 9	NS 1 4 0 4 1	GAP DEG 98 80 110 178 97	D1 EM 20 19 22 41 22	D3 KH 41 73 39 61 46	RMS SEC 0.34 0.33 0.23 0.21 0.27	ERH 2.2 1.7 1.8 2.2	ERZ Q EM 2,2 C 3,4 B 2,8 C 2,4 C 2,9 C
22 14 38 22 15 38 22 20 22 22 20 33 22 20 37	17.0 35.6 60.0 15.8 18.1	88 84.9 63 20.7 66 55.3 62 14.6 66 20.6	184 20.8 147 12.1 188 37.6 148 27.9 149 81.2	117.8 8.0 52.8 28.1 1.6	2.7 2.2 2.8 2.8	6 10 6 10	0 0 0	267 90 329 112 205	40 70 129 75 24	190 97 278 168 37	0.23 0.30 0.03 0.25 0.36	7.8 1.4 99.0 2.3 2.8	10.4 D 2.2 D 14.3 D 8.5 D 2.9 D
22 22 7 22 23 16 23 0 25 23 2 9 23 3 45	53.6 14.4 21.3 52.0 18.7	89 27.0 86 18.2 80 13.2 86 14.1 83 16.9	152 42.2 150 5.9 153 10.0 149 55.2 147 14.9	82.2 0.3 134.9 13.1 8.9	2.5 2.6 2.8 1.2	8 8 8	2 0 2 0	140 86 214 112 191	42 10 31 17 74	84 36 133 40 98	0.24 0.40 0.15 0.30 0.06	3.0 1.6 5.5 2.6 3.7	8.8 C 2.6 C 11.6 D 1.6 C 3.5 D
23 4 0 23 8 13 23 10 B 23 11 12 23 11 48	12.0 55.0 25.1 7.1 20.7	66 17.6 66 14.8 66 15.5 64 13.3 66 13.8	149 52.7 149 57.8 149 59.7 148 4.6 150 4.3	1.1 0.3 0.5 16.2 1.6	1.8 1.6 2.3 1.2 1.6	7 8 9 8 7	0 0 0	183 111 92 241 162	20 15 14 28 10	36 38 36 63 37	0.29 0.33 0.42 0.07 0.38	2.4 1.6 1.7 4.2 2.2	2.9 C 2.7 C 2.7 C 2.1 D 3.1 C
23 12 0 23 12 14 23 12 34 23 12 46 23 14 29	17.3 86.7 9.3 64.6 11.7	66 11.1 66 12.7 66 13.4 59 14.2 66 21.3	150 1.4 150 0.6 150 0.5 163 45.2 149 53.2	7.0 0.2 1.3 121.8 0.7	2.8 1.9 1.8 2.7 1.9	9 7 7 7	0 0 0 4 0	101 109 166 166 193	13 13 13 24 23	42 40 39 85 38	0.29 0.33 0.46 0.21 0.42	2.4 2.4 2.4 3.2 2.5	2.0 C 3.0 C 2.5 C 4.7 C 2.9 D
23 15 6 23 16 46 24 0 11 24 3 42 24 6 22	87.3 20.6 43.2 48.6 42.9	66 17.4 64 11.3 61 3.3 61 18.4 66 0.5	160 1.1 148 4.0 181 59.7 146 14.6 149 51.1	1.2 16.0 88.8 15.2 9.4	1.6 1.1 2.4 2.4 1.5	7 6 6 6	00000	173 155 169 271 107	14 32 18 82 2	32 65 166 190 161	0.34 0.13 0.24 0.30 0.17	2.1 1.6 2.2 12.7 3.7	3.1 C 2.2 C 2.1 C 6.1 D 1.8 C
24 6 8 24 6 34 24 8 54 24 9 27 24 9 31	23.7 56.9 55.6 24.2 61.4	58 10.8 64 36.1 64 81.5 66 16.1 64 50.8	151 30.9 147 46.0 147 34.4 150 1.5 147 36.0	44.8 13.4 12.5 0.4 1.5	3.0 1.4 1.0 1.8 1.7	. B B 6	2 0 0 1 0	220 108 129 170 127	76 21 17 30 19	161 45 50 166 48	0.29 0.37 0.03 0.35 0.29	25.5 1.4 3.2 3.1	63.8 D 7.4 D 11.6 D 3.0 C 3.0 C
24 10 22 24 10 26 24 12 31 24 14 26 24 16 43	3.8 49.9 37.7 31.2 26.6	66 20.8 63 20.3 63 2.1 66 13.6 66 18.1	149 59.4 147 22.3 150 23.7 150 0.7 150 1.6	0.7 1.4 93.7 0.8 G.1	1.9 1.4 1.6 2.0	8 7 8 6 7	0 0 1	104 172 291 166 96	28 76 107 25 26	169 106 197 166 166	0.42 0.09 0.09 0.44 0.23	2.2 1.9 34.3 3.0 2.9	2.7 C 2.8 C 9.9 D 2.9 C 3.0 C
24 18 26 25 0 3 25 8 89 26 13 20 26 23 11	42.1 38.9 47.8 5.3 11.1	66 21.1 63 0.1 60 8.6 66 21.3 64 26.7	149 51.0 151 11.9 152 56.2 149 56.4 147 17.8	1.5 142.5 116.9 0.8 12.4	2.8 2.5 2.1 1.9	8 10 7 9 6	0 2 0 0	112 197 109 109 121	24 140 38 21 17	38 205 84 38 89	0.18 0.33 0.19 0.36 0.05	1.9 4.2 2.6 1.6 1.7	2.8 C 11.4 D 3.9 C 2.9 C 2.5 B
26 1 83 26 4 46 26 6 16 26 11 45 26 15 8	30.7 48.6 44.7 33.8 8.8	66 18.3 66 12.1 61 14.0 64 47.3 68 86.8	149 56.3 150 1.2 147 24.7 147 46.5 152 23.9	0.3 0.4 20.9 19.3 63.6	2.4 2.0 3.6* 1.0 2.3	9 9 13 5	0 0 0 1 4	100 101 203 116 224	18 13 67 18 72	33 41 219 36 92	0.25 0.42 0.24 0.19 0.29	1.7 1.8 3.7 2.0 3.1	2.7 C 2.5 C 2.7 D 5.3 C 5.1 D
26 16 7 26 17 12 26 17 14 26 17 14 26 17 68	13.7 0.7 33.6 86.3 24.6	60 17.2 62 6.3 62 6.0 62 7.0 66 33.1	150 48.2 148 9.1 148 10.0 148 9.0 150 52.9	43.8 25.5 25.0 25.0 3.2	2.3 3.8 1.9 3.4	8 8 7 15 9	3 0 0 0	103 103 66 139	58 53 53 2)	88 168 169 168 77	0.32 0.38 0.32 0.32 0.27	2.5 2.9 3.3 2.6 2.9	4.0 D 7.3 D 6.7 D 8.8 D 2.7 D
26 19 29 27 0 17 27 3 48 27 7 2 27 12 1	8.6 16.9 11.8 8.8 34.3	61 31.4 65 59.8 64 47.8 60 1.6 57 29.4	152 20.3 148 13.1 148 50.3 152 86.4 152 3.2	104.8 16.8 2.2 110.7 28.8	2.0 1.9 1.1 2.5 2.2	6 8 7 6	2 1 2 4 1	247 101 228 168 303	41 72 26 48 39	171 118 51 77 232	0.36 0.39 0.30 0.27 0.25	3.9 2.3 1.5 1.9 9.0	2.3 D 3.6 D 35.0 D 2.3 C 6.8 D
27 12 8 27 12 11 27 16 17 27 18 37 27 22 37	55.7 41.3 64.7 16.8 54.5	64 41.4 64 11.1 66 12.8 66 19.0 66 14.2	149 10.5 147 59.7 150 6.3 150 7.2 180 10.1	18.8 2.8 0.1 0.1 0.7	1.1 2.2 2.0 1.9	8 7 9 7 6	2 1 0 0	254 98 101 168 177	14 32 9 12 30	87 68 38 36 183	0.23 0.18 0.44 0.48 0.37	3.7 1.1 1.8 1.9 5.4	1.4 D 30.9 C 2.6 C 2.7 C 3.5 D

ORIGIN 1985 HR MN MAY 27 23 49 28 5 45 28 7 54 28 11 37 28 12 8	TIME SEC 29.4 9.6 38.0 39.3	LAT N DEG MIN 59 28.9 60 10.4 58 34.8 61 53.5 60 31.4	LONG W DEG MIN 151 1.5 151 23.6 151 8.5 151 9.7 152 3.1	DEPTH	2.5 6 3.3 11 3.5 10 2.5 8 2.7 10	NS GAP DEG 2 252 2 100 2 191 0 167 1 84	D1 D3 EM EM 13 40 54 73 105 123 92 317 41 99	RMS SEC 0.14 0.25 0.61 0.04 0.94	ERE 4.6 1.7 2.7 8.7	ERZ Q KM 4.6 D 4.4 B 6.6 D 13.4 D 8.3 B
28 17 11	33.1	66 20.5	149 51.4	15.1	4.0° 8	0 192	33 187	0.20	6.7	2.9 D
26 19 30	41.2	63 7.5	148 11.1	71.3	1.5 7	1 235	77 150	0.20	5.7	4.7 D
28 19 46	57.4	66 15.0	180 8.0	1.1	2.3 6	1 100	34 183	0.33	2.2	8.5 C
29 3 48	47.2	62 48.7	180 40.7	87.8	2.7 10	0 179	136 195	0.29	3.0	10.1 D
29 12 6	11.3	66 18.0	180 4.1	0.3	1.6 6	1 112	13 187	0.17	4.1	8.9 C
29 13 38	55.6	60 8.3	182 36.0	91.7	2.8 8	3 121	38 73	0.20	2.2	3.6 C
29 14 9	5.7	87 48.7	182 29.0	30.0	2.7 5	0 175	2 100	0.15	99.0	99.0 D
29 16 12	19.7	64 40.5	146 53.4	13.0	1.9 7	0 192	30 62	0.35	2.2	1.6 D
29 23 6	7.9	68 17.5	180 1.6	5.9	2.2 7	1 93	14 107	0.22	2.1	2.5 C
30 8 4	9.4	60 38.3	182 7.0	85.8	2.6 6	2 141	44 112	0.24	3.4	8.4 C
30 6 1 30 12 4 30 13 39 30 15 61 30 16 55	40.3 44.2 34.7 57.7 0.6	98 83.5 60 20.9 64 2.0 64 11.8 62 2.5	152 55.3 145 56.0 148 9.7 150 23.9 150 42.7	60.9 64.8 108.5 5.4 69.4	2.6 6 3.4* 11 2.1 8 1.7 6 4.1* 16 MEIS MB -		42 119 105 222 49 72 77 116 97 179 LT (IV) IN	0.14 0.38 0.10 0.34 0.32	4.8 3.0 3.3 4.8 2.0	6.6 D 6.1 D 9.0 C 3.1 D 4.7 C
31 2 42 31 3 46 31 11 38 31 12 4 31 13 12	8.0 32.8 59.0 1.5 51.3	60 26.5 64 47.5 66 22.8 66 21.2 66 23.1	151 60.0 147 32.6 149 43.6 149 58.7 149 58.3	81.3 28.0 6.7 0.7	2.7 10 1.5 5 3.6 9 2.0 8 1.6 6	3 91 1 128 0 122 1 106 1 193	43 90 23 44 31 181 20 170 23 171	0.23 0.30 0.26 0.23 0.24	1.9 4.9 1.7 1.9	4.6 B 14.2 C 3.1 C 3.6 C 3.8 C
31 13 23	30.8	60 0.6	151 13.4	29.0	2.3 7	2 184	33 97	0.27	2.2	6.6 C
31 14 39	43.7	66 22.2	149 58.8	0.3	2.0 8	0 109	21 170	0.20	1.7	3.7 C
31 21 2	41.3	63 24.1	151 46.2	82.9	2.7 6	0 220	145 216	0.21	6.1	16.8 D
JUN 01 2 18	14.4	63 10.8	180 48.6	137.9	2.5 8	1 137	112 197	0.08	4.1	3.8 D
01 8 13	14.9	63 23.6	145 51.0	17.7	1.5 5	1 156	12 125	0.21	10.1	3.3 D
01 9 23	33.7	68 17.0	180 1.3	0.6	2.2 9	2 93	17 167	0.47	1.6	2.8 C
01 13 26	46.6	64 42.8	146 55.0	8.4	1.6 5	1 219	34 60	0.27	3.6	38.6 D
01 19 8	20.1	62 46.7	149 8.6	8.2	4.0° 14	0 64	12 93	0.34	2.2	1.4 C
01 19 68	10.3	66 21.0	149 47.8	6.9	3.3 12	0 136	34 186	0.32	2.6	4,8 C
01 20 21	36.3	60 6.7	152 30.8	88.2	2.7 6	3 154	37 70	0.23	2.9	3,3 C
02 0 4	13.8	64 48.2	150 9.7	38.5	2.0 6	0 161	56 105	0.09	2.7	3,6 D
02 2 38	5.7	63 47.9	149 1.6	1.6	1.7 6	1 210	9 88	0.23	3.0	2,1 D
02 4 55	84.3	86 18.5	149 44.2	10.4	3.6° 11	0 131	39 181	0.42	8.2	8.0 C
02 6 42	41.3	61 45.3	180 66.3	56.6	2.3 9	2 123	87 179	0.31	2.2	4.5 C
02 9 46	4.4	66 15.7	149 60.0	0.2	3.9° 8	0 106	36 183	0.48	6.3	9.0 C
02 12 57	21.7	62 10.1	149 21.3	32.7	2.3 4	1 133	85 176	0.33	20.9	47.8 D
02 13 4	45.2	61 50.8	149 22.9	50.8	1.9 5	1 189	31 160	0.27	6.0	6.8 C
02 16 13	33.0	66 0.6	160 83.8	39.1	2.7 8	0 115	62 181	0.10	10.9	19.9 C
02 20 14	33.7	68 13.4	180 10.0	0.8	2.2 7	0 101	36 182	0.31	2.7	6.9 C
02 20 84	29.0	66 28.7	149 86.7	7.9	2.1 6	0 124	24 210	0.43	8.7	6.7 D
02 23 2	38.0	60 30.1	182 30.9	108.5	2.7 9	3 164	17 106	0.33	3.8	6.4 C
02 23 49	18.4	64 2.3	148 9.1	108.7	1.9 8	3 98	48 71	0.17	2.7	6.1 C
03 1 34	61.5	66 18.3	150 8.3	1.3	2.5 9	0 99	34 183	0.44	6.2	10.9 C
03 6 12	31.2	59 51.5	150 33.4	30.4	3.1 10	2 169	21 65	0.39	5.2	3.7 D
03 6 17	4.9	60 18.0	152 34.7	114.6	2.6 6	4 156	17 102	0.30	3.9	2.4 C
03 16 16	27.9	63 51.2	149 10.5	113.1	2.0 8	1 225	18 87	0.04	8.8	6.4 D
04 1 24	50.2	66 16.3	150 3.5	3.8	2.5 7	1 99	34 182	0.48	8.3	7.7 C
04 2 56	4.4	63 56.1	149 3.8	108.8	2.2 8	2 195	24 78	0.23	4.1	6.2 D
04 7 17	58.4	66 21.7	149 88.5	15.0	2.1 6	0 160	170 203	0.23	8.1	99.0 D
04 8 33	27.7	63 22.9	149 13.8	92.3	2.0 8	3 166	42 160	0.21	2.8	3.4 C
04 11 6	38.0	58 53.1	149 49.1	42.5	2.8 7	2 225	108 138	0.27	8.9	10.2 D
04 15 7	54.6	62 23.6	148 6.2	24.1	2.0 5	1 338	185 271	0.20	38.0	43.1 D
04 21 15	37.0	66 14.2	150 9.4	2.6	1.6 5	0 101	35 277	0.27	6.4	10.2 D
05 2 49 05 6 3 08 6 52 05 8 34	17.7 34.6 65.3	68 17.9 66 23.5 66 58.1 64 59.9	150 2.5 149 54.0 154 40.5 148 53.5	1.8 13.2 0.0	1.6 6 2.3 5 3.4 14 PALMER MI 1.0 5		31 186 28 192 110 370 40 70	0.17 0.16 0.30 0.04	2.7 58.1 18.8 5.7	4.6 C 33.6 D 5.1 D 7.4 D

1988 Jun 06 06 06 06	ORIGIN ER MM 13 34 1 26 1 34 3 59 10 18	TIME SEC 19.8 24.8 59.7 37.4 18.6	LAT N DEG MIN 63 89.3 63 85.0 63 58.6 66 25.4 64 43.1	LONG W DEG WIN 149 55.0 149 4.4 149 7.1 149 44.6 149 11.9	DEPTH EM 9.1 0.2 12.9 22.3 13.6	MAG 1.5 3.2* 1.6 2.0 0.8	NP 5 8 5 5 5	2 1 1 0 1	GAP DEG 271 198 204 251 257	D1 56 22 23 31	D3 EM 104 78 79 209 60	RMS SEC 0.31 0.29 0.20 0.25 0.12	ERH 4.9 10.1 7.7 30.1 8.8	ERZ Q EM 2.0 D 11.8 D 3.4 D 2.6 D 3.2 D
90 90 90	10 49 14 22 20 28 20 30 23 42	27.7 13.3 29.2 48.2 45.6	88 22.7 62 14.5 59 15.7 66 36.0 62 15.8	150 1.4 149 10.9 152 23.0 149 36.4 148 42.8	0.4 26.6 75.2 24.9 16.2	1.6 1.6 3.0 1.7	6 9 6	1 2 1 1	108 131 117 252 128	24 72 61 37 76	197 167 65 209 201	0.34 0.49 0.14 0.47 0.38	2.9 5.8 1.6 49.7 4.6	8.5 C 20.0 D 4.8 B 60.0 D 10.6 D
07 07 07	0 44 4 1 8 80	29.9 26.8 14.1	66 20.1 66 28.6 59 19.9	150 16.8 149 49.8 152 58.9	2.7 18.9 94.5	2.2 1.8 3.5	7 5 9 ER ML	0	97 222 94	22 27 26	195 199 89	0.20 0.30 0.27	2.8 68.9 2.2	4.9 C 16.7 D 3.5 C
07	12 30	42.8	60 4.0	146 53.0	59.4	3.0	11 Er kü	1	226	212	282	0.40	4.8	20.8 D
07	12 35	35.1	60 50.5	147 10.2	16.7	2.4	7	0	221	111	238	0.23	8.1	5.9 D
		15.8 56.8 4.2 45.2 45.5	60 7.0 66 22.4 66 13.7 63 19.2 83 46.3	152 31.8 149 89.8 180 3.4 148 28.5 149 13.9	91.6 3.0 8.7 72.0 22.3	1.9 2.0 2.8 2.0 1.3	6 6 7 8 8	2 1 0 4 1	134 109 104 231 277	36 26 37 51 15	96 192 188 133 129	0.09 0.12 0.32 0.20 0.23	2.6 8.3 4.9 2.1 20.6	8.1 C 8.2 C 7.1 C 5.0 D 8.8 D
08 08 08 08	1 21 2 82 3 39 6 40 7 20	3.3 37.2 33.4 3.0 25.7	66 32.0 66 19.9 63 31.4 89 4.5 63 55.2	149 49.1 149 58.1 149 43.2 181 38.2 148 58.6	74.0 12.5 100.0 47.2 0.2	2.1 1.4 1.7 2.4 1.3	6 6 6	00020	251 163 263 239 161	181 30 45 55 21	205 186 164 111 109	0.16 0.29 0.36 0.28 0.10	14.2 10.3 32.1 4.4 3.9	26.5 D 8.9 D 19.8 D 7.8 D 99.0 D
08 08 08 08	8 9 8 24 8 55 8 58 13 58	6.6 58.6 29.5 36.2 85.8	68 58.6 66 24.9 66 22.2 66 19.9 60 19.4	149 0.8 149 67.3 149 53.9 149 50.7 182 4.6	39.3 6.5 13.1 3.9 81.1	2.1 2.7 2.5 2.6 2.4	7 8 7 10 8	0 1 0 4	227 121 113 109 181	133 24 29 34 40	156 196 190 185 96	0.42 0.19 0.39 0.27 0.23	9.5 4.0 7.0 8.5 2.4	99.0 D 4.6 C 5.3 D 6.8 C 4.7 C
08	16 47 16 47 18 15	17.1 12.9 54.7	60 58.4 60 46.0 63 16.4	144 33.0 144 34.0 160 37.5	38.4 14.7 120.7	2.4 2.6 2.6	5 7 13	2	246 186 123	177 182 99	258 247 183	0.63 0.16 0.42	11.4 10.9 2.2	8.6 D 16.9 D 7.2 C
09 09 09 09	1 22 1 56 2 8 9 14 11 4	58.4 2.5 47.3 23.8 18.3	62 58.8 62 49.3 66 18.6 66 16.3 66 17.8	180 88.7 147 44.8 180 1.9 149 88.3 180 3.3	130.4 89.3 8.9 1.8 4.9	3.2 2.1 1.7 2.4 1.8	16 9 5 8 7	1 1 0	89 161 187 97 97	131 112 30 35 31	201 118 187 182 186	0.36 0.25 0.21 0.43 0.42	2.2 3.4 44.2 2.1 8.6	8.8 C 10.6 D 43.9 D 5.0 C 11.3 C
09	11 23	18.2	60 3.1	152 39.8	100.7	4.0	rr rt 10	3	116	41 NZIS	72 MB -	0.31	2.3	B.O C
60	12 8 13 51 17 21 17 82	26.8 59.8 43.7 10.1	59 48.8 66 22.8 66 19.6 61 9.5	182 47.4 149 87.8 150 16.8 150 25.4	75.1 7.0 0.7 31.8	2.3 2.4 2.1 2.2	8 7 5	3 1 1 2	127 112 97 208	31 26 23 84	67 193 194 181	0.25 0.25 0.23 0.10	2.6 2.8 6.6 10.9	7.9 C 3.8 C 12.3 C 4.4 D
09	21 16 21 41 2 2 2 13 3 55	9.4 32.2 37.0 10.4 26.9	66 11.1 68 21.6 66 22.5 66 14.6 66 22.3	150 10.8 149 56.5 149 54.6 149 49.0 149 51.7	7.0 0.8 15.8 1.4 9.7	2.6 2.3 2.1 2.4 1.9	8 7 8 8	0 0 0	103 109 195 96 197	40 28 29 42 30	178 190 191 176 190	0.48 0.30 0.15 0.28 0.11	2.7 2.4 15.2 3.3 42.9	5.1 C 4.0 C 9.4 D 6.2 C 49.6 D
10 10 10 10	5 11 5 34 5 66 7 0 7 2	8.4 35.6 48.6 1.1 0.2	66 25.9 66 31.5 66 34.3 62 31.9 62 83.7	149 48.5 149 48.4 149 38.8 144 87.3 143 43.7	15.8 18.1 19.2 12.9 1.3	1.9 1.8 1.8 1.9	5 5 4 4	0 0 1 0	212 235 246 170 161	29 27 37 56 89	196 204 206 146 126	0.14 0.32 0.38 0.19 0.18	11.5 60.9 62.7 2.4 4.2	5.8 D 9.0 D 3.6 D 3.2 C 99.0 D
10 10 10 10	7 8 7 6 7 41 9 3 12 31	67.7 0.3 44.2 47.8 8.4	61 40.3 61 50.4 66 16.2 66 15.8 61 18.8	147 13.4 147 18.1 149 88.3 150 0.2 147 35.0	0.3 0.9 2.3 2.0 27.1	2.5 2.5 2.2 1.4 2.1	10 11 7 8	0 0 1	229 165 97 113 239	19 38 38 60	171 158 182 182 216	0.43 1.48 0.31 0.34 0.22	13.5 3.9 3.1 8.0 14.3	6.1 D 0.9 D 6.0 C 12.0 C 7.0 D
10 10 10	13 1 13 54 14 31 16 84 17 58	82.1 12.5 4.7 15.2 35.6	68 34.4 68 11.0 64 17.9 66 17.1 63 4.9	149 40.8 150 11.9 150 12.4 149 40.4 151 18.4	21.6 0.4 40.2 2.2 123.7	1.9 2.7 1.7 1.6 2.4	5 5 5 9	0 1 1	247 104 283 194 200	33 40 63 43 137	207 179 104 179 199	0.29 0.38 0.01 0.22 0.34	63.1 6.1 14.0 9.1 4.9	4.0 D 12.2 C 4.0 D 10.8 D 10.1 D

	C DEG MIN 7 59 46.3 7 67 16.9 8 62 56.7	150 39.6 151 8.9	DEPTH KM 97.6 34.1 125.6 82.2	MAG 2.8 2.2 2.3 2.0	5 (S GAP DEG 4 98 0 282 2 206 2 137	85 29 141 20	M SEC 3 0.26 5 0.11	ERH KM 2.3 32.3 6.2 2.6	ERZ Q KM 4.1 C 11.7 D 15.1 D 8.1 C
11 6 32 4 11 12 32 22 11 17 15 42 11 19 12 52 12 1 42 29	4 63 54.7 6 60 55.4	147 16.4 148 56.6 146 18.6	0.7 0.3 2.1 3.2 81.6	2.2 1.6 1.2 2.2 1.4	7 5 5	1 97 0 193 0 176 0 267 0 253		7 0.20 5 0.12 2 0.13	6.1 2.3 3.8 41.8 8.0	8.7 C 2.9 D 3.5 D 21.6 D 7.1 D
12 2 30 30 12 4 1 21 12 6 49 2 12 9 26 17 12 9 42 14	0 63 19.7 7 58 47.4 0 63 27.0	145 11.1 152 7.4 147 13.1	17.6 4.0 65.4 87.0 10.7	2.4 1.9 2.5 2.1 1.6	6 7 8	1 255 1 133 3 248 1 170 1 223	74 17 38 14 89 10 69 10 31 19	8 0.38 0 0.15 3 0.06	14.7 2.5 5.7 3.2 23.7	7.5 D 3.3 C 7.8 D 8.5 D 7.8 D
12 9 46 51 12 10 37 6 12 12 45 32 12 13 37 10 12 14 3 36	5 64 33.1 6 62 24.3 5 66 21.9	160 4.2 149 6.3 150 2.5	2.6 72.7 14.0 1.3 0.6	2.0 3.0 2.1 2.4 2.3	6 9 6	1 99 0 270 1 130 0 104 1 109	34 18 270 44 91 14 25 19 24 19	6 0.21 8 0.32 3 0.35	4.6 57.8 2.3 2.8 8.6	7.4 C 83.5 D 3.0 D 5.5 C 10.7 C
12 14 5 0 12 16 22 17 12 16 52 50 12 20 48 30 12 21 37 29	9 66 19.0 2 64 5.1	148 0.1 150 3.3 147 51.8	2.4 5.7 12.3 11.2 5.0	2.7 1.4 1.9 1.1 2.6	7 5 5	0 270 0 99 0 174 1 263 0 107	66 22 33 6 29 18 44 8 28 19	8 0.07 8 0.01 0 0.07	34.5 1.6 20.4 4.9 6.8	14.9 D 4.0 C 18.7 D 15.1 D 9.5 D
	4 66 18.5 4 66 11.2 3 66 14.8	149 54.6 150 4.8 150 3.6	0.7 0.6 0.4 0.6 14.3		5 5 17 MB =			2 0.43 3 0.31 5 0.37		3.7 C 4.5 D 3.3 D 3.1 C 1.9 C
13 4 29 25 13 5 19 22 13 5 26 45 13 6 20 2 13 8 37 42	.8 63 31.3 .6 63 29.0 .8 62 51.5	148 49.9 147 5.1 148 20.8	13.7 14.6 0.2 97.0 335.7	1.5 2.0 1.5 2.3 3.3	8 8 7	1 202 0 191 0 163 0 260 0 204	28 12 24 11 62 9 102 18 64 16	8 0.14 9 0.27 0 0.05	3.6 3.6 2.8 14.2 20.3	1.6 D 2.2 D 2.7 D 16.6 D 55.6 D
	.9 61 5.3 .7 66 19.7 .6 66 20.6	149 59.8	71.3 2.3 1.9	2.3 2.3 2.3	7	0 221 0 121 0 127	113 17 29 16 30 17	88 0.33	8.7 2.1 2.0	16.8 D 2.7 C 2.6 D
13 14 34 48 14 2 49 3 14 3 37 18	.1 66 4.9 .9 66 7.7 .8 65 22.4 .8 63 31.4 .9 66 16.0	150 11.1 150 44.5 148 53.0	62.1 65.7 41.8 13.4 0.8	2.2 2.1 2.1 1.3 1.9	7 5 6	0 119 0 140 0 229 0 246 0 125	21 11 119 13 23 13	55 0.21 58 0.41 36 0.15 18 0.24 35 0.30	4.5 4.2 7.8 6.4 4.0	5.3 C 4.9 C 99.0 D 2.2 D 7.3 D
14 10 56 14 14 17 21 23 14 18 11 46	.9 66 15.0	152 42.3 149 58.4 150 0.9	14.4 86.5 20.0 20.0 31.0	1.5 2.2 2.1 2.1 1.6	6 5 6	0 246 5 109 0 174 0 148 0 314	30 168 2 166 2	19 0.06 79 0.15 15 0.35 19 0.42 34 0.16	6.5 2.0 37.7 19.7 30.7	2.2 D 3.6 B 99.0 D 99.0 D 14.2 D
15 7 46 10 15 10 35 11 15 15 23 4	.2 60 9.6 .7 62 12.6 .6 66 21.2 .2 60 2.8 .3 62 59.3	3 149 46.3 2 150 1.1 3 153 17.9	123.3 108.3 20.0 130.6 114.9	2.6 2.2 1.9 2.4 2.0	5 7 7	1 117 0 267 0 160 2 206 0 294	135 23 168 19 44	28 0.19 37 0.28 92 0.25 74 0.26 07 0.15	3.0 19.9 10.0 3.9 27.0	4.7 C 29.0 D 99.0 D 7.0 D 12.9 D
15 18 44 28	.1 63 22.2 .1 66 16.6 .0 58 58.7	150 9.5	102.8 20.0 53.8	2.0 2.2 3.3 PALM	6 11	0 216 0 176 0 189 - 3.3	161 1	36 0.39 38 0.23 00 0.37	5.0 14.5 3.6	6.5 D 99.0 D 7.4 D
	.4 59 27.0 .1 66 9.1		86.5 79.8	2.3	7	1 90 0 166		71 0.26 70 0.33	2.6 18.0	5.8 B 99.0 D
16 9 10 49 16 13 51 29 16 16 19 19	.2 62 34.8 .2 66 10.1 .6 60 23.2 .0 59 58.2 .4 65 17.8	150 8.1 153 8.1 152 9.6	39.8 74.6 144.4 72.4 24.0	2.9 2.0 2.6 2.2 1.8	5 9 6	0 244 0 169 1 113 3 141 0 332	161 16 20 1	39 0.17 33 0.14 13 0.14 70 0.06 51 0.08	99.0 19.6 4.5 2.8 99.0	99.0 D 35.3 D 7.1 C 6.3 C 99.0 D

ORIGIN TIME 1985 HR MN SEC JUN 17 19 81 28.9 17 22 13 7.7 17 22 86 3.5 18 0 23 54.0 18 5 20 19.3	DEG MIN 68 49.5 1 66 16.4 1 60 22.0 1 59 47.9 1	LONG W DEG MIN 54 28.5 50 0.3 52 16.9 52 30.9 49 58.2	DEPTH KM 124.5 58.1 87.7 83.1 78.2	2.6 2.3 1.8	6	S GA DE 2 23 0 17 4 20 3 10 1 17	3 49 8 187 8 29 3 43	D3 EM 167 184 102 70 188	RMS SEC 0.28 0.37 0.27 0.14 0.46	ERH &M 6.9 17.0 3.1 1.9 4.3	ERZ Q XM 8.7 D 99.0 D 5.2 D 6.0 B 48.4 D
18 8 47 38.9 18 9 34 86.4 18 10 11 54.9 18 14 6 30.7	62 48 2 1 60 45 2 1	49 13.8 51 54.7 51 51.8 50 58.6	119.9 146.1 82.5 100.0	3.3 2.2 1.6 1.5	13 6 5 5	1 15 0 28 4 28 0 33	2 182 0 82	95 261 141 227	0.18 0.07 0.27 0.15	3.0 25.3 6.2 99.0	5.2 C 19.3 D 8.2 D 76.8 D
18 15 23 31.9 18 18 58 31.1 18 22 3 52.1 18 22 6 57.1 19 2 38 4.7	61 31.3 1 63 46.8 1 63 46.7 1	50 18.7 181 40.4 149 6.1 149 5.4 152 88.1	70.5 88.3 8.0 5.9 114.8	2.4 2.1 3.2° 1.2 2.4	6 7 6 5 8	0 14 1 18 0 23 0 23 3 11	7 41 8 10 7 9	180 141 92 91 78	0.42 0.34 0.15 0.10 0.21	8.9 2.1 4.9 16.4 3.3	21.1 D 4.7 D 1.6 D 34.0 D 6.0 C
18 6 31 18.4 19 7 40 66.1 19 7 58 25.6 19 16 18 67.9 19 18 33 15.2	64 62.2 1 65 4.2 1 60 10.3 1	47 28.3 47 28.9 48 37.2 52 38.9 53 47.8	18.4 12.8 19.9 102.4 193.3	0.8 1.0 1.8 2.2 3.2	6 6 7 8	2 14 3 13 2 25 2 13 4 21	6 14 7 35 2 29	32 32 89 98 65	0.09 0.30 0.17 0.31 0.35	1.1 2.2 1.9 3.0 4.5	1.8 C 4.8 C 1.9 C 5.0 C 7.3 D
20 0 26 7.8 20 0 44 2.5 20 4 32 13.4 20 5 50 17.1 20 8 50 35.0	66 19.0 1 64 47.2 1 63 10.1 1	49 23.4 60 0.1 47 33.4 50 35.5 49 32.6	108.4 62.5 14.6 115.2 120.5	4.7°			8 168 6 17 5 104		0.23 0.24 0.32 0.22 0.37	84.8 18.7 1.6 4.2 1.8	99.0 D 99.0 D 3.8 C 8.7 D 4.3 B
20 6 87 6.7 21 12 37 18.0 21 18 49 31.7 21 22 2 26.4 22 2 27 22.9	83 44.4 1 82 57.1 1 83 64.8 1	50 9.3 46 53.0 81 32.8 48 86.8 83 9.1	76.8 4.4 152.0 0.6 99.2	2.2 1.1 2.8 2.0 2.4	6 5 7 8	0 17 1 20 0 27 0 17 3 10	8 88 6 157 4 20	183 101 241 74 89	0.09 0.23 0.02 0.23 0.28	21.8 2.7 20.8 7.5 2.8	99.0 D 2.6 D 16.5 D 99.0 C 7.2 C
22 5 2 29.4 22 8 10 16.3 22 8 26 18.2 22 5 29 19.5 22 11 25 36.0	68 13.0 1 63 30.7 1 63 38.3 1	48 56.9 81 28.1 46 56.1 46 17.7 46 57.8	7.5 11.6 0.4 45.1 0.9	1.8 2.9 2.9* 1.2 2.2	6 11 5 9	0 17 2 21 0 13 1 15 0 16	9 69 7 64 8 27	73 146 100 91 101	0.09 0.31 0.46 0.20 0.25	7.1 3.2 1.7 7.2 1.8	81.1 C 10.1 D 1.9 D 4.3 D 2.3 C
22 12 6 13.4	61 48.7	46 30.4	31.0	3.4 PALNE	16 R MT.	0 20		148	0.29	4.4	2.7 0
22 12 89 3.1 22 16 8 43.0 22 16 30 20.0	62 0.3 1	152 45.6 150 59.9 151 37.5	73.4 82.1 34.4	2.0 2.8 2.8 PALME	8 9 7	2 17 0 26 2 22 - 3.0	8 39 3 109 6 153	90 219 223	0.29 0.07 0.21	4.0 29.9 4.6	8.4 C 43.2 D 16.4 D
23 2 27 43.9	89 27.1 1	82 48.6	79.1	2.3	8		0 33	78	0.24	1.5	3.6 B
23 5 0 44.8 23 10 50 36.2 23 13 12 41.3 23 14 40 44.6 23 19 31 29.0	66 8.4 1 62 43.9 1 62 24.0 1	154 58.7 150 11.3 148 6.1 149 8.8 154 47.7	20.8 39.1 86.5 78.7 83.9	3.0 2.1 2.2 2.6 3.6 PALME	6 7 7 10 9	0 24 0 14 1 18 0 13 0 12	9 158 2 108 1 90 0 93	158 177 137 199 192	0.31 0.44 0.21 0.37 0.41	8.4 2.4 3.8 4.0 4.3	17.1 D 99.0 D 9.5 D 4.8 C 11.9 C
23 22 19 38.7	83 5.6 1	150 37.9	116.6	2.7	9	0 25		198	0.11	11.4	9.4 D
24 6 7 41.4 24 6 16 34.6 24 7 1 30.4 24 7 28 34.7 24 9 27 55.9	63 5.1 1 63 11.6 1 66 21.8 1	150 19.7 151 13.1 150 30.8 149 88.8 151 43.9	33.8 145.5 46.1 82.2 65.9	1.8 2.9 2.8 2.5 2.5	5 5 6 8	1 32 0 26 1 27 0 18 6 16	8 135 9 280 1 170	138 218 363 194 88	0.12 0.12 0.29 0.36 0.27	6.7 14.4 18.3 15.3 1.4	8.3 D 12.5 D 99.0 D 99.0 D 2.8 C
24 13 5 53.7 24 14 43 36.1 25 7 36 29.3 25 16 53 52.6 25 17 2 42.5	66 16.8 1 59 2.2 1 66 15.7 1	148 10.3 150 9.8 181 41.3 180 4.0 149 44.4	7.4 47.3 46.9 41.0 10.0	1.3 2.2 2.4 2.1 1.9	7 6 9 6 5	2 19 1 17 5 23 0 17 3 16	6 160 6 60 5 164	82 189 93 185 168	0.14 0.30 0.31 0.28 0.69	1.6 3.2 3.7 3.0 2.4	2.7 C 74.4 D 7.6 D 99.0 D 3.8 D
28 22 33 47.2 26 10 0 20.5 26 12 44 56.8	66 19.2 1	162 31.9 150 0.9 160 27.1	1.1 41.8 32.1	1.7 2.3 4.4 Weis	6 8 8	1 19 2 17 0 30 4.7	8 167	121 188 621	0.18 0.57 0.43	3.2 2.6 67.3	2.4 D 99.0 D 19.6 D
26 13 42 58.3 26 17 49 52.6		153 32.8 181 1.8	77.4	3.3	12	4 7	8 6 186	46 177	0.27	1.8	4.0 B 11.9 D

26 27	22 20 23 56 0 25	SEC 8.7 2.4 11.7 13.6	LAT N DEG HIN 66 13.8 63 14.4 58 15.3 63 36.1	LONG W 150 0.6 149 2.7 160 29.7 149 56.3	DEPTE EM 11.1 84.3 101.7 147.2	AMD .	8 9 3 16 MB =	D 0 1 0 1 1 3 0 4.7, I NAT	AP D1 EG KH 72 167 78 55 23 148 70 52 FELT (1	LRE			ERZ Q EM 99.0 D 5.4 D 48.3 D 5.4 B
27 27 27 27 27 27	4 35 6 29 7 40	19.8 45.2 53.5 31.9 30.9 14.3	62 28.6 66 15.2 64 41.8 62 38.6 60 15.2 61 53.9	150 53.8 150 5.9 147 23.1 149 2.8 161 2.2 146 2.6	98.0 61.0 1.2 72.1 87.3 10.8	3.0 2.3 0.8 2.4 2.3 2.3	8 5 9 7	3 1 6 1 3 2	76 131 74 163 48 30 34 117 49 55 14 39	176 186 39 127 98 211	0.20 0.25 0.21 0.33 0.23 0.45	3.8 10.0 2.3 2.9 3.6 4.8	99.0 D 86.9 C 5.8 C 5.8 D 6.1 C
27	5 4	1.0 3.5 48.6 82.4 40.0 54.2	60 13.8 56 19.6 59 81.3 87 18.8 61 36.8 60 5.2	149 55.2 156 44.8 163 27.8 166 18.7 160 50.6 152 57.4	74.6 41.8 137.4 62.2 53.4 114.9	2.0 4.1 MEIS 3.0 3.3 2.8 2.8	6 11 8 8 12	0 1 4 7 2 1 1 2	72 171 90 259 31 26 89 232 95 80 31 38		0.30 0.39 0.30 0.32 0.37 0.34	17.1 23.8 2.9 10.8 2.3 2.9	99.0 D 44.7 D 6.6 C 6.8 D 6.9 C 4.5 C
	7 50	55.7 26.0 2.2 25.3 26.3	66 9.3 62 27.9 59 32.6 64 14.9 66 16.1	150 4.4 146 16.1 183 22.9 148 34.3 180 17.3	30.0 76.6 116.8 25.0 40.6	2.2 2.3 3.1	6 9 11 ER ML 8	0 1 4 - 3,	68 163 42 86 67 15 8. FELT 29 34 76 155	145 53	0.33 0.34 0.32 IN HOE 0.22 0.38	12.5 3.8 2.0 (RR 1,8 3.2	53.2 D 12.9 D 2.4 B 16.0 C 99.0 D
29 29 29 29	1 30	25.0 34.0 6.8 51.3 15.2	59 31.8 63 32.8 63 40.2 63 88.8 61 6.3	152 42.5 151 7.2 146 54.5 147 12.1 150 12.9	106.6 52.0 7.7 11.3 39.5	2.2 3.2 0.8 1.3 2.7	7 5 7 9	0 2 0 3 1 1	70 33 48 110 01 7 31 84 33 79	181 102 82	0.27 0.21 0.01 0.23 0.34	2.7 9.6 5.7 1.2 1.8	4.7 C 24.0 D 2.3 D 1.7 C 6.3 D
29 30 30		42.9 50.6 60.3 19.8 4.3	89 55.6 60 8.0 66 14.8 64 49.0 60 23.8	183 38.9 181 24.8 149 58.9 147 35.0 182 12.8	139.7 51.3 54.3 14.4 86.5	2.3 3.4 PALM 3.1° 0.9 2.8		1 - 3. 0 1 3 1	54 37 96 51 8, NEIS 54 168 21 14 27 31	181	0.20 0.30 4.8 0.40 0.23 0.22	5.3 1.9 2.8 1.7 2.1	6.6 C 6.0 C 21.9 D 3.2 B 4.2 C
30	12 36 14 53 23 54	50.1 39.5 8.0	66 20.5 66 10.4 59 49.0	149 58.8 150 8.4 152 52.8	56.9 74.1 93.5	2.2 2.1 2.5	6 6 7	0 1	80 169 69 160 67 27	179	0.34 0.22 0.17	14.9 22.5 1.9	99.0 D 99.0 D 4.4 B

Explanation for Appendixes B and C

Earthquakes are listed in chronological order. The following data are given for each earthquake.

- ORIGIN TIME in Universal Time (UT): Date, hour (HR), minute (MN), and second (SEC). To convert to Alaska Standard Time (AST), subtract 9 hr.
- 2. LAT N, LONG W: Epicenter in degrees and minutes of north latitude and west longitude.
- 3. DEPTH: Depth of focus (measured in kilometers).
- 4. MAG: Local magnitude from maximum trace amplitude. An asterisk that follows an entry means that the value determined by the Alaska Tsumani Warning System (Palmer) was used.
- 5. NP: Number of P arrivals used to locate earthquake.
- 6. NS: Number of S arrivals used to locate earthquake.
- 7. GAP: Largest azimuthal separation between stations (measured in degrees).
- 8. D1: Distance from the closest station to the epicenter (measured in kilometers).
- 9. D3: Distance from the third closest station to the epicenter (measured in kilometers).
- 10. RMS: Root-mean-square error of the travel-time residuals (measured in seconds).
- 11. ERH: Largest horizontal deviation (measured in kilometers), from the hypocenter within the one-standard-deviation confidence ellipsoid. The quantity measures the epicentral precision for an earthquake. Values of ERH >99 km are listed as 99 km.
- 12. ERZ: Largest vertical deviation (measured in kilometers), from the hypocenter within the one-standard deviation confidence ellipsoid. This quantity measures the precision of the hypocentral depth. Values of ERZ that >99 km are listed as 99 km.
- 13. Q: Reliability of the hypocenter. This index measures precision of the hypocenter location and also reflects the quality of the data used to derive the hypocenter parameters.