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Abstract
We assess potential tsunami hazards for six communities in Southeast Alaska: Kasaan, 
Klawock, Metlakatla, Pelican, Point Baker, and Port Protection. These communities have 
no high-resolution bathymetry or topography, therefore we conduct tsunami hazard 
assessments for these areas at the regional scale. The regional approach is a suitable, cost-
effective approximation and replacement for high-resolution tsunami inundation maps. The 
primary tsunami hazard considered for these communities originates from tsunamigenic 
earthquakes along the Alaska–Aleutian subduction zone across the Gulf of Alaska. We 
numerically model tsunami waves generated by four different megathrust earthquakes 
and develop approximate tsunami hazard maps for the six communities. The hypothetical 
tsunami scenarios that we examined include variations of an extended 1964 rupture, 
megathrust earthquakes in the Prince William Sound and Alaska Peninsula regions, and 
a Cascadia megathrust earthquake. We do not include impacts of subaerial or submarine 
landslide tsunami sources, as that is beyond the scope of this study. The maximum runup 
heights from tectonically-generated tsunamis are 1.4 m (4.6 ft) in Kasaan, 4 m (13 ft) in 
Klawock, 1 m (3.3 ft) in Metlakatla, 5 m (16 ft) in Pelican, 1.3 m (4.3 ft) in Point Baker, and 
2.6 m (8.5 ft) in Port Protection. Results presented here are intended to provide guidance 
to local emergency management agencies in initial tsunami inundation assessment, 
evacuation planning, and public education for mitigation of future tsunami hazards.

INTRODUCTION
Tsunami hazards along Alaska’s Pacific 

coastline are widespread. Virtually all of Alas-
ka’s southern and southeastern coasts are defined 
by major offshore fault systems. Unlike tsunamis 
that are caused by distant earthquakes on the 
other side of the Pacific, Alaska’s greatest tsunami 
hazards originate just offshore and can inundate 
coastlines within an hour of a causative earth-
quake. This reduces the time available to respond 
and evacuate and can produce drastically higher 
wave heights than far-traveled tsunamis. Because 

many Alaska communities hug the shoreline (due 
to some combination of steep mountains, dense 
forests, and/or reliance on the open water for trans-
portation), they are within the tsunami inundation 
zone and are at risk of rapid flooding. In addition 
to earthquake-generated (i.e., tectonic) tsunamis, 
mass movements of sediments down slopes (either 
on land or in the ocean) can also generate tsunamis. 
While rapid tsunami flooding is the immediate 
concern after a large coastal earthquake, dangerous 
(potentially disastrous) near-shore ocean currents 
and permanent changes to the local coastline are 
additional concerns. 
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The local, tectonic tsunami danger to commu-
nities in southeast Alaska comes primarily from 
two fault systems that span the entire southern and 
southeastern coasts of Alaska (Carver and Plafker, 
2008) (fig. 1). The Alaska-Aleutian subduction zone 
spans from the westernmost Aleutian Islands to the 
Gulf of Alaska. This subduction zone represents the 
collision between the Pacific plate to the south and 
the North American plate to the north. Relative 
to the North American plate, the Pacific Plate is 
moving northwest at approximately 5–8 cm (2–3 
inches) per year, colliding with the North Amer-
ican plate and diving beneath it in a process known 
as subduction (Freymueller and others, 2008). East 
of the subduction zone the fault orientation and 
style of deformation changes. The second major 
fault system begins in the Gulf of Alaska and 
extends more than 1,000 km southeast along the 
Alaska and Canadian coastlines, known as the Fair-
weather and Queen Charlotte faults, respectively. 
The Fairweather-Queen Charlotte (F-QC) fault 
system primarily accommodates right lateral strike-
slip (i.e., side-to-side) motion between the Pacific 
and North American plates. 

The specifics of tsunami hazards are partic-
ular to each community and vary considerably 
over large regions. The shape of the coastline, local 
bathymetry, and topography all affect tsunami 
impacts. More importantly, however, is the earth-
quake source (the location, magnitude, and style) 
being considered and the community’s location 
relative to that earthquake. For subduction zone 
earthquakes, communities in Southeast Alaska can 
generally expect a tsunami crossing the Gulf of 
Alaska to take an hour or more to reach their shores. 
Earthquakes along the F-QC system pose a much 
more immediate tsunami threat, with travel times 
measured in minutes instead of hours. Fortunately, 
strike-slip earthquakes (those characteristic of the 
F-QC system) do not typically deform the seafloor 
vertically and therefore are less likely to produce 
significant tsunamis. However, strong earthquake 
shaking in Southeast Alaska may cause landslides, 
either from steep fjord cliffs or underwater slopes, 

that generate locally significant tsunamis. We do 
not address any landslide-generated tsunamis in 
this report. 

The impacts of future earthquakes and tsunamis 
can be reduced if citizens, emergency managers, and 
city planners take steps to mitigate the hazards. This 
report is intended to support hazard mitigation 
efforts by providing approximate tsunami hazard 
estimates for the communities of Kasaan, Klawock, 
Metlakatla, Pelican, Point Baker, and Port Protec-
tion. The scenario earthquakes, numerical tsunami 
models, and resulting maps are developed on a 
regional level and lack the precision of studies that 
are fully tailored to individual communities (e.g., 
Nicolsky and others, 2013, 2014; Suleimani and 
others, 2013, 2015). The current study is based on 
just four scenario earthquakes. Even so, the results 
provide a good first approximation of tsunami 
hazard. The maps, documentation, and available 
digital data provide a foundation for public educa-
tion, support the development of evacuation proce-
dures, and provide insights intended to improve 
community resilience. 

PROJECT BACKGROUND: 
REGIONAL AND HISTORICAL 
CONTEXT
Community Profiles

The following information is extracted from 
the Alaska Community Database Online provided 
by the State of Alaska Division of Community and 
Regional Affairs (dcra-cdo-dcced.opendata.arcgis.
com/). Maps showing locations of communities in 
Southeast Alaska are presented in figure 2. Refer to 
figure 1 for locations of figures 2A and 2B.

Kasaan, population 80, is one of two Haida 
villages in Alaska, and is located on the east side of 
Prince of Wales (POW) Island on Kasaan Bay off 
the Clarence Strait (fig. 2A). The village is spread 
along approximately  3.2 km (2 mi) of low-lying, 
forested land, although much of the surrounding 
land has been logged in recent years. Kasaan is 
accessed by boat or sea plane, and is also connected 

https://dcra-cdo-dcced.opendata.arcgis.com/
https://dcra-cdo-dcced.opendata.arcgis.com/
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Figure 1. Map of southern and southeastern Alaska. The rupture areas of significant earthquakes are shown by pink poly-
gons. The most recent earthquakes of 2012 and 2013 are shown by purple polygons. Black polygons outline the areas 
shown in figures 2A and 2B. The dashed blue lines indicate the Kodiak Island (KI), Kenai Peninsula (KP), Prince William Sound 
(PWS), and Yakataga-Yakutat (YY) segments of the Alaska-Aleutian subduction zone. 

to the POW road system via a 27.4-km (17-mile) 
gravel road. The population is a mix of Native and 
non-Native residents, and subsistence activities are 
a significant part of the local culture.

Klawock, population 883, is a mixed Tlingit 
and non-Native community located on the central 
western coast of POW Island (fig. 2A). Klawock is 
at the “crossroads” of the island where the paved 
highways intersect, leading south to Craig, east to 
Hollis and the ferry terminal, and northeast to the 
communities on the northern half of the island. 
Klawock hosts the only airstrip on POW Island 
(1,524 m [5,000 ft] paved runway) and is heavily 
reliant on air transportation from Ketchikan. 
There is also a boat harbor, boat launch ramp, and 
state-operated seaplane base. A deep draft dock is 
located at Klawock Island, which is primarily used 

for loading timber. Most residents pursue a subsis-
tence lifestyle to provide food sources. 

Metlakatla, population 1,422, is located 
on the central western coast of Annette Island, 
25.7 km (16 mi) south of Ketchikan (fig. 2A). 
It is accessible by air and water, and hosts an 
airport with two asphalt runways 9.7 km (6 mi) 
south of town. There are also two seaplane bases 
with scheduled float plane services to and from 
Ketchikan. The state ferry serves Metlakatla from 
Ketchikan between spring and fall. In addition to 
the state ferry terminal, extensive port facilities 
in Metlakatla include an oil company pier, a city 
pier, a packing company wharf, a barge terminal, 
a barge ramp, two marine railways for hauling out 
boats, and public and privately owned small-craft 
facilities including two small boat harbors. Most 
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Figure 2A. The locations of Kasaan, Klawock, Metlakatla, Point Baker, and Port Protection on the Prince of Wales 
Island region of Southeast Alaska.

infrastructure in Metlakatla is at or very near sea 
level. The community is traditional Tsimshian with 
an active economy and subsistence lifestyle. It is 
located within the Annette Island Reserve, which is 
the only Indian reservation in Alaska. 

Port Protection, population 34, is a small 
non-Native fishing community on the northern tip 
of Prince of Wales Island 233.4 km (145 mi) south 
of Juneau (fig. 2A). On the north shore of Sumner 
Strait, it is almost hidden amongst the trees of the 
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Figure 2B. The location of Pelican in the Cross Sound region of Southeast Alaska. 

Tongass National Forest. It is accessed by float plane 
and boat and does not link directly to the Prince of 
Wales road system, although a gravel boat launch at 
Labouchere Bay, a little more than a mile from the 
community, provides road access. Skiffs are used for 
local travel, and there is a boat harbor and launch 
ramp. Most homes are along the waterfront. 

Point Baker, population 13, is a small 
non-Native fishing community located about 4.8 
km (3 mi) to the north along the coast from Port 
Protection on the northern tip of Prince of Wales 
Island (fig. 2A). It does not link to the Prince of 
Wales road system, and is accessed only by float 
plane, helicopter, barge, or skiff. A 134.1-m (440-
ft) state-owned floating dock is the “floating down-

town” and includes a floatplane dock, store, café, 
saloon, community building, post office, and fire 
department. Two seasonal fishing and wildlife 
viewing lodges are also located on the waterfront, 
flanked on all sides by the trees and thick vegeta-
tion of the Tongass National Forest.

Pelican, population 67, is located on the north-
west coast of Chichagof Island on the north shore 
of Lisianski Inlet, 112.7 km (70 mi) west-southwest 
of Juneau (fig. 2B). Most of the community is built 
on pilings over the tidelands. Pelican is accessed 
by boat or float plane. Facilities include a state 
ferry terminal and sea plane dock. During winter 
months, fog, high winds, and high seas can limit 
access. There are no paved roads in Pelican, and a 
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boardwalk serves as the town’s main thoroughfare 
due to the lack of flat land. Pelican remains a fishing 
community, although the fish processing plant 
closed in 2009. Most residents rely on subsistence 
resources as an important part of their lifestyle.

Seismic and Tsunami History
Historic and geologic records of earthquakes 

and tsunamis in these Southeast Alaska communi-
ties are dominated by the great (M > 8) earthquakes 
of the Alaska-Aleutian subduction zone (Dunbar 
and Weaver, 2008). Several historic megathrust 
earthquakes have caused tsunamis resulting in 
widespread damage and loss of life in Alaska and 
throughout the Pacific (Lander, 1996) (table 1). 
The latest sequence of great megathrust earth-
quakes (Carver and Plafker, 2008) appears to have 
begun in 1938 with a Mw 8.3 earthquake west of 
Kodiak Island (Estabrook and others, 1994). Four 
subsequent events, the 1946 Mw 8.6 Eastern Aleu-
tian (Lopez and Okal, 2006), the 1957 Mw 8.6 
Andreanof Islands (Johnson and others, 1994), the 
1964 Mw 9.2 Great Alaska (Kanamori, 1970), and 
the 1965 Mw 8.7 Rat Island (Wu and Kanamori, 
1973) earthquakes, ruptured much of the length of 
the subduction zone (fig. 1).

The 1946 Eastern Aleutian Islands earth-
quake killed 159 people in Hawaii and caused 
$26 million in damage (Lopez and Okal, 2006). 
The earthquake was the impetus for founding the 
Pacific Tsunami Warning Center in Hawaii. The 
1964 Mw 9.2 Great Alaska Earthquake devastated 
communities across Alaska’s southern coast. The 
tsunami from this event killed 106 people in Alaska, 
most of them resulting from local landslide-gen-
erated tsunamis. The tectonic tsunami killed an 
additional 12 people in California (Lander, 1996) 
and was the impetus for establishing the Alaska/
West Coast Tsunami Warning Center. The tsunami 
struck many communities in southeast Alaska, 
causing varying degrees of damage, but no lives 
were lost there (Lander, 1996). 

The Fairweather-Queen Charlotte fault system 
that parallels the Southeast Alaska coastline also has 
a long history of producing large earthquakes. Most 
of the fault system has ruptured in large strike-slip 
earthquakes over the past century: 1927 (Ms 7.1), 
1949 (Ms 8.1), 1958 (Ms 7.9), and 1972 (Ms 7.6) 
(Page, 1973; Sykes, 1971; Tocher, 1960) (fig. 1). 
Several of these earthquakes generated tsunamis. 
The 1958 earthquake triggered a large landslide into 

Table 1. Tsunami effects from all historically recorded tsunamis at Klawock, Pelican, and Metlakatla (no data have 
been recorded for Point Baker, Port Protection, or Kasaan). Data from the National Centers for Environmental Infor-
mation (NCEI; formerly known as National Geophysical Data Center [NGDC]) Global Historical Tsunami Database  
(doi.org/10/7289/V5PN93H7) and comments from Lander (1996).

Date Magnitude 
(Mw) Origin

Maximum 
water height 

(m)
Comments

Klawock

03/28/1964 9.2 Gulf of Alaska 4.6 3 houses lost

Pelican

03/28/1964 9.2 Gulf of Alaska Observed Home flooded, boardwalk warped, 
and 2 scows broken loose.

Metlakatla (Annette Island)

03/28/1964 9.2 Gulf of Alaska 1.2

http://doi.org/10/7289/V5PN93H7
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Table 2. Nested grids used to compute propagation of tsunami waves from nearby subduction zones to the communities 
of Port Protection, Point Baker, Pelican, Klawock, Metlakatla, and Kasaan. The high resolution grid is used to compute the 
inundation. Note that the grid resolution in meters is not uniform: the first dimension is the longitudinal grid resolution and the 
second is the latitudinal resolution. Measurements also vary across each grid and are given for a reference location near Price 
of Wales Island to illustrate relative grid fineness.

Grid name

Resolution
East–West
boundaries

North–South 
boundariesarc-

seconds

meters
(near POW 

Island)
Level 0, Northern 
Pacific 120 × 120 ≈ 2,110 × 3,704 120°00' E – 100°00' W 10°00' N – 65°00' N

Level 1, Southeast 
Alaska 24 × 24 ≈ 421 x 741 142°00' W – 131°00' W 54°00' N – 60°00' N

Level 2, Coarse 
resolution, Juneau West 8 × 8 ≈ 140 × 247 138°16'08" W –134 °15'52" W 55°44'52" N –59 °33'08" N

Level 2, Coarse 
resolution, Juneau East 8 × 8 ≈ 140 × 247 135°48'56" W –131 °49'04" W 54°36'04" N –57 °35'56" N

Level 3, Fine resolution, 
Cross Sound 3 x 3 ≈ 47 x 82 138°08'43" W – 137°01'33" W 57°48'57" N – 58°27'19" N

Level 3, Fine resolution, 
Prince of Wales Island 3 x 3 ≈ 47 x 82 135°00'11" W–132°01'49" W 54°38'17" N – 56°38'39" N

Lituya Bay that generated a 530-m-high (1,740-ft-
high) wave (Miller, 1960). The 2012 Haida Gwaii 
earthquake occurred along a convergent section of 
the Queen Charlotte fault (Lay and others, 2013; 
James and others, 2013). Uplift of the seafloor 
during the Haida Gwaii earthquake generated a 
tsunami that exceeded 6 m (20 ft) of runup at a 
number of sites, and measured 0.8 m (2.6 ft) at 
a tide gauge in Hawaii (Leonard and Bednarski, 
2015). The most recent large earthquake on the 
F-QC system, the January 5, 2013 Mw 7.5 Craig 
earthquake, produced only modest local tsunamis 
but was sufficient to initiate tsunami evacuations in 
several communities (NOAA/NWS, n.d.).

METHODOLOGY AND DATA
Methodology

In recent years, similar tsunami hazard studies 
have been published for Adak, Atka, False Pass, 
Perryville, Craig, and several other coastal commu-
nities. Because the currently available elevation data 
for the six southeast Alaska communities in this 

study are of insufficient quality for high-resolution 
modeling, we follow the National Tsunami Hazard 
Mitigation Program (NTHMP, 2010) guidelines 
(nws.weather.gov/nthmp/documents/3nonmod-
eledregionguidelines.pdf ) for determining tsunami 
hazard zones for areas that have either low risk due 
to small population size and minimal infrastructure 
vulnerability, or do not have access to high-resolu-
tion topographic/bathymetric data. The tsunami 
hazard maps of Kasaan, Klawock, Metlakatla, 
Pelican, Point Baker, and Port Protection are devel-
oped using the methodology described in detail in 
Suleimani and others (2018). For the four scenario 
earthquakes we model water dynamics from source 
to community and compute maximum tsunami 
wave heights using the highest resolution grids 
available (see table 2). Each model run covers 24 
hours of post-earthquake tsunami propagation to 
account for all waves in the wave train, as well as 
secondary (reflected) wave interactions. At every 
location throughout the high-resolution grids, the 
maximum tsunami height from any of the four 

http://nws.weather.gov/nthmp/documents/3nonmodeledregionguidelines.pdf
http://nws.weather.gov/nthmp/documents/3nonmodeledregionguidelines.pdf
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earthquakes is saved, and we use these maximum 
values to generate a new, “composite” map of 
maximum wave heights that can be expected from 
the earthquake scenarios. 

Computational Grids and Data 
Sources

We model tsunami waves and inundation 
using a series of nested computational grids. A 
nested grid allows for higher-resolution computa-
tions in areas where detail is needed while mini-
mizing computer runtime in areas where such detail 
is not required. The bathymetric and topographic 
relief in each nested grid is based on digital eleva-
tion models (DEMs) developed at the National 
Centers for Environmental Information (NCEI) of 
the National Oceanic and Atmospheric Adminis-
tration (NOAA) in Boulder, Colorado. The extent 
of each grid used in this mapping project is shown 
in figure 3 and listed in table 2. The coarsest grid 
(level 0), with 2-arc-minute resolution, spans the 
central and northern Pacific Ocean. The bathy-
metric data for the 2-arc-minute-resolution grid 
is extracted from the ETOPO2 dataset (NGDC, 
2006, doi.org/10.7289/V5J1012Q). We use two 
intermediate grids between the coarsest- and high-
est-resolution grids (table 2). To develop 8/3-, 
8-, and 24-arc-second resolution grids, shoreline, 
bathymetric, and topographic digital datasets were 
obtained from several U.S. federal and academic 
agencies, including: NOAA’s National Ocean 
Service, Office of Coast Survey, NGDC, the U.S. 
Fish & Wildlife Service, the U.S. Geological Survey 
(USGS), and the U.S. Army Corps of Engineers. 
All data were shifted to World Geodetic System 
1984 (WGS 84) horizontal and Mean Higher 
High Water (MHHW) vertical datums. The data 
sources and methodology used to create the 24-, 
8-, and 8/3-arc-second DEMs are described in 
greater detail in Caldwell and others (2012) and 
Lim and others (2011). 

One fine-resolution level 3 grid covers 
Pelican. A second level 3 grid covers the remaining 

communities. The size of the fine-resolution grid 
cells, which is ~45 × 82 m (148 × 269 ft), satis-
fies NOAA’s minimum recommended require-
ments for estimation of the tsunami hazard zone 
(NTHMP, 2010); however, we did not use on-site 
GPS methods to verify the level 3 fine-resolution 
grids (this is particularly important for the inter-
tidal and near-shore zones). Because of this, we 
do not include the highest-resolution modeling 
in this report. Instead we provide an estimation 
of the tsunami hazard zone by extrapolating the 
maximum composite tsunami wave height onto 
land according to the tsunami scenarios described 
below. We account for uncertainties inherent in 
this method by applying a safety scaling factor of 
30 percent to the estimated hazard zone.

Tsunami Sources
We use a deterministic approach for our earth-

quake and tsunami hazard modeling. We define the 
largest hypothetical, yet scientifically-defendable, 
earthquake scenarios that could affect the commu-
nities and calculate the potential resulting tsunami 
inundation. Although we do not explicitly develop 
the “worst-case” scenarios for each community, we 
develop our earthquake sources based on previous 
studies focused on maximum credible scenarios for 
coastal Alaska. For this study, we use three great 
earthquakes in the eastern part of the Alaska-Aleu-
tian subduction zone that have been published 
in previous studies (Suleimani and others, 2013, 
2015, 2016), as well as a rupture of the Cascadia 
subduction zone (Ross and others, 2013). This 
approach is drastically different from probabilistic 
hazard analyses used for land-use planning or insur-
ance estimates (Geist and Parsons, 2006). Prob-
abilistic earthquake hazards consider all possible 
earthquakes (both large and small) and define the 
probability that an earthquake of a certain magni-
tude will occur in a given amount of time. 

Below we describe the significant credible 
tsunami sources for the six Southeast communi-
ties. The vertical coseismic deformations for these 
scenarios are shown in figure 4 A–D.

http://doi.org/10.7289/V5J1012Q
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Service Layer Credits: Sources: Esri, GEBCO,
NOAA, National Geographic, DeLorme,
HERE, Geonames.org, and other contributors

-132°-136°-140°-144°

60
°

58
°

56
°

54
° Level 1

Level 2

Level 0

Level 2

Level 3

Level 3

Metlakatla

Klawock

Pelican

Kasaan

Point Baker 

Port Protection

Figure 3. Nested bathymetry/topography grids for numerical modeling of tsunami propagation and runup. The coarsest grid, 
level 0, covers the central and northern Pacific Ocean. The location of each embedded grid is marked by a red rectangle. Refer 
to table 2 for grid parameters.
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Mw 9.3 event: Extended 1964 
rupture (figure 4A).

A Mw 9.3 earthquake that ruptures the aftershock area of the 
1964 earthquake and, additionally, the Yakataga-Yakutat (YY) 
segment of the Alaska-Aleutian megathrust (fig. 1). Vertical 
displacements in the 1964 rupture zone are based on the co-
seismic deformation model by Johnson and others (1996). A 
detailed description of this scenario is provided in Suleimani 
and others (2013). 

Mw 9.2 event: Earthquake in 
the 1964 rupture area with 

Tohoku-type slip distribution 
(figure 4B).

A Mw 9.2 earthquake rupturing the eastern part of the Alaska-
Aleutian megathrust. The slip is distributed almost uniformly 
along strike, except for the edges of the rupture, where the slip 
is tapered. In the downdip direction, the slip is concentrated on 
the shallow portion of the fault (near the seafloor trench), similar 
to the Tohoku 2011 earthquake (Ito and others, 2011). Suleimani 
and others (2013) give a detailed description of a sensitivity 
study to determine which parts of the eastern Alaska-Aleutian 
megathrust produce the highest tsunami amplitudes in southeast 
Alaska. 

Mw 9.0 event: The SAFRR 
tsunami scenario (figure 4C).

A Mw 9.0 earthquake rupturing the Alaska-Aleutian megathrust 
south of the Alaska Peninsula, west of Kodiak Island in the after-
shock zone of the 1938 earthquake (fig. 1). The USGS Science 
Application for Risk Reduction (SAFRR) project, in collaboration 
with NOAA and State of California agencies, developed this 
scenario for a tsunami inundation analysis in California (Ross 
and others, 2013). In this scenario, greater slip occurs closer to 
the trench. The earthquake is similar to the Tohoku 2011 event, 
in which a large amount of slip also occurred between the sub-
ducting and overriding plates near the Japan trench (Fujii and 
others, 2011; Shao and others, 2011).

Mw 9.0 event: Rupture of the 
Cascadia subduction zone 

(figure 4D).

A Mw 9.0 earthquake rupturing the Cascadia subduction zone 
along the British Columbia, Washington, Oregon, and northern 
California coasts. A recent model by Witter and others (2011) 
suggests that the slip distribution in the down-dip direction is 
bell-shaped. In this report, the assumed Mw 9.0 rupture recovers 
1,200 years’ worth of plate convergence with about 36 m (118 
ft) of maximum slip (Witter and others, 2011). 
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Scenario 1.   A Mw 9.3 event: the extended 1964 rupture.

Scenario 2.    A Mw 9.2 event: the earthquake in the 1964 rupture 
area with Tohoku-type slip distribution.
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Scenario 3.   A Mw 9.0 event: the SAFRR tsunami scenario.

Scenario 4.   A Mw 9.0 event: rupture of the Cascadia subduction zone.

Figure 4. Vertical coseismic deformations corresponding to scenarios 1–4. Blue areas are coseismic subsidence; red areas 
are coseismic uplift.

Numerical Model of Tsunami 
Propagation and Runup

Our model has been validated through a set 
of analytical benchmarks and tested against labora-
tory and field data (NTHMP, 2012; Synolakis and 
others, 2007). The tsunami scenarios that we calcu-
late in this report are considered to be sufficient to 
capture the worst-case tsunami event, but there are 
still an infinite number of possible slip distributions 
and it is impossible to know which one will occur. 
Also, there are unforeseen local effects of ground 
shaking, such as soil compaction and landslides, 
that could possibly contribute to the extent of 

tsunami inundation. One of the limitations of the 
model is that it does not take into account the peri-
odic change of sea level due to tides. We conducted 
all model runs using bathymetric data that corre-
spond to MHHW. As a result, the elevation of the 
inundation line could be lower or slightly higher 
than that given in this report, depending on the 
tides at the time of a tsunami. A detailed descrip-
tion of the model is given in Nicolsky and others 
(2011) and the application of the model to tsunami 
inundation mapping of Alaska coastal communi-
ties, including its assumptions and limitations, is 
described in a number of previous tsunami reports— 

Scenario 1. A Mw 9.3 event: The extended 1964 rupture.

Scenario 4. A Mw 9.0 event: Rupture of the Cascadia subduction zone.Scenario 2. A Mw 9.2 event: The earthquake in the 1964 
rupture area with Tohoku-style slip distribution.

Scenario 3. A Mw 9.0 event: The SAFRR tsunami scenario.
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for example, Nicolsky and others (2018) and Sulei-
mani and others (2019).

MODELING RESULTS
Figures 5 and 6 show the maximum composite 

tsunami heights for the coastal communities and 
surrounding waters of Cross Sound and Prince 
of Wales Island, respectively. In Cross Sound, 
tsunami amplitudes are relatively small, but the 
wave heights increase significantly in narrow bays 
and inlets, including the Lisianski Inlet where the 
community of Pelican is located (fig. 5). Figure 
6 shows maximum composite tsunami heights 

around Prince of Wales Island. The communities 
of Kasaan and Metlakatla are better protected from 
tectonic tsunamis than Klawock, Point Baker, and 
Port Protection, which are located on the Pacific 
coast of the island. 

Figures 7A–7E show maximum composite 
tsunami heights for each community. The absolute 
maximum value of the tsunami height, multiplied 
by a safety factor of 1.3, results in a maximum 
runup height of 1.4 m (4.6 ft) in Kasaan, 4 m (13 
ft) in Klawock, 1 m (3.3 ft) in Metlakatla, 5 m (16 
ft) in Pelican, 1.3 m (4.3 ft) in Point Baker, and 
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Figure 5. Maximum composite tsunami height from all scenarios in the Cross Sound level 3 grid.
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Figure 6. Maximum composite tsunami height from all scenarios in the Prince of Wales level 3 grid.
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2.6 m (8.5 ft) in Port Protection. We project these 
values of maximum runup onto land and draw an 
elevation contour that corresponds to this height—
the boundary of the tsunami hazard zone. The 
modeling results are summarized in table 3. 

Map sheets 1–6 illustrate the approximate 
tsunami hazard boundaries for each community. 

The maps for Kasaan, Metlakatla, and Point Baker 
indicate that none of the considered scenarios 
produce any significant inundation in these 
communities. However, previous tsunami studies 
of communities in Southeast Alaska (Suleimani and 
others, 2015) showed that fjords in this region are 
prone to underwater landslide- and subaerial rock-
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fall-generated tsunamis. However, in 
this report we do not model tsunamis 
generated by landslides because there 
is insufficient data to appropriately 
constrain landslide sources. These 
communities should still be prepared.

To help emergency managers 
assess the tsunami hazard in each 
community, we supplement the hazard 
maps with the time series of the 
modeled water level at a near-shore 
location in each community. These 
locations are shown by black triangles 
in figures 7A–7E. The time series plots 
are shown in figure 8. Analysis of the 
time series plots shows that scenario 
1, the extended 1964 rupture, results 
in the largest tsunami amplitudes at 
Kasaan and Klawock, while scenario 
2, a hypothetical earthquake in the 
1964 rupture area with Tohoku-type 
slip distribution, results in the largest 
tsunami amplitudes in all other 
communities. The tsunami ampli-
tudes increase significantly about 4 
hours after the arrival of the first wave 
in Pelican and Kasaan, and about 2 
hours after arrival of the first wave in 
Klawock, which highlights the poten-
tial for local amplification effects in 
bays and inlets where these communi-
ties are located. 

SUMMARY
We present model results of earth-

quake-generated tsunamis in Southeast 
Alaska for the communities of Kasaan, 
Klawock, Metlakatla, Pelican, Point 
Baker, and Port Protection. We numer-
ically model tsunami waves generated 
by local hypothetical tectonic sources, 
analyze tsunami wave dynamics in 
the vicinity of the communities, and 
develop tsunami-hazard map approx-
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imations. We compute the composite maximum 
wave height from all considered scenarios and 
follow the NTHMP guidelines to extrapolate the 
modeling data on land for estimation of tsunami 
inundation. 

The maximum runup heights are 1.4 m (4.6 
ft) in Kasaan, 4 m (13.1 ft) in Klawock, 1 m (3.3 
ft) in Metlakatla, 5 m (16.4 ft) in Pelican, 1.3 m 
(4.3 ft) in Point Baker, and 2.6 m (8.5 ft) in Port 
Protection.

The tsunami inundation approximations 
shown on the tsunami hazard maps have been 
completed using the best information available and 
are believed to be accurate; however, their prepa-
ration required many assumptions. In this assess-
ment, we estimate the potential tsunami inunda-
tion zone based on four significant, scientifically 
plausible tsunami scenarios. Hence, the modeled 
tsunami inundation cannot be considered exhaus-

tive, but the modeling results are still thought to 
provide a sound approximation to the potential 
tsunami inundation zone in each community. 

Actual conditions during a tsunami may 
differ from the scenarios considered here due to 
variations in the source earthquakes, tides, and 
coastline infrastructure. These areas of maximum 
expected inundation are intended to assist in plan-
ning tsunami evacuation and response activities. 
Results are not suitable for land-use regulation or 
building-code development. 
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Community
Maximum 
composite 

tsunami height

Maximum 
assumed runup 

height

Composite 
tsunami 
height

Tsunami 
hazard map

Calculated 
time series

Kasaan 1.1 m (3.6 ft) 1.4 m (4.6 ft) Figure 7A Map sheet 1 Figure 8A

Klawock 3 m (9.8 ft) 4 m (13.1 ft) Figure 7B Map sheet 2 Figure 8B

Metlakatla 0.8 m (2.6 ft) 1 m (3.3 ft) Figure 7C Map sheet 3 Figure 8C

Pelican 3.8 m (12.5 ft) 5 m (16.4 ft) Figure 7D Map sheet 4 Figure 8D

Point Baker 1 m (3.3 ft) 1.3 m (4.3 ft) Figure 7E Map sheet 5 Figure 8E

Port Protection 2 m (6.6 ft) 2.6 m (8.5 ft) Figure 7E Map sheet 6 Figure 8F

Table 3. Summary of tsunami modeling results for the Southeast communities.
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