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ABSTRACT

Potential tsunami hazards for the Alaska Peninsula communities of King Cove and Cold Bay were evaluated by numeri-
cally modeling the extent of inundation from tsunami waves generated by hypothetical earthquake sources and taking
into account historical observations. Worst-case hypothetical scenarios are defined by analyzing the tsunami dynamics
related to various slip distributions along the Aleutian megathrust. Our results show that the worst-case scenarios for
King Cove and Cold Bay are thrust earthquakes in the western Alaska Peninsula region, with magnitudes ranging from
M,y 8.9 to My, 9.3, which have their greatest slip at 10-20 km (6—12 mi) depth. We also consider Tohoku-type ruptures
and an outer-rise rupture in the western Alaska Peninsula area. Results presented here are intended to provide guid-
ance to local emergency management agencies in tsunami inundation assessment, evacuation planning, and public
education to mitigate future tsunami hazards.

INTRODUCTION

Subduction of the Pacific plate under the North American plate has resulted in numerous great earthquakes and has the
highest potential to generate tsunamis in Alaska (Dunbar and Weaver, 2008). The Aleutian megathrust (fig. 1), the fault
formed by the Pacific-North American plate interface, is a seismically active tsunamigenic fault zone. The latest sequence
of great earthquakes along the Aleutian megathrust began in 1938 with a My, 8.3 earthquake west of Kodiak Island (Es-
tabrook and others, 1994). Four subsequent events, the 1946 My, 8.6 Aleutian (Lopez and Okal, 2006), the 1957 M, 8.6
Andreanof Island (Johnson and Satake, 1993), the 1964 My, 9.2 Alaska (Kanamori, 1970), and the 1965 My, 8.7 Rat Island
(Wu and Kanamori, 1973) earthquakes, ruptured almost the entire length of the megathrust. Tsunamis generated by these
great earthquakes reached Alaska coastal communities within minutes after the earthquakes and resulted in widespread
damage and loss of life (National Centers for Environmental Information/World Data Service NCEI/WDS]). Saving lives
and property depends on how well a community is prepared, which further depends on estimating potential flooding of the
coastal zone in the event of a local or distant tsunami.

On April 1, 1946, the eastern Aleutian Islands were struck by a My, 8.6 megathrust earthquake, which initiated near
Unimak Island (fig. 1). This earthquake generated a major destructive far-field tsunami in the Pacific Ocean that reached
Antarctica (Lander, 1996). The tsunami killed 159 people in Hawai’i and caused damage in California, Oregon, and
Washington before traveling to such distant countries as Chile, Japan, French Polynesia, New Zealand, and other areas of
the Pacific NCEI/WDS). In Alaska this event produced an extremely high runup of 42 m (138 ft) on the Pacific shore of
Unimak Island, destroying the lighthouse at Scotch Cap (Okal and others, 2002). The communities of King Cove and Cold
Bay were both affected by this tsunami, with local waves reaching 1.5 m (5 ft) in King Cove and 6.1 m (20 ft) in Cold
Bay (Lander, 1996). To help planners mitigate the risk from potential future earthquakes and tsunamis, it is necessary to
develop inundation and tsunami evacuation maps they can use. In this report, we provide an analysis of the tsunami hazard
and develop tsunami inundation maps for the communities of King Cove and Cold Bay.

The methodologies used to develop tsunami inundation maps are described in detail in multiple publications. Refer to
Suleimani and others (2010, 2013, 2015) and Nicolsky and others (2011a, 2013, 2014, 2015) for a full description of the
procedure. First we develop hypothetical tsunami scenarios on the basis of credible potential tsunamigenic earthquakes. Then
we perform model simulations for each of these scenarios and compare the results with historical tsunami observations, if
available. Finally we develop a “worst case” inundation line that encompasses the maximum extent of flooding based on
model simulation of all credible source scenarios and historical observations. The worst-case inundation line becomes a
basis for local tsunami hazard planning and development of evacuation maps.

This report is intended for use by scientists, engineers, and planners interested in applying modeling based on historic
events to develop tsunami inundation and evacuation maps. Digital data and documentation provided with the report enable
technical users to explore the range of tsunami inundation expected for future events.

1Alaska Earthquake Center, Geophysical Institute, University of Alaska, P.O. Box 757320, Fairbanks, AK 99775-7320; ensuleimani@alaska.edu
2Alaska Division of Geological & Geophysical Surveys, 3354 College Rd., Fairbanks, AK 99709-3707; now at Nevada Bureau of Mines and Geology, Mackay
School of Earth Science and Engineering, University of Nevada, Reno, 1664 North Virginia Street, MS 178, Reno, NV 89557
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Figure 1. Map of the eastern Aleutian Islands and Alaska Peninsula. Shaded polygons delineate rupture areas of great earth-
quakes and are based on distribution of aftershocks. The dashed red rectangle marks the Shumagin Archipelago. The black
rectangle outlines the study area, which is shown in detail in figure 2.

PROJECT BACKGROUND: REGIONAL AND HISTORICAL CONTEXT

SETTING

The community of King Cove (55°04°20”N, 162°19°05”W), population 792, is on the Pacific side of the Alaska Penin-
sula on a sand spit fronting Deer Passage and Deer Island (figs. 1 and 2). It is 30 km (18.6 mi) southeast of Cold Bay and
1,005 km (625 mi) southwest of Anchorage. According to the Alaska Department of Commerce, Community, and Economic
Development (Division of Community and Regional Affairs [DCRA], 2013b) King Cove was founded in 1911 when Pacific
American Fisheries built a salmon cannery there. Early settlers were of Unangan, Scandinavian, and other European heri-
tage. The city was incorporated in 1949 and the cannery operated continuously from 1911 to 1976 until partially destroyed
in a fire. Today the town is home to Peter Pan Seafoods’ largest processing facility and boasts the largest salmon canning
capacity of any plant in Alaska. King crab, pollock, salmon, halibut, and black cod are processed here throughout the year.
At peak seasons, in both winter and summer, nearly 500 employees staff the plant. The economy of King Cove depends
almost entirely on year-round commercial fishing and processing. King Cove has no road access and is accessible by air
and sea only. A state-owned gravel runway exists but gale force crosswinds are common, as the airport lies in a valley
between two volcanic peaks. A proposed road connecting King Cove and Cold Bay would provide a more reliable link to
the outside world during emergencies. A state ferry provides biweekly service to King Cove between May and October. A
new harbor provides moorage for large vessels between 60 and 150 feet in length.

The small community of Cold Bay (55°12°33’N 162°42°51W), population 108, is in the Izembek National Wildlife
Refuge at the western end of the Alaska Peninsula (figs. 1 and 2). The Izembek Refuge is between the highly productive
waters of the Bering Sea and the Pacific Ocean and contains [zembek Lagoon, a unique coastal ecosystem with more than
200 species of wildlife. The community of Cold Bay is 1,020 km (634 mi) southwest of Anchorage and 290 km (180 mi)
northeast of Unalaska. Archaeological sites dating to the last ice age indicate that the area around Cold Bay was once in-
habited by a large Native population (DCRA, 2013a). It was used by European hunters and trappers throughout the 19th
century. During World War II, Cold Bay was the site of the strategic air base Fort Randall. At that time, the airport was the
largest in the state, with a ~3,050 m (10,000 ft) runway. The city was incorporated in 1982. Cold Bay services the fishing
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Figure 2. Map of western Alaska Peninsula and Unimak Island, showing the locations of the communities of King Cove and
Cold Bay. The area shaded in green is the Izembek National Wildlife Refuge.

industry and houses a number of federal offices with services focused on Aleutian transportation and wildlife protection.
Subsistence and recreational fishing and hunting are an important part of the local culture. Up to 70,000 Canada geese
migrate through Cold Bay in the fall. Cold Bay is one of the main commercial centers of the Alaska Peninsula, and is home
to Cold Bay Airport, a state-owned paved and lighted facility with a crosswind runway. Cold Bay is a regional transporta-
tion center and provides scheduled flights to surrounding communities. The community has a dock but wants to develop
a breakwater, boat harbor, and boat launch. Marine cargo services are available monthly from Seattle, and the state ferry
operates biweekly from Kodiak between May and October.

SEISMIC AND TSUNAMI HISTORY

The communities of King Cove and Cold Bay are at the western tip of the Alaska Peninsula, where this arcuate landform
is separated by Bechevin Bay and the narrow Isanotski Strait from Unimak Island, the easternmost in a chain of Aleutian
islands (fig. 2). This island arc constitutes the boundary along which the Pacific and North American tectonic plates converge
and form the Alaska—Aleutian subduction zone (AASZ). The Shumagin archipelago of about 20 islands is in the same area
(fig. 1). The rate of plate convergence near the archipelago is approximately 63—66 mm (2.5-2.6 in) per year (DeMets and
others, 1990; Page and others, 1991; Argus and others, 2010), and the Alaska Peninsula segment of the Aleutian megathrust
has produced some significant tsunamigenic earthquakes (shaded polygons in fig. 1). Refer to “Seismic and Tsunami His-
tory” in Nicolsky and others (in review) for a detailed description of these events and a summary of the tectonic regime in
the Shumagin gap area.

Numerous earthquakes have been felt in the area where the communities of King Cove and Cold Bay are now located.
Figure 3 shows seismic activity along the Alaska—Aleutian subduction zone with locations determined by the Alaska
Earthquake Center (AEC) at the University of Alaska Fairbanks. Davies and others (1981) provide a regional map showing
seismicity near the Shumagin Islands. Both Lander (1996) and the National Centers for Environmental Information (NCEI)
Global Historical Tsunami Database list only one event in which King Cove and Cold Bay were affected by tsunami waves.


http://en.wikipedia.org/wiki/Alaska_Peninsula
http://en.wikipedia.org/wiki/Cold_Bay_Airport
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On April 1, 1946, a strong My, 8.6 earthquake (Lopez and Okal, 2006) near Unimak Island triggered a major destructive
tsunami in the Pacific Ocean. Local waves reached 42 m (138 ft) in height on Unimak Island, 6.1 m (20 ft) in Cold Bay,
and 1.5 m (5 ft) in King Cove. Multiple other earthquakes and tsunamis have likely affected the areas around King Cove
and Cold Bay; however, no records of events prior to 1946 are currently available.

Historical records, unfortunately, are usually too short to sample the variability of slip on the megathrust (Stein and
Okal, 2007). Paleotsunami and paleoseismic studies have the potential to extend available historical records back in time
and thus help to develop hypothetical maximum credible scenarios. In an effort to document tectonic deformation in the
outer Shumagin Islands, Witter and others (2014) conducted a paleoseismic study on Simeonof Island (fig. 1), the island
closest to the trench. This investigation determined that there was no evidence for sudden coseismic land-level changes
produced by great earthquakes or any trace of marine deposits left by high tsunamis (Witter and others, 2014). The authors
concluded that the lack of geologic evidence for great earthquakes and tsunamis on Simeonof Island indicates that aseismic
slip may accommodate a substantial component of plate convergence along the Shumagin segment over the past 3,400 years.
Witter and others (2014) suggested that large M 7-M 7.5 earthquakes might be sufficient to release the strain stored in the
Shumagin gap. The implications of this geologic/paleoseismologic study on the development of the hypothetical tsunami
scenarios are discussed later in the report.

LANDSLIDE-GENERATED TSUNAMI HAZARDS IN KING COVE AND COLD BAY

The destructive effects of tsunamis generated by subaerial and underwater slope failures have been identified previously
in south-central and southeastern Alaska. See Suleimani and others (2010, 2015) and Nicolsky and others (2013) for an over-
view of primary causes and triggers of tsunamigenic landslides in Alaska. Several authors suggested a landslide component
in the tsunami generation mechanism of the 1946 earthquake, for which the size of the tsunami was much larger than that
estimated from the surface wave magnitude (Sykes, 1971; Johnson and Satake, 1997). Fryer and Watts (2001) proposed
a particular sea floor feature that could have been the source of the large 1946 tsunami and could explain the exception-
ally high local runup on Unimak Island. Recently von Huene and others (2014) analyzed a seismic reflection transect and
multibeam bathymetric surveys in the area of the epicenter of the 1946 earthquake and discovered a large recent slide (a
different feature than that proposed by Fryer and Watts [2001]), which they proposed as a candidate for the 1946 landslide
tsunami source. This feature was called Lone Hill by Miller and others (2014); von Huene and others (2014) refer to it as
Lone Knoll. Figure 4 shows the location of Lone Knoll relative to the epicenter of the 1946 earthquake, shown as a red star,
and to Scotch Cap, where the 42 m (138 ft) tsunami runup destroyed the lighthouse (Lander, 1996). The area outlined by
the black rectangle is also shown in detail in figure 5 as a high-resolution bathymetry image of the sea floor around Lone
Knoll (from von Huene and others, 2014). The white dashed line in figure 5 is the proposed original location of Lone Knoll,
from which it was detached. From analysis of seismic profiles and sea floor morphology, Lone Knoll was characterized as
a translational slide that remained largely coherent due to its travel path across gently sloping and fluid-rich seafloor sedi-
ment (von Huene and others, 2014). These features may have contributed to the extreme wave runup on Unimak Island.

To assess landslide hazards in King Cove and Cold Bay and their potential contribution to tsunami hazards, one needs
to complete site-specific slope-stability analyses (which cannot currently be completed for King Cove and Cold Bay be-
cause of insufficient data) that integrate geophysical, geological, and geotechnical data. While it is known that earthquakes
have triggered major submarine mass movements in many places around the world (Mather and others, 2014; Lastras and
others, 2013; Lee and others, 2006; Hance, 2003a, 2003b; Kulikov and others, 1998) and that numerical simulations of
landslide-generated tsunamis are technically possible, more field data and scientific research are necessary to constrain the
landslide sources before meaningful modeling results can be generated. Therefore, due to insufficient data on the locations
and volumes of potential mass failures, in this report we do not model? tsunamis generated by landslides.

3Guidelines and best practices for tsunami inundation modeling for evacuation planning state that the modeling should add value to
mapping products (National Tsunami Hazard Mapping Program [NTHMP], 2010).
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Figure 4. Map of the continental slope near Unimak Island that shows location of Lone Knoll relative to Scotch Cap. Red star
indicates the epicenter of the 1946 earthquake, and black rectangle outlines area shown in detail in figure 5.
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Figure 5. Bathymetry map of Lone Knoll (from von Huene and others, 2014). The inferred Lone Knoll landslide deposit indi-
cated by dotted white line; inferred original location of the slide mass on the continental slope indicated by dashed white line.

METHODOLOGY AND DATA

GRID DEVELOPMENT AND DATA SOURCES

To compute a detailed map of potential tsunami inundation triggered by local and distant earthquakes we employ a series
of nested computational grids. A nested grid allows for higher resolution in areas where it is needed without expending
computer resources in areas where it is not. The bathymetric and topographic relief in each nested grid is based on digital
elevation models (DEMs) developed at the National Centers for Environmental Information (NCEI) of the National Oceanic
& Atmospheric Administration (NOAA) in Boulder, Colorado. The extent of each grid used for the King Cove and Cold
Bay mapping project is shown in figure 6 and listed in table 1. The coarsest grid, with 2-arc-minute (approximately 1.85 x
3.7 km [1.15 x 2.3 mi]) resolution, spans the central and northern Pacific Ocean (fig. 6A). The highest-resolution grid for
King Cove covers the community of King Cove, the King Cove Lagoon and Harbor, and a part of Deer Passage, and the
highest-resolution grid for Cold Bay covers the village of Cold Bay and a part of Cold Bay (fig. 6B).
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Figure 6. (A) Nesting of the bathymetry/topography grids for numerical modeling of tsunami propagation and runup. The
coarsest grid, Level O, covers the central and northern Pacific Ocean. The location of each embedded grid is marked by a
semi-transparent red rectangle. Refer to table 1 for grid parameters.
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Figure 6 (cont). (B) Level 4 high-resolution bathymetry/topography grids for King Cove and Cold Bay. Refer to table 1 for
grid parameters.



10 Report of Investigation 2016-1

Table 1. Nested grids used to compute propagation of tsunami waves generated in the Pacific Ocean to the communities
of King Cove and Cold Bay. The high-resolution grids are used to compute the inundation. Note that the grid resolution in
meters is not uniform and is used to illustrate grid fineness in the King Cove region. The first dimension is the longitudinal

grid resolution, while the second is the latitudinal resolution.

Grid name Resolution West—East South—North
arc-seconds me‘ters boundaries boundaries
(near King Cove)
. N 120°00'E — 10°00'N —
Level 0, Northern Pacific 120 x 120 ~ 1,850 % 3,700 100°00' W 65°00'N
. - 171°58'W — 52°00'N —
Level 1, Eastern Aleutians 24 x 24 ~ 430 x 740 157°02' W 57998'N
Level 2, Coars.e resolution western g x 8 ~ 150 x 250 161°47'44" W — 54°14'35" N —
Alaska Peninsula 163°48'42" W 55°30'14"N
Level 3, Fine resolution western - 161°5024" W — 54°34'54" N —
Alaska Peninsula 83 > 8/3 4882 162°47'53" W 55°19'59" N
Level 4, High resolution King N 162°14'58" W — 54°59'59" N —
Cove 8/9 % 8/15 ~16x16 162°22'16" W 55°6'1"N
. . _ 162°34'47" W — 55°8'58" N —
Level 4, High resolution Cold Bay 8/9 x 8/15 ~16%x16 162°46'50" W 5591513" N

The spatial resolution of the high-resolution grid cells, with dimensions of about 16 x 16 m (53 x 53 ft) satisfies NOAA
minimum recommended requirements for computation of tsunami inundation (National Tsunami Hazard Mapping Program
[NTHMP], 2010). We use three intermediate grids between the coarsest- and highest-resolution grids (table 1). The bathy-
metric data for the 2-arc-minute-resolution grid is extracted from the ETOPO2 dataset (NCEI/NOAA). To develop 8/3-, 8-,
and 24-arc-second-resolution grids, we obtained shoreline, bathymetric, and topographic digital datasets from the following
U.S. federal and academic agencies: NOAA’s National Ocean Service (NOS), Office of Coast Survey, and National Geo-
physical Data Center (NCEI); and the U.S. Army Corps of Engineers (USACE). All data were converted to World Geodetic
System 1984 (WGS 84) horizontal datum and Mean Higher High Water (MHHW) vertical tidal datum. The data sources
and methodology used to develop high-resolution 8/3-, 8-, and 24-arc-second DEMs are described in detail by Carignan
and others (2013) and Lim and others (2011).

Accuracy of the high-resolution DEM is determined by the DCRA (Alaska Division of Community and Regional
Affairs) elevation dataset, which contains survey data with the original Geoid 99 vertical datum of unknown accuracy.
Because conversion of the DCRA datum to the MHHW tidal datum might introduce some vertical errors, prediction of the
potential tsunami inundation using those data can be invalid. Hence, this topographic dataset was augmented with real-
time kinematic (RTK) GPS survey data along near-shore areas in King Cove and Cold Bay; surveys in these communities
were conducted August 9-14, 2012. Locations of the GPS measurements in King Cove and Cold Bay are shown in figures
7A and 7B, respectively; the comparison of the GPS-estimated and NOAA-observed tide dynamics is shown in figures 8A
and 8B. A detailed description of the survey procedure and the process of fitting the GPS results to the tidal variations is
provided in Nicolsky and others (2014).

We check the accuracy of our conversion of the GPS data to the MHHW level by estimating the height of the tidal station
disk ‘9881C 2005’ in King Cove. According to the NOAA website (http://tidesandcurrents.noaa.gov) the disk is 4.266 m
(13.996 ft) above Mean Lower Low Water (MLLW), or 2.184 m (7.165 ft) above MHHW. After measuring the height of
this disk during the GPS survey and converting to the MHHW datum, we estimate that the disk is 2.206 m (7.238 ft) above
MHHW. The difference of less than 0.1 m (0.33 ft) between the NOAA stamping and our estimates demonstrates that the
conversion of the GPS measurements to the MHHW level provides sub-meter accuracy. Unfortunately, we were not able
to locate a suitable tidal disk in Cold Bay to check the accuracy of data conversion at this location. However, exactly the
same technique was used to convert the GPS data for Cold Bay as was used for King Cove. While the difference between
any two GPS measurements has a horizontal error of 3—5 cm (1.2-2.0 in), a horizontal error for any point is defined by the
error of the base station. We allowed the base station to establish its position by averaging the received coordinates for 5-15
minutes, but we did not reference our GPS measurements to any horizontal benchmark. Therefore, for the sake of safety, we
assume that a horizontal error in the base station location is about 3—5 m (10-16 ft), which is comparable with the handheld
GPS device and the spatial resolution of the tsunami DEMs (15 x 15 m [49 x 49 ft]). The converted GPS survey has been
provided to the NCEI, where the high-resolution DEMs of King Cove, Cold Bay, and adjacent areas have been developed.
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Figure 7. (A) Locations of RTK (real-time kinematic) GPS measurements at King Cove.
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NUMERICAL MODEL OF TSUNAMI PROPAGATION AND RUNUP

The numerical model currently used by the Alaska Earthquake Center (AEC; http://earthquake.alaska.edu/) for tsu-
nami inundation mapping has been validated through a set of analytical benchmarks and tested against laboratory and field
data (Nicolsky and others, 2011b; Nicolsky, 2012). The model solves the nonlinear shallow-water equations using a finite-
difference method on a staggered grid. For any coarse—fine pair of computational grids we apply a time-explicit numerical
scheme as follows. First we compute the water flux in a coarse-resolution grid. These calculated flux values are used to
define the water flux on a boundary of the fine-resolution grid. Next the water level and then the water flux are calculated
over the fine-resolution grid. Finally the water level computed in the fine-resolution grid is used to define the water level
in the area of the coarse-resolution grid that coincides with the fine grid. Subsequently we compute the water elevation for
all other points in the coarse grid and proceed to the next time step. More details about the numerical scheme, grid nesting,
and time stepping can be found in Goto and others (1997) and in Nicolsky and others (2011b). The application of the model
to tsunami inundation mapping of Alaska coastal communities, including its assumptions and limitations, is described in
a number of previous tsunami reports, for example, Suleimani and others (2010, 2013, 2015) and Nicolsky and others
(2011a, 2013, 2014, 2015). In this study we conduct all model runs using bathymetric data that correspond to the MHHW
tide level in King Cove and Cold Bay.

MODELING OF THE MARCH 11, 2011, TOHOKU TSUNAMI

To assess tsunami hazards in King Cove and Cold Bay, we consider both local and distant potential tsunami sources.
Among many reasons for model verification listed in Synolakis and others (2007), the one that is most significant for distant
tsunami events is checking the consistency of the DEM nesting. To test the accuracy of the grid nesting around King Cove
and Cold Bay, we complete a model verification study of the Tohoku tsunami of March 11, 2011. Using a method similar
to Nicolsky and others (2015), we compare modeling results with observed wave dynamics at the King Cove tidal station
(point 28 in fig. A1). We employ Shao and others’ (2011) finite fault inversions model phase III, which predicts the vertical
coseismic deformation shown in figure 9. The Tohoku tsunami produced a 0.54-m-high (1.8-ft-high) maximum wave in
King Cove (NCEI/WDS Global Historical Tsunami Database), whereas the simulation predicts a 0.8-m-high (2.6-ft-high)
wave (fig. 10). Similarly to Tang and others (2012), we observe a time delay between the computed and observed waves. The
computed wave arrives at King Cove 8T = 9 minutes sooner than the observed one. The comparison between the computed
and observed wave shows good correspondence between the amplitude and the phase of the first arrival. The later waves
in the simulated signal are larger, which could be due to low resolution of the coastline in the Level 1-3 grids (table 1 and
fig. 6). Overall, the model provides a good approximation to the recorded tsunami amplitudes in King Cove harbor, which
indicates that the proposed coseismic deformation model adequately describes the coseismic slip distribution, and the DEM
nesting is selected appropriately.

The far-field Tohoku tsunami did not result in a significant wave at King Cove due to its distance from the tsunami
source and directivity patterns of the energy propagation. However, other distant events might produce greater wave heights
in King Cove and Cold Bay and should not be dismissed without a proper evaluation.

TSUNAMI SOURCES

A critical component of the Alaska tsunami-inundation mapping project is accurate identification and characterization
of potential tsunami sources. As demonstrated by the 2011 Tohoku tsunami, correct estimation of the maximum size event
for a given segment of the subduction zone is particularly important. Based on seafloor GPS and seafloor pressure gage
observations, during the 2011 Tohoku earthquake, an unexpectedly large amount of slip occurred approximately updip of
the epicenter of the main shock, generating a much larger tsunami than anticipated (Fujii and others, 2011). In our project,
we employ the deterministic method to develop potential tsunami sources, which is distinctly different from the probabi-
listic tsunami hazard analysis used in projects with different objectives, such as land-use planning or insurance estimates
(Geist and Parsons, 2006). The Alaska tsunami inundation maps are produced on the basis of a maximum credible tsunami
scenario for a given segment of the coastline (for example, Nicolsky and others, 2011a, 2013, 2014; Suleimani and others,
2010, 2013, 2015). To determine credible sources, we study the region-specific subduction processes and use up-to-date
geophysical data and research models that define the magnitude range of possible future tsunami events. Nicolsky and
others (2015) also outlined a strategy for generating worst-case credible tsunami scenarios for locations that have a short
or nonexistent paleoseismic/paleotsunami record, and in some cases lack modern seismic and GPS data. Below we briefly
review some aspects of the region’s plate tectonics and locations of locked and creeping zones along the Aleutian megathrust
in the study area. These factors are taken into account when we define spatial extents of hypothetical tsunamigenic ruptures.

Seismicity

The Alaska—Aleutian arc is one of the most seismically active regions in the world and has experienced some of the
largest events in recorded history. Almost the entire arc ruptured in a series of events My, 7.4-9.2 starting with the My, 8.3
earthquake near Kodiak Island in 1938 and culminating with the M,y 8.7 Rat Island earthquake in 1965. However, there
has not been a great earthquake rupture along the megathrust underneath the Shumagin Islands archipelago in historic
time. Figure 11 shows the area of the Shumagin gap with background seismicity and the focal mechanisms of the three
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cates subsidence. Inset map shows the location of the Tohoku earthquake source with respect to the King Cove tide gauge.
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Figure 10. Observed and simulated water-level dynamics at the King Cove tide station during the March 11, 2011, Tohoku
tsunami.

most recent significant earthquakes in the region. The largest of them, My 7.1, occurred in the study area in 1948, before
deployment of the World Wide Standardized Seismograph Network. Detailed analyses of this event are contained in Davies
and others (1981), who suggested that the seismic gap could be broken by a series of large earthquakes with My, ranging
from 7.2 to 7.8. Tanioka and others (1994) studied the My, 6.9 1993 earthquake and calculated synthesized tsunami waves.
They concluded that their estimation of the seismic moment and rupture area are consistent with the observed absence of a
tsunami signal. Nishenko (1991) analyzed the seismic potential of the Shumagin gap region and pointed out that while the
gap may not be capable of producing a great earthquake, it is capable of independently producing mid-7 magnitude events,
and also could be part of a bigger rupture. An additional analysis of other significant thrust earthquakes along the Alaska
Peninsula can be found in Tichelaar and Ruff (1993).

Geodetic studies

Fournier and Freymueller (2007) used geodetic observations of active deformation in the Shumagin region to assess
strain accumulation related to the earthquake cycle. They modeled GPS velocities from the Alaska Peninsula to find the
extent of locking on the subduction interface. The plate interface between the Pacific and North America plates along the
Alaska Peninsula and Shumagin Islands was divided into several rectangular planar segments (fig. 11 shows three of these
segments). They estimated the amount of slip occurring on each segment; results are reported in terms of a coupling ratio
for each plane. A coupling ratio of zero results when the plate interface is constantly slipping at the long-term relative plate
velocity; this indicates that no strain is building up to contribute to future great earthquakes. A coupling ratio of 100 percent
indicates no slip, that the plate interface is completely locked over that segment; regions of high coupling ratio are termed
locked zones. A coupling ratio between these high and low values may mean that only a portion of the plate interface is
locked, or it could mean that the entire interface creeps at a rate somewhat slower than the rate of plate motion. The cou-
pling ratio for each plane is marked by percentage values shown in red in figure 11. The modeling results of Fournier and
Freymueller (2007) reveal that the plate interface near the Shumagin Islands (plane 2) is dominated by creeping (coupling
ratio only 30 percent), but indicate that shear stress is accumulating on part of the interface. Note that most of the significant
earthquakes that have been recorded by the AEC in this area are near the Shumagin Islands at the downdip end of plane 2,
around 37 km (23 mi) in depth. The estimated downdip extent of seismic coupling inferred from these earthquakes quan-
titatively agrees with the analysis of upper plate seismicity (Tichelaar and Ruff, 1993). Tichelaar and Ruff (1993) predict
the downdip limit of the locked region to be at 37—41 km (23-26 mi) depth.

Determining the location of the updip limit of the locked zone is hindered by the lack of geodetic data close to the
Aleutian trench, and is essentially unconstrained by the land-based geodetic data. Seafloor GPS/acoustic measurements
would be required to constrain the existence or absence of high coupling at shallow depth. Fournier and Freymueller (2007)
assumed that the locked zone extended to the trench. Plane 1, which is offshore of King Cove and Cold Bay, is estimated
to be almost entirely creeping (coupling ratio of 2 percent), because zero deformation is observed between geodetic sites
along that segment. However, because of the poor model resolution near the trench there could still be a shallow locked
zone. Fournier and Freymueller (2007) tested models to evaluate the area of the largest possible locked zone that did not
violate the data. Assuming the locked zone started at the trench and had a coupling ratio of 100 percent, the shaded area
of plane 1 in figure 11 shows the widest possible fully locked interface, at the 95 percent confidence level. Recent studies
comparing the Alaska and Tohoku margins (Ryan and others, 2012; Kirby and others, 2013) propose that a hypothetical
rupture might propagate to shallow depths, similar to the My, 9.0 Tohoku earthquake, based on several similarities between
the two margins. Therefore, in our scenarios, we allow earthquakes that rupture the potential shallow locked zone where
tectonic plates near the trench may be coupled.
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Figure 11. Earthquakes near western Alaska Peninsula (data from Alaska Earthquake Center catalog). Small and large dots
correspond to earthquakes with magnitudes less than 6 and 6 or greater, respectively. Source mechanisms are shown for
the three largest earthquakes in the area of the Shumagin Islands. The trench is marked by a dashed black line. Red arrows
indicate the rate of convergence of the Pacific and North American plates. Black rectangles mark locations of fault planes for
which the percent of unit coupling is estimated by Fournier and Freymueller (2007). Location of the Shumagin seismic gap is
bounded by dashed orange lines. The shaded area in Plane 1 indicates the widest possible fully locked interface, according
to Fournier and Freymueller (2007).

Paleoseismological constraints

Witter and others (2014) analyzed data collected during a field paleoseismic investigation of Simeonof Island, the east-
ernmost island of the Shumagin archipelago (fig. 1). The data indicate that there have been no sudden coseismic vertical
land-level changes greater than 0.3 m (1 ft) produced by great earthquakes at Simeonof Island. This observation means
that if great earthquakes have ruptured that segment of the megathrust, Simeonof Island must lie very close to the hinge
line—the line of zero vertical displacement that separates the region of uplift near the updip end of the rupture from the
region of subsidence near the downdip end of the rupture. However, for the segment to the west of Shumagin Islands, no
paleoseismic constraints are available and a wider range of slip distributions is geologically plausible.
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Methodology

Our goal is to determine geologically plausible worst-case scenarios that will result in maximum tsunami inundation in
King Cove and Cold Bay. To do that, we consider all possible scenarios that do not contradict existing data.

To simulate potential earthquakes on the Aleutian megathrust we employ a model of the Alaska—Aleutian plate interface
between the subducting and overriding plates. The plate interface model by Hayes and others (2012) is discretized into a
number of rectangles ranging from 3 to 6 km (1.9-3.7 mi) in the along-strike direction of the plate interface. The upper and
lower edges of each rectangle coincide with depth contours of the plate interface that are spaced at 1 km (0.6 mi) (fig. 12). The
rectangles, called subfaults, are later used to compute coseismic ground deformation (Okada, 1985). Using this discretization
of the plate interface, we can model potential earthquake scenarios by first prescribing a general pattern of slip distribution
in the proposed rupture, and then computing the slip at the center of each subfault using seismic moment as a constraint.

Next we construct local hypothetical ruptures that could generate tsunami waves at King Cove and Cold Bay. In this
study we focus on the Shumagin gap region and adjacent segments of the megathrust. Figure 13 shows the plate interface
in the study area, divided into five regions in the along-strike direction, and into four depth intervals in the downdip direc-
tion, for a total of 20 interface segments. We use this mosaic to develop hypothetical ruptures that satisfy different geodetic
and geologic constraints. Considerations for selecting or excluding certain segments are outlined below in the description
of the scenarios. For each modeled slip distribution on the plate interface, we simulate the impact of the resulting tsunami
in King Cove and Cold Bay. In addition to the near-field tsunami sources that are constructed based on the assessment of
locked regions near the Shumagin Islands and geologic data, we include several tsunami sources that have been considered
in previous inundation mapping reports, such as the rupture of the Cascadia subduction zone involving the Juan de Fuca
plate from Vancouver Island in British Columbia to northern California, an outer-rise earthquake, and a Tohoku-type earth-
quake in the Shumagin Islands region.

Hypothetical tsunami scenarios

For the eastern part of the study area, represented by sections D and E in figure 13, the potential slip distributions are
constrained by field data that indicate the absence of any sudden coseismic vertical land-level changes greater than 0.3 m
(1 ft) produced by great earthquakes at Simeonof Island (Witter and others, 2014), and suggest that the island must lie very
close to the megathrust hingeline. Segments 17-20 are areas of the interface that are not locked at depths greater than about
30 km (18.6 mi) (Lisowski and others, 1988; Fletcher and others, 2001; Fournier and Freymueller, 2007). Segments 7—8
and 12-13 are areas that have no record of great earthquakes and is a freely slipping segment of the plate interface, based
on the modeling of GPS velocities by Fournier and Freymueller (2007). Also, the green shading of segments 17-20 indicate
that these areas of the interface at depths greater than about 30 km (18.6 mi) are not locked (Lisowski and others, 1988;
Fletcher and others, 2001; Fournier and Freymueller, 2007). The green shading of segments 7-8 and 12—13 indicates the
area that has no record of great earthquakes and is a freely slipping segment of the plate interface, based on modeling of GPS
velocities (Fournier and Freymueller, 2007). These constraints are taken into account in development of selected scenarios.

Table 2 lists all hypothetical tsunami sources evaluated for King Cove and Cold Bay. The proposed slip distributions
for selected scenarios are shown in figure 14; vertical coseismic deformations for all scenarios are shown in figure 15. The
developed scenarios demonstrate the sensitivity of tsunami runup in King Cove and Cold Bay to variable slip distributions
and are valuable in determining the tsunami hazard zone in these communities. Below we describe the scenarios, grouped
by specific source characteristics.

The first group of tsunami scenarios includes six sources (scenarios 1-6) that reflect the presence of Shumagin gap as a
freely slipping segment of the plate interface, and therefore do not have any slip placed in the green-shaded segments of the
rupture mosaic in figure 13. For the remaining segments shaded in pink, we allow a maximum slip of 50 m (164 ft) in the
shallow part (segments 1-5), and a maximum slip of 35-40 m (115-131 ft) in other segments. The average and maximum
slip as well as the rupture areas for scenarios 1-6 are set according to the scaling relations of Papazachos and others (2005)
and Moss and Travasarou (2006).

Scenario 1. My 9.1 earthquake in the western Alaska Peninsula region: Two asperities and trench

This event is a hypothetical My, 9.1 earthquake rupturing the Aleutian megathrust. Zero slip is assigned to seg-
ments 7, 8, 12, 13, and 17-20. The source consists of a western and eastern asperity, separated by the Shumagin
gap and connected only by slip in the shallow part of the rupture, close to the trench. The maximum slip of 50 m
(164 ft) is at a depth of 5—15 km (3—9 mi). The proposed slip distribution is shown in figure 14A; vertical coseismic
deformations for this scenario are shown in figure 15A.

Scenario 2. My, 9.1 earthquake in the western Alaska Peninsula region: Two asperities, weakly
connected
This event is a hypothetical My 9.1 earthquake rupturing the Aleutian megathrust. Zero slip is assigned to segments

7,8, 12, 13, and 17-20. The source consists of a western and eastern asperity, separated by Shumagin gap and
connected only by slip in the shallow part of the rupture, close to the trench. The difference between this scenario
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and scenario 1 is in the amount of slip placed in the area connecting the two asperities, which is much smaller in
this scenario. The maximum slip of 50 m (164 ft) is at a depth of 5—15 km (3—9 mi). The proposed slip distribution
is shown in figure 14B; vertical coseismic deformations for this scenario are shown in figure 15B.

Scenario 3. My, 8.9earthquake in the western Alaska Peninsula region: Eastern asperity and trench

This event is a hypothetical My, 8.9 earthquake rupturing the Aleutian megathrust. Zero slip is assigned to segments
6-8, 11-13, and 16-20. The source consists of an eastern asperity and an area of higher slip at shallow depth close
to the trench. The maximum slip of 50 m (164 ft) is at a depth of 5-15 km (3—9 mi). The proposed slip distribution
is shown in figure 14C; vertical coseismic deformations for this scenario are shown in figure 15C.

Scenario 4. My, 9.0 earthquake in the western Alaska Peninsula region: Western asperity and trench

This event is a hypothetical My, 9.0 earthquake rupturing the Aleutian megathrust. Zero slip is assigned to segments
7-10, 12-15, and 17-20. The source consists of a western asperity and an area of higher slip at shallow depth close
to the trench. The maximum slip of 50 m (164 ft) is at a depth of 5—15 km (3—9 mi). The proposed slip distribution
is shown in figure 14D; vertical coseismic deformations for this scenario are shown in figure 15D.

To expand the range of possible tsunami events and include sources that are considered more realistic for the Shumagin gap
segment of the megathrust (Wesson and others, 2007, 2008), we considered scenarios 5 and 6 with magnitudes My, 8.6 and
M,y 8.3, respectively, which represent the eastern and western asperities of the earthquake source in scenario 2.

Scenario 5. My 8.6 earthquake in the western Alaska Peninsula region: Eastern asperity only

This event is a hypothetical My, 8.6 earthquake rupturing the Aleutian megathrust. Zero slip is assigned to seg-
ments 1-3, 6-8, 11-13 and 16-19. The source consists of an eastern asperity only. The maximum slip of 15 m (50
ft) is at a depth of 5—15 km (3—9 mi). The proposed slip distribution is shown in figure 14E; vertical coseismic
deformations for this scenario are shown in figure 15E.

56°N

Cold Bay.

54°N

Simeonof
Island

‘?n‘ckson Seamount

3534

1
165°W 162°W 159°W 156°W

Figure 13. Mosaic of the plate interface in the study area used for the construction of hypothetical ruptures. Green-shaded
area indicates segments that have zero amount of slip in some scenarios due to different geodetic and geologic constraints.



Tsunami inundation maps for King Cove and Cold Bay communities, Alaska 21

Scenario 6. My, 8.3 earthquake in the western Alaska Peninsula region: Western asperity only

This event is a hypothetical Myy 8.3 earthquake rupturing the Aleutian megathrust. Zero slip is assigned to seg-
ments 2-5, 7-10, 12—15, and 17-20. The source consists of a western asperity only. The maximum slip of 9.9 m
(32 ft) is at a depth of 5-15 km (3—9 mi). The proposed slip distribution is shown in figure 14F; vertical coseismic
deformations for this scenario are shown in figure 15F.

The second group of tsunami scenarios includes three sources (scenarios 7-9) that are developed under the assumption that
the geodetic data are not representative of the long term, and therefore any segments of the mosaic in figure 13 can be in-
cluded in a hypothetical rupture. The objective for this approach is to determine whether the inclusion of the Shumagin gap
segments in a scenario will result in significantly higher runup at King Cove and Cold Bay compared to runup produced by
scenarios that are constrained by geodetic and geologic data. For the scenarios in the second group, we allow the maximum
slip of 50 m (164 ft) in the shallow part (segments 1-5), and the maximum slip of 35-40 m (115-131 ft) in other segments.
The average and maximum slip as well as the rupture areas for scenarios 7-9 are set according to the scaling relations of

Papazachos and others (2005) and Moss and Travasarou (2006).

Table 2. All hypothetical scenarios used to model tsunami runup in King Cove and Cold Bay (WAP = western Alaska Peninsula).
Scenarios marked with an asterisk are the same as in the Elfin Cove, Gustavus, and Hoonah tsunami modeling study (Suleimani
and others, 2015) and in the Unalaska/Dutch Harbor modeling study (Nicolsky and others, 2015). Maps of potential permanent

flooding in King Cove and Cold Bay due to coseismic subsidence are given in appendix C.

= Depth . Maximum | Maximum | _. Vertical
H . . Maximum . . displacement (m)
e Tectonic Scenarios range . Subsidence Uplift :
3 (km) slip (m) (m) (m) King Cold
Cove Bay
1 Mv9.1 carthquake in WAP region: 5-35 50 7.2 199 023 | -0.11
Two asperities and trench
o  M9.1 carthquake in WAP region: 5-45 50 5.9 201 | 032 | -0.16
Two asperities, weakly connected
3 M, 8.9 earthquake in WAP region: 5.35 50 71 201 02 0.1
I Eastern asperity and trench
4 My 9.0 earthqu.ake in WAP region: 5_45 50 36 175 -0.08 0.05
Western asperity and trench
5 M, 8.6 earthquake in WAP region: 5_45 15 156 6.06 | -0.07 0.0
Eastern asperity only
6 | Mw8.3 carthquake in WAP region: 545 9.9 0.68 352 0 00 0.0
Western asperity only
7 My, 8.9 c?arthquake in WAP region: 5_45 50 47 19.6 277 _1.46
Gap-filling event
My, 9.0 earthquake in WAP region:
I 8 | Predominantly shallow slip in the western; 545 49 5.5 19.0 -1.04 -0.5
part of the rupture
My, 9.1 earthquake in WAP region:
9 | Predominantly shallow slip in the easterni 545 50 6.2 20.3 -1.07 -0.48
part of the rupture
10 { My 9.2 earthquake in WAP region 7-50 36.6 4.8 13.6 -2.5 -1.37
11 { My 9.3 earthquake in WAP region 5-31 50 4.9 22.9 -0.39 -0.16
11 :
12 MW'9.O earthquake according to SAFRR 354 55.65 23 148 0.06 0.05
project
My, 9.0 earthquake in WAP region:
13 SRR s ot 8-54 50 33 14.7 -0.35 -0.14
14*i M, 9.1 earthquake in Eastern Aleutians 2-45 36 3.0 14.6 -0.2 -0.14
15% Mw'8.6 outer-rise earthquake in WAP 223 25 105 )5 0.05 0.05
v region
. . Wang and
16+ Mv9-0-9.1 carthquake in Cascadia others |  35-45 7.5 109 | 0.0 0.0
subduction zone (2003)
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Figure 14. Proposed slip distributions along the plate interface for scenarios 1 and 2. Slip values

in meters are marked by small black labels

shown by black lines.

The depth contours of the Aleutian interface are
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Figure 14 (cont.). Proposed slip distributions along the plate interface for scenarios 3 and 4.
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Scenario 5: M, 8.6 earthquake in the western Alaska Peninsula region
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Scenario 6: M, 8.3 earthquake in the western Alaska Peninsula region
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Figure 14 (cont.). Proposed slip distributions along the plate interface for scenarios 5 and 6.
Slip values in meters are marked by small black labels. The depth contours of the Aleutian
interface are shown by black lines.
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Figure 14 (cont.). Proposed slip distributions along the plate interface for scenarios 7 and 8.
Slip values in meters are marked by small black labels. The depth contours of the Aleutian
interface are shown by black lines.
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Figure 14 (cont.). Proposed slip distributions along the plate interface for scenario 13. Slip values
in meters are marked by small black labels. The depth contours of the Aleutian interface are
shown by black lines.
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Figure 15. Vertical coseismic deformations corresponding to scenarios 1—6. Blue areas are associated with coseismic ground
subsidence; areas of uplift are shown in red.
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Figure 15 (cont.).Vertical coseismic deformations corresponding to scenarios 7—12. Blue areas are associated with coseismic
ground subsidence, areas of uplift are shown in red.
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Figure 15. (cont.) Vertical coseismic deformations corresponding to scenarios 13—16. Blue areas are associated with coseismic
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Scenario 7. My, 8.9 earthquake in the western Alaska Peninsula region: Gap-filling event

This event is a hypothetical My, 8.9 earthquake rupturing the Aleutian megathrust. Zero slip is assigned to seg-
ments 1, 2, 4-6, 9-11, 15, and 20. In this scenario, the segments representing the Shumagin gap have non-zero
slip. The source consists of a patch with maximum slip of 50 m (164 ft) at a depth of 5-15 km (3-9 mi), and in
the major part of the rupture, at a depth of 15—45 km (9-28 mi), the maximum slip is 37 m (121 ft). The proposed
slip distribution is shown in figure 14G; vertical coseismic deformations for this scenario are shown in figure 15G.

Scenario 8. My 9.0 earthquake in the western Alaska Peninsula region: Predominantly shallow slip in
the western part of the rupture

This event is a hypothetical My, 9.0 earthquake rupturing the Aleutian megathrust. Zero slip is assigned to seg-
ments 4, 5, 10, and 17-20. The source consists of a western asperity that is spread downdip between 5 and 45 km
(3.1-28 mi) depth, and a narrow segment in the eastern part of the rupture at a depth of 20—40 km (12-25 mi).
In this scenario, the segments representing the Shumagin gap have non-zero slip. The western asperity has the
maximum slip of 50 m (164 ft) at a depth of 5-15 km (3—9 mi), close to the trench, and in the rest of the rupture
the maximum slip is 38 m (125 ft). The proposed slip distribution is shown in figure 14H; vertical coseismic de-
formations for this scenario are shown in figure 15H.

Scenario 9. My 9.1 earthquake in the western Alaska Peninsula region: Predominantly shallow slip in
the eastern part of the rupture

This event is a hypothetical My, 9.1 earthquake rupturing the Aleutian megathrust. Zero slip is assigned to seg-
ments 1, 2, 6, 7, and 16—19. The source consists of an eastern asperity that is spread downdip between 5 and 45
km (3.1-28 mi) depth, and a narrow segment in the western part of the rupture at a depth of 30-45 km (18.6-28
mi). In this scenario, the segments representing the Shumagin gap have non-zero slip. The eastern asperity has the
maximum slip of 57 m (187 ft) at a depth of 5—15 km (3—9 mi), close to the trench, and in the rest of the rupture
the maximum slip is 37 m (121 ft). The proposed slip distribution is shown in figure 141; vertical coseismic de-
formations for this scenario are shown in figure 15I.

The third group of tsunami scenarios includes four sources (scenarios 10—13) that represent great megathrust earthquakes
with rupture areas extending from the eastern Aleutian Islands to the western Alaska Peninsula.

A recent study by Butler and others (2014) describes a layer of sand that was discovered in the Makauwahi sinkhole on
the island of Kaua’i, Hawai’i. The origin of this layer is attributed to inundation of the sinkhole by a giant paleotsunami
following a My, 9+ earthquake in the eastern Aleutian Islands. It is hypothesized that the great earthquake was located
between the source regions of the 1946 and 1957 earthquakes and had a magnitude larger than 9.3. Butler (2012) provides
an in-depth examination of previous great Aleutian earthquakes and tsunamis impacting Hawai’i. Butler (2014) considered
several hypothetical events with a 35 m (115 ft) displacement on the megathrust and up to 50 m (164 ft) displacement near
the trench. Thus we consider two scenarios as follows.

Scenario 10. My, 9.2 earthquake in the western Alaska Peninsula region

In this scenario we assume 35 m (115 ft) slip on the plate interface and up to 46 m (151 ft) slip near the trench. The
slip is distributed almost uniformly along strike except for the edges of the rupture, where it tapers. The proposed
slip distribution is shown in figure 14J; vertical coseismic deformations for this scenario are shown in figure 15J.

Scenario 11. Myy 9.3 earthquake in the western Alaska Peninsula region

In this scenario similar to Butler (2014) we assume a 20 m (65 ft) slip on the plate interface between the 17.9 km
(11.1 mi) and 30.8 km (19.1 mi) depth, and up to a 50 m (164 ft) slip near the trench, that is, between 5 km (3.1 mi)
and 17.9 km (11.1 mi) depth. The slip is distributed uniformly along strike. According to the USGS letter (Butler,
2014, Appendix 2), this so-called 50/20 slip model “is starting to approach that more realistic model” that could
occur in the Aleutian Islands. The proposed slip distribution is shown in figure 14K; vertical coseismic deforma-
tions for this scenario are shown in figure 15K.

In light of the recent My, 9.0 earthquake off the Pacific coast of Tohoku in 2011, we consider a similar event along the
Aleutian megathrust (David Scholl, USGS, oral commun., 2013). During the Tohoku earthquake a large amount of slip oc-
curred between the subducting and overriding plates near the Japan trench (Fujii and others, 2011; Shao and others, 2011).
The USGS Science Application for Risk Reduction (SAFRR) project, in collaboration with NOAA and State of California
agencies, has developed a plausible hypothetical tsunami scenario (Kirby and others, 2013) to describe the impacts of a
tsunami generated by an earthquake in the Alaska Peninsula region (Ross and others, 2013). The USGS Tsunami Source
Working Group defined the scenario source as a My, 9.0 earthquake similar to the Tohoku 2011 event but located between



Tsunami inundation maps for King Cove and Cold Bay communities, Alaska 33

the Shumagin Islands and Kodiak Island. The rupture area, represented by 56 subfaults, is about 350 x 200 km (217 x 124
mi) with an average slip of 15.7 m (51.5 ft) and a maximum slip of 75 m (246 ft). Larger values of slip are near the trench,
as for the Tohoku earthquake.

Scenario 12. My9.0 earthquake according to the SAFRR project

This scenario is the same as scenario 5 in the tsunami modeling study for Elfin Cove, Gustavus, and Hoonah (Su-
leimani and others, 2015). The proposed slip distribution is shown in figure 14L; vertical coseismic deformations
for this scenario are shown in figure 15L.

Scenario 13. My 9.0 earthquake in the western Alaska Peninsula region: SAFRR-type event

In this scenario we assume that the slip distribution in the downdip direction is the same as that in the SAFRR
source (scenario 12), where greater slip occurs closer to the trench. This hypothetical rupture is shifted westward
along the trench to be positioned across the shelf area from the communities of King Cove and Cold Bay. The slip
is distributed almost uniformly along strike except for the edges of the rupture where it tapers. The proposed slip
distribution is shown in figure 14M; vertical coseismic deformations for this scenario are shown in figure 15M.

The fourth group of scenarios includes tsunami sources that have been considered in previous tsunami inundation mapping
studies. Refer to the corresponding report for the detailed description of the source.

Scenario 14. M9.1 earthquake in the eastern Aleutians*

This scenario is the same as scenario 6 in the tsunami modeling study for Elfin Cove, Gustavus, and Hoonah (Su-
leimani and others, 2015). It is based on the slip model of a hypothetical earthquake that incorporates the entire
rupture areas of the 1938 and 1946 events as well as the eastern end of the 1957 rupture zone (Ryan and others,
2012). To construct a source model, we place the largest amount of slip at the eastern end, which is a nearly fully
locked segment of the megathrust beneath the Semidi Islands, based on GPS studies by Freymueller and others
(2008). We assign a much smaller amount of slip to the middle part of the rupture, where coupling of the plate
interface changes from about 30 percent locked at the Shumagin Islands to freely slipping west of the Shumagins
(Fournier and Freymueller, 2007). The amount of slip increases again at the western end of the rupture, where
little moment was released in 1957. The vertical coseismic deformations for this scenario are shown in figure 15N.

Scenario 15. Rupture of the tensional outer-rise part of the subduction plate south of the trench in the
area of the western Alaska Peninsula*

This scenario is the same as scenario 10 in the tsunami modeling study for Unalaska/Dutch Harbor (Nicolsky and
others, 2015). The only difference is in the geographic location of the rupture, which is reflected in the coordinates
of subfaults listed in table 3. The vertical coseismic deformations for this scenario are shown in figure 150.

Scenario 16. Rupture of the Cascadia zone including the entire megathrust between British Columbia
and northern California*

This scenario is the same as scenario 7 in the tsunami modeling study for Elfin Cove, Gustavus, and Hoonah (Su-
leimani and others, 2015). The vertical coseismic deformations for this scenario are shown in figure 15P.

Table 3. Fault parameters for the hypothetical tensional Mw 8.6 outer-rise earthquake.

Latitude Longitude Depth | Length | Width Strike (°) Dip Rake Slip

(°N) W) (km) (km) (km) © © (m)
52°4926" 162°27'43" 2 100 15 252.32 45 -90 25
52°28'58" 163°50'42" 2 100 15 251.71 45 -90 25
53°40'48" 158°11'06" 2 100 15 250.15 45 -90 25
53°26'17" 159°38'52" 2 100 15 247.56 45 -90 25
53°10'44" 161°05'09" 2 100 15 247.42 45 -90 25

4Scenarios are the same as in the Elfin Cove, Gustavus, and Hoonah tsunami modeling study (Suleimani and others, 2015) and the Unalaska/Dutch
Harbor modeling study (Nicolsky and others, 2015).



34 Report of Investigation 2016-1

MODELING RESULTS

We performed numerical calculations for all 16 scenarios described above and summarized in table 2. For each scenario,
we modeled the water dynamics for each grid in table 1 and computed the extent of inundation and flow depths only for the
high-resolution grids. Map sheets 1 (King Cove) and 2 (Cold Bay) show the maximum composite extent of inundation for
all scenarios, and the maximum composite flow depths over dry land. The calculated extent of inundation accommodates
coseismic deformation in the communities.

King Cove

The simulated extents of tsunami inundation in King Cove for eight selected scenarios are shown in figure 16. For the
sake of clarity we do not plot the inundation lines for all 16 scenarios, because some of the tsunami sources produced very
similar inundation zones. Instead, we choose the most representative scenarios from each of the first three groups, and
also plotted the inundation line for every scenario in the fourth group because the sources in that group represent different
geographic regions and/or earthquake parameters. However, we calculated the composite inundation line shown on map
sheet 1 using results from all 16 hypothetical scenarios, and we also include limits of inundation for all scenarios in the
data distribution package for this report.

For scenario-specific results, we focus on the industrial center of the community because we find a greater variability
in tsunami inundation limits in this area (fig. 16). This low-elevation part of King Cove is on a sand spit between King
Cove Lagoon and King Cove Harbor and is connected by a bridge to the small boat harbor, the new King Cove harbor, and
harbor facilities. Scenarios 2 (group 1), 7 (group 2), and 11 (group 3) all produce an extreme tsunami runup at King Cove,
inundating the entire spit, the harbor facilities, and Ram’s Creek Road, which goes to the southeastern part of the commu-
nity. Tsunami wave heights at the Peter Pan powerhouse (point 17), accounting for local subsidence, reach 4.1 m (13.5 ft),
12.2 m (40 ft), and 6.6 m (21.7 ft) for scenarios 2, 7, and 11, respectively. Although we used different considerations and
constraints to develop these tsunami scenarios, all result in similar inundation zones, which shows that any local megathrust
event with magnitude My, 8.9 or higher will very likely generate a damaging tsunami at King Cove.

Scenario 6 (western asperity, My, 8.3) does not result in any inundation at King Cove, while scenario 5 (eastern asperity,
M,y 8.6) makes a wave that inundates the tip of the spit and the harbor facilities (pink line in fig. 16). The wave height at the
Communications Building (point 20) is 0.77 m (2.5 ft) for this scenario. Scenario 12, a hypothetical Tohoku-type earthquake
(considered in the SAFRR project) between Shumagin and Kodiak Island, also results in an insignificant inundation area
(red line in fig. 16) and produces a 2 m (6.6 ft) wave at the Fuel Shack (point 14). This hypothetical tsunami event might
flood only a few low-lying areas close to the shoreline.

Scenarios in the fourth group produce less inundation in King Cove compared to the other scenario groups. Scenarios 15
and 16 produce inundation areas that are slightly smaller than that of scenario 5, but both also inundate the harbor facilities.
Only the tip of the spit adjacent to the bridge is inundated, with wave heights of 0.25 m (0.82 ft) for scenario 15 and 0.1
m (0.33 ft) for scenario 16 at the Communications Building (point 20). The largest inundation area in this scenario group
is produced by scenario 14, the My, 9.1 earthquake in the eastern Aleutians. King Cove and Cold Bay are across the shelf
area from the middle part of this rupture, where much smaller vertical coseismic deformations are present compared to the
remainder of the rupture area (fig. 15N). Therefore, the resulting inundation area is much smaller than that produced by a
similar event but with uniform slip distribution along strike (scenario 11, figs. 14K and 15K). Scenario 14 makes a wave
that inundates a larger part of the spit than in scenarios 15 and 16, including the Peter Pan facility (cyan line in fig. 16). The
wave height at the Communications Building (point 20) is 1.6 m (5.2 ft) for this scenario.

Map sheet 1 shows the composite inundation line and flow depths over dry land for the entire community that continues
along the eastern side of King Cove Harbor. The whole spit and harbor facilities are in the inundation zone, with flow depths
reaching almost 15 m (49 ft). The northern section of Ram’s Creek Road would be flooded, as well as the part of the road
in the southeastern section of the community that connects Ram’s Creek Loop and Solcum Drive.

The numerical simulations reveal that for some scenarios (for example, scenarios 7, 8, and 10) the first wave could arrive
at King Cove within 1 hour after the earthquake. Our sensitivity study for the King Cove and Cold Bay areas demonstrated
that waves coming from different segments of the rupture area might constructively interfere later, after the arrival of the
first wave, and cause runup comparable to that produced by the first wave. Significant wave activity could continue in
King Cove for at least 12 hours after the earthquake, and the predicted average time interval between successive waves is
between 1 and 1.5 hours.

Cold Bay

The tsunami inundation modeling results indicate that the community of Cold Bay is well protected from tsunami haz-
ards (map sheet 2). The village is on relatively high ground, thus the only two locations that get inundated are the low-lying
deltas of the two creeks, one to the north of the community and one to the south. Neither inundation area extends far enough
to reach the airport runways. A narrow, inundated strip along the shoreline is predicted to have flow depths reaching about
3 m (10 ft), but the community is above the composite inundation line. The numerical simulations reveal that the first wave
could arrive at Cold Bay within about 1.5 hours of the earthquake for some scenarios (for example, scenarios 7, 8, and 10),



35

Tsunami inundation maps for King Cove and Cold Bay communities, Alaska

43Y310 Y03 311430 ADW SDIJD UOLBLPUNUI 3Y] JO SJUIIXa Paold ayl pub Aippunoq UOWWOI D dADY SOLIDUIIS JWDUNS] [DJIAIS JOf SnaJp uonpbpunul Aydpi
-bodol daais ay3 01 ang “uonpbpunul JULIYIUDIS D UI NSS4 IDY] SOLIDUIIS [0 JOf SSADM D]U03I3] AG N0 buly Ul uoLppunul [pRU0d paJapoN 9T a4nbi

M.0€8L.COL M61.291 M.0€6L.C9L

Sjulod SaL8S aWwl| JO UOREdOT| @

lioqieH aA0D Buly

peoy
)}o31) swey

N.O€.€.GG

9] 0lIBU9dS
G| 0lIeusds
] 0lIBeU9dS
Z) OlLIeusdS —g—
Ll OLEUSIS —m—
/ OlIBU90S
G Oleusds
Z 0lIeusos |l|,
Jua)xg
uoljepunuj
pajewns3

NuG¥.€.G5




36 Report of Investigation 2016-1

whereas the highest wave might arrive 3 hours after the earthquake (scenario 10). Significant wave activity might continue for
at least 24 hours after the earthquake, and the predicted average time interval between successive waves is about 1.5 hours.

Comparison of the potential tsunami impact in the communities of King Cove and Cold Bay shows that the near-shore
ground elevations in a community as well as its geographic location are critical factors that affect the community’s vulner-
ability to tsunami waves. While all of the local tsunami sources produce waves that completely inundate the majority of
King Cove, the same scenarios result in little to no inundation at Cold Bay.

TIME SERIES AND OTHER NUMERICAL RESULTS

To help emergency managers assess the tsunami hazard in King Cove and Cold Bay we supplement the inundation
maps with the time series of the modeled water level and velocity dynamics at certain locations around the communities
(appendices A and B). For each labeled location in figures A-1 and B-1 we plot the sea level and water velocity in figures
A-2, A-3, B-2, and B-3, respectively. Zero time corresponds to the time when the earthquake occurs. The pre-earthquake
elevation/depth with respect to the MHHW is stated for each location. The post-earthquake elevations/depth correspond-
ing to the MHHW datum are also listed for each scenario. For some onshore locations, the post-earthquake value could
be referenced as “depth” for some scenarios, and as “elevation” for others, indicating that different scenarios resulted in
different amounts of coseismic subsidence. To show the height of arriving tsunamis for offshore locations we use a verti-
cal datum with a zero mark corresponding to the pre-earthquake sea level. The dashed lines show final water levels after
the tsunami. Velocity magnitude is calculated as water flux divided by water depth, thus the velocity value can have large
uncertainties when the water depth is small. In the plots provided, the velocity is computed only where the water depth is
greater than 0.3 m (1 ft). Since scenarios 10-12 produce comparable tsunami wave amplitudes at almost all locations (table
A-1), for clarity we choose scenario 10 to represent this group in time series.

Analysis of the time series plot for King Cove shows that a local hypothetical earthquake with a magnitude greater than
8.6 (for example, scenarios 1-4 and 7—11) can create a devastating wave that completely floods the sand spit that separates
King Cove Harbor from King Cove Lagoon, and where the majority of businesses, including the Peter Pan seafood pro-
cessing facility, are located. The water level near the Peter Pan facility (point 15) could reach 9.7 m (31.8 ft) in scenario 7.
Unsecured shipping containers could be lifted by tsunami waves and hit other buildings. Numerical modeling also predicts
that tsunami currents in both King Cove harbors and near the bridge could reach dangerous velocities. For example, tsunami
currents near the bridge (point 21) could reach a velocity of 8.9 m/s (29.2 ft/s, or 17.3 kt) in scenario 8; tsunami currents
near the King Cove Harbor House (point 25) could reach a velocity of 10.7 m/s (35.1 ft/s, or 20.8 kt) in scenario 11. It could
also be possible for eddies to form near the harbor entrances and travel across the bay.

All local scenarios predict little inundation in the village of Cold Bay. The only ground location that has non-zero tsu-
nami amplitudes is Reeve Avenue, south of the airport (point 3), with a predicted wave height of 5.8 m (19 ft) in scenario
7. This uninhabited area gets flooded due to its low elevation, while the rest of the community is on higher ground and
thought to be safe. The maximum water level and velocity for all considered scenarios are listed in tables B-1 and B-2,
respectively. Numerical modeling predicts that tsunami currents at the City Dock (point 2) could reach a velocity of 1.8
m/s (5.9 ft/s, or 3.5 kt) in scenario 8. Tsunami inundation of Cold Bay is minimal not only due to the higher elevation of
the village, but also because some of the tsunami energy dissipates before reaching Cold Bay due to shallow bathymetry
between Deer Passage and Cold Bay (fig. 2). Resulting tsunami wave amplitudes at the entrance to King Cove Harbor
(point 1) are larger for all scenarios than the tsunami amplitudes at the entrance to Cold Bay, and at least twice as large for
12 of 16 considered scenarios.

SOURCES OF ERRORS AND UNCERTAINTIES

The hydrodynamic model used to calculate propagation and runup of tsunami waves is a nonlinear, flux-formulated,
shallow-water model (Nicolsky and others, 2011b) that has passed the validation and verification tests required for models
used in production of tsunami inundation maps (Synolakis and others, 2007; NTHMP, 2012). The limitations of the employed
modeling approach are described in detail in earlier reports by Suleimani and others (2010, 2013, 2015) and Nicolsky and
others (2011a, 2011b, 2013, 2014, 2015), as well as in NTHMP (2012).

SUMMARY

We present the results of numerical modeling of earthquake-generated tsunamis for King Cove and Cold Bay, Alaska.
Hypothetical scenarios 2, 7, 10 and 11 (thrust earthquakes in the eastern Aleutians - western Alaska Peninsula region, with
magnitudes ranging from My, 8.9 to My, 9.3, which have their greatest slip at 10-20 km [6—12 mi] depth) result in the
“worst case” tsunami inundation hazards for King Cove. The same tsunami scenarios, however, result in little inundation
for the Cold Bay community because of its higher elevation above sea level and also because the energy of tsunami waves
dissipates in the shallow entrance to Cold Bay before they reach the village. The scenarios predict very strong tsunami
currents in Cold Bay.
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We emphasize that each of the scenarios considered are geologically reasonable and consistent with what we know about
the earthquake history of the region. Scenarios 1-6, in particular, are consistent with current interpretations of all existing
geologic and geodetic data. The maximum slip in the scenario earthquakes is similar to that of the Tohoku earthquake, an
arbitrary amount but plausible worst case. All scenarios present potential hazards to each community. Map sheets 1 and
2, which show the results of our modeling for King Cove and Cold Bay, have been completed using the best information
available and are believed to be accurate; however, their preparation required many assumptions. We considered several
tectonic scenarios and provided an estimate of maximum credible tsunami inundation for each scenario. Actual conditions
during a tsunami event may vary from those considered, so the accuracy cannot be guaranteed. The limits of inundation
shown should be used only as a guideline for emergency planning and response action. Actual areas inundated will depend
on specifics of the earth deformation, land construction, and tide level, and may differ from areas shown on the map. The
information on this map is intended to assist state and local agencies in planning emergency evacuation and tsunami re-
sponse actions in the event of a major tsunamigenic earthquake. These results are not intended for land-use regulation or
building-code creation.
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APPENDIX A
KING COVE
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Figure A-1. Maps showing locations of time series points in King Cove Harbor (A) and in the part of the King Cove community
located between King Cove Harbor and King Cove Lagoon (B). The latitude and longitude locations for time series points are
listed in table A-1.



‘T-V 3/gp1 Ul paisi| 340 Sjulod $313s awiL} Jof suoLIpI0| apnubuo| pub apninp| a3y ‘(g) uoobo] ano) bury pup JOGIDH A0
bury usamiaq paipooj Ayunwwod ano) bury ay1 Jo 1pd ayi uj pup () 10qipH ano) bury uil spuiod salias awil fo suonpoof buimoys sdpy\ *(13uod) T-y a4nbi4

M61.c91 M.0E6L.COL

sjuiod sal1as awi} Jo uoned0] @

10QUDH a/0) bury

[
a
]
q ©2
15}
i <
=z

NuG¥.€.55

uoobbjano) bury

Report of Investigation 2016-1

42




43

Tsunami inundation maps for King Cove and Cold Bay communities, Alaska

ce|st]seleL] st oot sor] vor|oet | svi]| 1] ec] 9] o] o8| 1L | vvesoss|eessceror-| 16 [0  a8neSopuano)suny| 8¢
1| | e oL vt zot| 11|66 | wTi| St 1| LT | 8S| LS| 8| UL | v69S0SS | pPH6IETII-|  6LT  |O 10q18Ff 2400 Bury | L¢
Tt ve | se | SL| 61| 66 | STU| €6 | 91| 61| 'l | LT| €9 T9 | L'L | L | 688€50°SS | #h69T€TOI-| SL | O 10q1eq 19314 Surysty | 9z
0 co | t1|es| o8 | T8 | vL | L6 | T | 0] S0|vE| ¥E| IS | $b | L999S0°SS | I119T€'T9I-| 0 | S| 9SNOH 10GieH 940D Bury | 67
cT | sTt|se | sL| 81| 801 | 801 66 | 1Tl | 8¥I| Ul | 6T | ¢9 | 19| T8 | I'L | €€€850°SS | £999T€T91-| SL | O 10qIBH 008 [[PWS | $C
€0 50| ST | LS| 096 | ¥8 | €6 | TIl| €21 | 0 60| Iy | ¥¥ | 9| I'S | T2L6SOSS | 9S08TETOI-|  80- | S| "0 [wromowwo) visely | €7
0 10|60 %S| 0] c6 | 8L |68 | ¥2l | 611 | 0| %0 | 9¢ | 9€ | 9| ¥'v | 82090°SS | L916T€'T9I-|  TO0- | S weg yueL | 7z
V1| LT 8T | 89| I'l | 81| §6 | 101 | vcl | 961 §0 | 1T | S| €5| 69 | 10| €68090°S | 68€92€T91-| ¢C | O aBpug | 12
10| o vi | ev| 088 [ ¥L |69 |16 | s01| 0| L0 Te|ve| S| €F | 955090°s | 119€7€T91- I- | s Suppng suoneomunuwwo) | g
o] 1ro | ri |ty 0|9 |99 |19 | sL | 801 0| 0| LT| 8T | Th | $E€| L99190°SS | £€EETETII- I- | s proy 90118 10qeH 1eog | 61
0 o/ ol9z| o8y |6v |6€ | LS | S8 | 0| 0| LI| ¥l | 6T | €T | [II190SS | L9161€T91-| 60 | PeOY Ued 100d | 81
0 0| Lo 9oc| o]To |8s |15 | L9 | ¥6 | 0| 10| ¥T| It | 8€| TC | €£68090°SS | [I111Z€T9I-| 10~ | aSN0YIMOd ASdd | L1
0 olzo| €| olzTs |¥s |9v | T9 | §8 | 0| 0| 1T| 81| €€ LT | 955090SS | SLIETII-| L0 | w00y AIpune 4Sdd | 91
0 o 1|1ty 0|9 |99 | §s | 1L | L6 | 0| T0|8T| ST €F | €| 8LT090°SS | SLLOTETIL-|  €0- | S Awouue) 4Sdd | SI
1T €2 9¢| 8L | LT | ¥01 | 11| €01 | 8T1| 8¥I | 1| 8T | T9 | 65 | €8 | TL | ¥rh650'SS | 68881€T9I-| LY | O oeys [ond |y
0 0] o|¢es| ofoL |sL [TL g6 w1 0] 0] LT 6T | ¥s| Ov | €€80906S | LOIPIETII-| 80 | uonels NS 10D | €1
0] o/ olvre| o|€s | vs |8y |89 | L8 | 0| 0| €| Tl | I'E| ST | £€8090°SS | ITI9I€T9I-| 60 | 1004og 240D Bury | 1
0 0| o|ec| o7y | ¥9 |19 | 8L |66 | 0 0| L1 81| ¥ | TE| 9550905 | 8LISIETII-| 0 | S 21015 SPINOD | 11
0 o/ o|ss| o8 | €8 | 6L | 901 | ITL| 0| 0| 6T| 8T | 95| 8% | pb6s0SS| STIETI-|  90- | S sjuounedy BoLIeH | 01
0 o/ rolce 0|89 | L | v9 |68 | TII| 0| 0| LI]| ST | I't| I't| 688850°SS | €€€€1€T91-| 80 | S WO I0d | 6
0] o o| €| o|ss |6S | 6v | 6L | 10L| 0| 0| 1|80 6T 61 | €€6850°SS|68€11€T91-| €T | S| UMON peoy oy wey | g
0o, o] o] o of o o of o o o/ o o/ 0| 0] 0] 950055 8LLLOCTOI-| 6€T | peoy o1 wey | L
o/ o, ol o o o o | o o o | 0o o/ 0o 0o/ 0 0| SLbOSS| L9166TT9I- w s 1)j0ys KoudBiowrg | 9
o o ol o/ o o o o] o o] o o o o/ o o] o9sssposs|sLizoeol-|  cor | S pans v | ¢
0] o/ o] ol o660 1T S0 | ¥1 | 9 | 0| 0| 0| 0| 0 0] 688€p0Ss|8LLL6TTII-| 'S | S| mos peoy oy wey | ¢
o/ o/ ol o o o o o] o o] of o o ol o o] scoross|esciogor-|  sor | S peoy pumbs | ¢
0o/ o] o] o of o o of ol of o] o o/ o] o] o sLeoss| 11986c91-| 9€1  |S dooyeary wey | ¢
81 | ¥1 | 6T | 6v | v | L9 | €6 | SL | 8 | €60 €| IV | 6€| €9 96 | ph69€0°SS | TTL6IETII-|  ¥IE O]  9r0) Bury o} oouenug | |
ot st | v et | om0t | 6 | 8 L |9 s | ¥ | € T |1 w " @mwaw.w o

OLIBUDS o@:ﬂw«q uw__\hwﬂcq Mmﬁuﬂo_o / PA¥T #

(s13)9w) [9A9] BIS/punoIsd da0qe Yydop J9JeM WNWIXBIA] W] S

‘suopa0| 310ysffo ay3
Jof papino.d s yidap axpnbylipa-1sod wnwiuiul 3yl 3j1ym ‘suoLpIo| 340Ysuo 3yl Jof papinoid si wniop MHHIN 3¥pnbyrina-1sod 3yl anogp UOLDAS|S WNWIUIW dY ] “UWn
-|02 pJIY3 3Y3 Ul paLfioads a4p suonwaof (0) a40ysffo pup (S) 3J0Yysuo axpnbyiipa-aid 3y SUOLIDIO| 340YSLfo Jof papinodd sI MHHIN HpNby1ina-3.d 3y 3A0qD |3N3] 1310M
WNWIXDW 3Y3 SD3JaYM ‘SUOLIDIO| 310YSUO J0f Papinoid SI punolb 3A0GD [aA3] JAIDM WNWIXDW 3Y | "dA0D Buly Ul Sulod $311as WLl 10 S|aA3] 19IDM WNWIXDW “T-Y 3|gbl




Report of Investigation 2016-1

44

go ool so[velzo[ v | €| 8v | €o] v vo|so| ¢ |we| re| ve | vvesoss | cesszeror-| 16 o] o8neSopnoso)Suny| gz
o[ vo|so Lt ro| 9z |zt e Tr | € 1o vo| 't | 91| 91 | 81 | vv6950°SS | vib6I€TIl-| 6L O 10q1eH 940D Sury | L¢
o o606t o] c| 81| ve| Ty | 8T co| 90| o1 [ L1 ] 1T | 't | 688€50°sS | vh69TET9l-|  SL |0 10q1ey 1094 Burystd | 9t
0 o061 |Lo] o Lot| ss| 6L | €6 | ¥L | 0] U1 | S| v9| 89 | 69 | L999S0°SS | [119Z€T91-| #0- | S| snoHJoqreH oa0) Bury | ¢t
co | Lo Lol o] Te | LT | ve | 6v | €% | €0 90| Tl | 81| 61 | 8T | €€€850°SS | L999TETII-|  SL |0 10q1eH 120g] [[BWS | T
08T T|gs| o) €6 8| €8] ¢8| 10| 0|81 | 'V | L'€| L9 | 9 | TTL6SOSS | 9508TETOI-| 80~ |S| 0D [erosomwmmwio) exsey | €2
0| o vz |To| o ¥8 | 65 | S€I| 801 SL | 0| ¥T| ¥ | 8L| 66 | 66 | 8LT090'SS | L916TETII-| TO- S e yuel | g
selve| v | os|ze| vo | vo | vL | 68 | 6L | LT|8e| s | | 19| vs | £€8090s | 68€92€'091-| TT |0 aBpug | 1¢
0 o s|ws| o 6| L] o] vii| L8] 0] 95| zo1| €6 801| 98 | 955090°SS | 119€7€291- 1- || Suppng suoneomnuwuwo) | og
0 o0|se| | o] 68| T8 | so1| €t1| 66 | 0| €€| §S | 19| 89 | TL | L99190°SS | €E€ETETII- I- | S| peoy 201108 J0quer eod | 61
o o o s| 0| 69| 69| s8] o] 16| 0| 0| 8€ | 8€| v'S | TS | [11190SS | L9161€TI-| 60 S peoy ued 1094 | 81
0o o|rz|ro| o LL | vL | ¢8| o] 6 0 0| s | €S| €9 | 65 | €€80906S | [111Z€T9I-| 10~ S asnoysomod 4Sdd | L1
0 o of s o] 99| o zL| e8| L8| o o s8¢ || g5 | v |9ss090ss | sLigwor-| Lo s wooy A1pune 4Sdd | 91
o olzi|urs] o] sozo | Le|we| €8] o o] ec | ¥ | g5 | s |sLcoo0ss|sLeoceor-| €0 s Kwuue) 48dd | §1
¥0 | €0 | v0 | 81| g0 | €ze| L] se| s | 8y | co|vo| T1 [ 11| | 91 | viresoss |688sIcTol-| L¥ |0 Yorys PN | vl
0, o o] 6| o re| Ts | oot| cat| L] o] o] 99| st| 601 9¢ | €68090°SS | L9IPIETII-| 80~ S uonels M[IES 10D | €1
0 0| o|wve| o] 88| ve | €6 | 1| Lot] o| 0| 9| 9| 18| I'L|€€8090¢s | 11191€291-] 60 |S 100§ 240D Sury | 71
0/ o] o|es| o gor] 9| vor| Ter| vor| o| 0] 99 | 96| L6 | 11| 955090°SS | 8LzSI€TII-|  ¥0  |S 21015 SpINOD | 11
0/ o o|wvs| 0] 99| Ly | 6L | 96| 19 0| 0| Lv | €r| 95 | I'S|vbh6soss | STIETI-| 90~ S sjuaunedy JOUIRH | 01
0 o o|os| o] so| wvs | 1L | ¢8| vL| o] o] sy |ev| 95| ev | 6888s0ss | ceccieol-| 80 | 2oyI0 150d | 6
0 o oLy | o vs | vv | 19| 8L | €5 0| 0| Tt | T| v¥ | TEC | €LE860°SS | 68€1I€TII-| €T |S| yMON proy s wey | g
o/ o/ o ol of of o ol of of ol o of ol ol o ]o9sossoss|sLLoeeor-|  e€r s POy Yoo wey | L
ol o, o o o/ o o of of ol of o o of o o] soss|L9166T791- w s 19j0ys KousSsowg | 9
o, o o ol o/ o ol of ol o/ o/ o o] 0| o0 0/]o9sssv0ss|8LLT0cTIl-| €0T S 10IS V| §
0/ o of o o tv| et 1L | 89 s9| o] o o o] 0| 0] 688cp0ss|8LLL6TTII-| ¥'S  |S| wnos peoy s wey | v
o/ o of ol of of o o] o of o] o o o] o o]seovoss|esciogeor-| sor s peoy [umbs | ¢
ol o] of o/ of of ol o o] of o] o of o] o] o sicoss|1986ceor-| o€l s doogyoarp wey | ¢
€060 11|z c0o] 6| T | sE | €v | 1€ €0] 60| 61 | 81| vT | 8T | vh69€0SS | TeL6IETOI-|  tlE O]  9A0) Bury o) oouenug | |
or (st |wr et lar | ot 6 | 8 | L |9 s | v | €] T | 1 w " @mwa“.w o
OLIEUIS ut:?«wsw- oﬁ:ﬁ»wﬂoq ..Nﬁnﬂo_u / PaEY #
(Pu093s/513)9U1) AJIDO[IA JIJeM WINWIXBIA] WU S

'SU0LIDI0| 3J0YSL0 ay1 J1of papinoad s| yidap aypnby1ipa-150d WNWIUIW dY] dJIYM ‘SUOLIDIOJ 2J0YSUO 3Y1 JOf papinoJd sI wniop MHHN 3onby1ina-1sod ayi aA0qp UonoA3|d
WNWUIW 3y "Uwnjod pdiyl ayl ui payioads a.p suonpaof (0) a4oysffo pup (S) aioysuo aypnbyripa-aid sy "an0) bury ul sauiod salias awig 10 A120aA J3IDM WNWIXDN “Z-Y 3|gD]



Tsunami inundation maps for King Cove and Cold Bay communities, Alaska 45

Point 1 Point 1
Entrance to King Cove Entrance to King Cove
14 T T T T T T T T T T T T T 4.5 T T T T T T T
- = - Final level: Scenario 2 =
12 Final level: Scenario 4| S 4r 7
- - - Final level: Scenario 5| S 350 4
@ - = - Final level: Scenario 7| g :
Qo - - - Final level: Scenario 8| @ 3k -
2 2
@ 50 il
%’ £ 25
3 g 2r 4
< S 15p q
3 3 | ok 1l i
C inil
2 |
g 0.5/ / !H ‘;,h gt A.“'A:‘M«
)\ LAY E YT
I PR TN

0 1 2 3 4 5 6 7 8 9

Time after earthquake (hours) Time after earthquake (hours)
Pre-earthquake depth 31.4 m (103.0 ft)
—=&— Scenario 2, Depth 31.7 m (104.1 ft) Scenario 4, Depth 31.5 m (103.3 fty—%— Scenario 5, Depth 31.5 m (103.3 fty—&— Scenario 7, Depth 34.3 m (112.5 ft—®— Scenario 8, Depth 32.5 m (106.6 ft)
Point 2 Point 2
Ram Creek Loop Ram Creek Loop
@ 1 T T T T T T T 1 T T T T T T T
g g
©
:
0.5 7 » 051 q
E ¢
3 £
> @
[ o -0—8—0—0—00 *—0——0- #0008 E 0005050k 10550 G0 105050L0 5= 8-0 6= SR 0L0 S8
o L o -0 -0 <0408k A
o =2
2 =
s 8
g B
3 05 b z -0.5[ q
2 2
g =
©
= i i i i i I i i i 1 i i i i i i i i i
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Time after earthquake (hours) Time after earthquake (hours)
Pre-earthquake elevation 16.5 m (54.1 ft)
—#— Scenario 2, Elevation 16.2 m (53.0 ft) Scenario 4, Elevation 16.4 m (53.8 ftj—k— Scenario 5, Elevation 16.4 m (53.9 ft)—#— Scenario 7, Elevation 13.6 m (44.5 ft)—@®— Scenario 8, Elevation 15.4 m (50.4 ft)
Point 3 Point 3
Squirrel Road Squirrel Road
E; 1 T T T T T 1 T T T T T
£ g
©
:
0.5 7 » 0.5 q
E ¢
3 £
o> @
[ o -0—8—0—0—00 —0——0- #0008 E 0005050k 10550 G710 105050L0 5= 8-0 6= OH- 040 S8
S L o -0 -0 <0408k A
o =
® 3
2 2
> -05 < z -0.5F |
2 2
g E
©
= i i i i i i i i i 1 i i i I i i i i i
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Time after earthquake (hours) Time after earthquake (hours)

Pre-earthquake elevation 23.4 m (76.7 ft)

—#— Scenario 2, Elevation 23.1 m (75.6 ft) Scenario 4, Elevation 23.3 m (76.4 ft)—k— Scenario 5, Elevation 23.3 m (76.5 ft)—#— Scenario 7, Elevation 20.5 m (67.2 ft)—@®— Scenario 8, Elevation 22.3 m (73.1 ft)
Point 4 Point 4

Ram Creek Road South Ram Creek Road South

o

o

I

n

Water level above ground (meters)
- w

.
Water velocity (meters/second)

od LSOk 98- 98- 018 ONe 5040 B 8- 00 SR B0 S-8-
0 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Time after earthquake (hours) Time after earthquake (hours)
Pre-earthquake elevation 8.3 m (27.2 ft)
—#— Scenario 2, Elevation 8.0 m (26.1 ft) Scenario 4, Elevation 8.2 m (26.9 ft)—— Scenario 5, Elevation 8.2 m (26.9 ft)—#— Scenario 7, Elevation 5.4 m (17.7 f{)—@— Scenario 8, Elevation 7.2 m (23.6 ft)

Figure A-2. Graphs showing time series of water level (left column) and velocity (right column) for selected locations in King
Cove for scenarios 2,4, 5, 7, and 8. For each location, pre-earthquake and post-earthquake elevation/depth corresponding to
the MHHW datum is provided for each scenario. For some onshore locations, the post-earthquake value could be referenced
as “depth” for some scenarios, and as “elevation” for others, indicating that different scenarios resulted in different amount
of coseismic subsidence. For offshore locations, to show the height of an arriving tsunami, the vertical datum is such that
zero corresponds to the pre-earthquake sea level. Dashed lines indicate the final water level after the tsunami.
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Figure A-2 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations
in King Cove for scenarios 2, 4, 5, 7, and 8. For each location, pre-earthquake and post-earthquake elevation/depth corre-
sponding to the MHHW datum is provided for each scenario. For some onshore locations, the post-earthquake value could
be referenced as “depth” for some scenarios, and as “elevation” for others, indicating that different scenarios resulted in dif-
ferent amount of coseismic subsidence. For offshore locations, to show the height of an arriving tsunami, the vertical datum
is such that zero corresponds to the pre-earthquake sea level. Dashed lines indicate the final water level after the tsunami.
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Figure A-2 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations
in King Cove for scenarios 2, 4, 5, 7, and 8. For each location, pre-earthquake and post-earthquake elevation/depth corre-
sponding to the MHHW datum is provided for each scenario. For some onshore locations, the post-earthquake value could
be referenced as “depth” for some scenarios, and as “elevation” for others, indicating that different scenarios resulted in dif-
ferent amount of coseismic subsidence. For offshore locations, to show the height of an arriving tsunami, the vertical datum
is such that zero corresponds to the pre-earthquake sea level. Dashed lines indicate the final water level after the tsunami.
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Figure A-2 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations
in King Cove for scenarios 2, 4, 5, 7, and 8. For each location, pre-earthquake and post-earthquake elevation/depth corre-
sponding to the MHHW datum is provided for each scenario. For some onshore locations, the post-earthquake value could
be referenced as “depth” for some scenarios, and as “elevation” for others, indicating that different scenarios resulted in dif-
ferent amount of coseismic subsidence. For offshore locations, to show the height of an arriving tsunami, the vertical datum
is such that zero corresponds to the pre-earthquake sea level. Dashed lines indicate the final water level after the tsunami.
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Figure A-2 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations
in King Cove for scenarios 2, 4, 5, 7, and 8. For each location, pre-earthquake and post-earthquake elevation/depth corre-
sponding to the MHHW datum is provided for each scenario. For some onshore locations, the post-earthquake value could
be referenced as “depth” for some scenarios, and as “elevation” for others, indicating that different scenarios resulted in dif-
ferent amount of coseismic subsidence. For offshore locations, to show the height of an arriving tsunami, the vertical datum
is such that zero corresponds to the pre-earthquake sea level. Dashed lines indicate the final water level after the tsunami.
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Figure A-2 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations
in King Cove for scenarios 2, 4, 5, 7, and 8. For each location, pre-earthquake and post-earthquake elevation/depth corre-
sponding to the MHHW datum is provided for each scenario. For some onshore locations, the post-earthquake value could
be referenced as “depth” for some scenarios, and as “elevation” for others, indicating that different scenarios resulted in dif-
ferent amount of coseismic subsidence. For offshore locations, to show the height of an arriving tsunami, the vertical datum
is such that zero corresponds to the pre-earthquake sea level. Dashed lines indicate the final water level after the tsunami.
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Figure A-2 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations
in King Cove for scenarios 2, 4, 5, 7, and 8. For each location, pre-earthquake and post-earthquake elevation/depth corre-
sponding to the MHHW datum is provided for each scenario. For some onshore locations, the post-earthquake value could
be referenced as “depth” for some scenarios, and as “elevation” for others, indicating that different scenarios resulted in dif-
ferent amount of coseismic subsidence. For offshore locations, to show the height of an arriving tsunami, the vertical datum
is such that zero corresponds to the pre-earthquake sea level. Dashed lines indicate the final water level after the tsunami.
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Figure A-3. Graphs showing time series of water level (left column) and velocity (right column) for selected locations in King
Cove for scenarios 10, 13, 14, 15, and 16. For each location, pre-earthquake and post-earthquake depth corresponding to
the MHHW is provided for each scenario. For offshore locations, to show the height of an arriving tsunami, the vertical
datum is such that zero corresponds to the pre-earthquake sea level. Dashed lines show the water level after the tsunami.
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Figure A-3 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations in
King Cove for scenarios 10, 13, 14, 15, and 16. For each location, pre-earthquake and post-earthquake depth corresponding
to the MHHW is provided for each scenario. For offshore locations, to show the height of an arriving tsunami, the vertical
datum is such that zero corresponds to the pre-earthquake sea level. Dashed lines show the water level after the tsunami.
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Figure A-3 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations in
King Cove for scenarios 10, 13, 14, 15, and 16. For each location, pre-earthquake and post-earthquake depth corresponding
to the MHHW is provided for each scenario. For offshore locations, to show the height of an arriving tsunami, the vertical
datum is such that zero corresponds to the pre-earthquake sea level. Dashed lines show the water level after the tsunami.
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Figure A-3 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations in
King Cove for scenarios 10, 13, 14, 15, and 16. For each location, pre-earthquake and post-earthquake depth corresponding
to the MHHW is provided for each scenario. For offshore locations, to show the height of an arriving tsunami, the vertical
datum is such that zero corresponds to the pre-earthquake sea level. Dashed lines show the water level after the tsunami.
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Figure A-3 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations in
King Cove for scenarios 10, 13, 14, 15, and 16. For each location, pre-earthquake and post-earthquake depth corresponding
to the MHHW is provided for each scenario. For offshore locations, to show the height of an arriving tsunami, the vertical
datum is such that zero corresponds to the pre-earthquake sea level. Dashed lines show the water level after the tsunami.
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Figure A-3 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations in
King Cove for scenarios 10, 13, 14, 15, and 16. For each location, pre-earthquake and post-earthquake depth corresponding
to the MHHW is provided for each scenario. For offshore locations, to show the height of an arriving tsunami, the vertical
datum is such that zero corresponds to the pre-earthquake sea level. Dashed lines show the water level after the tsunami.
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Figure A-3 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations in
King Cove for scenarios 10, 13, 14, 15, and 16. For each location, pre-earthquake and post-earthquake depth corresponding
to the MHHW is provided for each scenario. For offshore locations, to show the height of an arriving tsunami, the vertical
datum is such that zero corresponds to the pre-earthquake sea level. Dashed lines show the water level after the tsunami.
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APPENDIX B
COLD BAY

@ Lo
R
162°44'W
Figure B-1. Map showing locations of time series points in the community of Cold Bay. The latitude and longitude locations
for time series points are listed in table B-1.
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Figure B-2. Graphs showing time series of water level (left column) and velocity (right column) for selected locations in Cold

Bay for scenarios 2, 4, 5, 7 and

8. For each location, pre-earthquake and post-earthquake elevation/depth corresponding to

the MHHW datum is provided for each scenario. For offshore locations, to show the height of an arriving tsunami, the vertical
datum is such that zero corresponds to the pre-earthquake sea level. Dashed lines show the water level after the tsunami.
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Figure B-2 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations in
Cold Bay for scenarios 2, 4, 5, 7 and 8. For each location, pre-earthquake and post-earthquake elevation/depth corresponding
to the MHHW datum is provided for each scenario. For offshore locations, to show the height of an arriving tsunami, the verti-
cal datum is such that zero corresponds to the pre-earthquake sea level. Dashed lines show the water level after the tsunami.
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Figure B-2 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations in
Cold Bay for scenarios 2, 4, 5, 7 and 8. For each location, pre-earthquake and post-earthquake elevation/depth corresponding
to the MHHW datum is provided for each scenario. For offshore locations, to show the height of an arriving tsunami, the verti-
cal datum is such that zero corresponds to the pre-earthquake sea level. Dashed lines show the water level after the tsunami.
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Figure B-2 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations in
Cold Bay for scenarios 2, 4, 5, 7 and 8. For each location, pre-earthquake and post-earthquake elevation/depth corresponding
to the MHHW datum is provided for each scenario. For offshore locations, to show the height of an arriving tsunami, the verti-
cal datum is such that zero corresponds to the pre-earthquake sea level. Dashed lines show the water level after the tsunami.
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Figure B-2 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations in
Cold Bay for scenarios 2, 4, 5, 7 and 8. For each location, pre-earthquake and post-earthquake elevation/depth corresponding
to the MHHW datum is provided for each scenario. For offshore locations, to show the height of an arriving tsunami, the verti-
cal datum is such that zero corresponds to the pre-earthquake sea level. Dashed lines show the water level after the tsunami.
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Figure B-2 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations in
Cold Bay for scenarios 2, 4, 5, 7 and 8. For each location, pre-earthquake and post-earthquake elevation/depth corresponding
to the MHHW datum is provided for each scenario. For offshore locations, to show the height of an arriving tsunami, the verti-

cal datum is such that zero corresponds to the pre-earthquake sea le

vel. Dashed lines show the water level after the tsunami.
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Figure B-3. Graphs showing time series of water level (left column) and velocity (right column) for selected locations in Cold
Bay for scenarios 10, 13, 14, 15 and 16. For each location, pre-earthquake and post-earthquake depth corresponding to the
MHHW is provided for each scenario. For offshore locations, to show the height of an arriving tsunami, the vertical datum is
such that zero corresponds to the pre-earthquake sea level. Dashed lines show the water level after the tsunami.
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Figure B-3 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations
in Cold Bay for scenarios 10, 13, 14, 15 and 16. For each location, pre-earthquake and post-earthquake depth corresponding
to the MHHW is provided for each scenario. For offshore locations, to show the height of an arriving tsunami, the vertical
datum is such that zero corresponds to the pre-earthquake sea level. Dashed lines show the water level after the tsunami.
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Figure B-3 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations
in Cold Bay for scenarios 10, 13, 14, 15 and 16. For each location, pre-earthquake and post-earthquake depth corresponding
to the MHHW is provided for each scenario. For offshore locations, to show the height of an arriving tsunami, the vertical
datum is such that zero corresponds to the pre-earthquake sea level. Dashed lines show the water level after the tsunami.
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Figure B-3 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations
in Cold Bay for scenarios 10, 13, 14, 15 and 16. For each location, pre-earthquake and post-earthquake depth corresponding
to the MHHW is provided for each scenario. For offshore locations, to show the height of an arriving tsunami, the vertical
datum is such that zero corresponds to the pre-earthquake sea level. Dashed lines show the water level after the tsunami.
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Figure B-3 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations
in Cold Bay for scenarios 10, 13, 14, 15 and 16. For each location, pre-earthquake and post-earthquake depth corresponding
to the MHHW is provided for each scenario. For offshore locations, to show the height of an arriving tsunami, the vertical
datum is such that zero corresponds to the pre-earthquake sea level. Dashed lines show the water level after the tsunami.
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Figure B-3 (cont.). Graphs showing time series of water level (left column) and velocity (right column) for selected locations
in Cold Bay for scenarios 10, 13, 14, 15 and 16. For each location, pre-earthquake and post-earthquake depth corresponding
to the MHHW is provided for each scenario. For offshore locations, to show the height of an arriving tsunami, the vertical
datum is such that zero corresponds to the pre-earthquake sea level. Dashed lines show the water level after the tsunami.
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APPENDIX C-1
KING COVE
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Appendix C-1. Map showing potential maximum permanent flooding in King Cove. Values of subsidence corresponding to
each scenario are listed in table 2.
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COLD BAY
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Appendix C-2. Map showing potential maximum permanent flooding in Cold Bay. Values of subsidence corresponding to

each scenario are listed in table 2.
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