INTRODUCTION

The Mineral Resources section of the Alaska Division of Geological & Geophysical Surveys (DGGS) conducted 500 mi2 of 1:63,360-scale geologic mapping in the northeastern Tanacross Quadrangle (Tanacross D-1, and parts of the C-1, C-2, and D-2 quadrangles), located 15 miles southeast of Chicken, Alaska (fig. 1). The project took place during two periods: a reconnaissance mapping effort June 12–22, 2017, and a detailed campaign June 18–July 16, 2018. This map is located within an area of current industry interest; it includes the Taurus porphyry copper-gold-molybdenum ± rhenium deposit and several other occurrence types including gold, copper, and molybdenum in porphyritic intrusions, structurally controlled silver-lead-zinc prospects, and placer gold deposits (fig. 2). The economic value of the map area is described in detail in chapter F of this report (Twelker and Newberry, 2021), whereas the geochemical properties, similarities, and differences of the intrusive sites are addressed in chapter E (Wypych, 2021).

Prior to DGGS work in the area, the most-detailed mapping was a reconnaissance map at 1:250,000 scale (Foster, 1970). The region also was the focus of a detailed structural study (Hansen and Dusel-Bacon, 1998). In the decades following publication of Foster’s map, U.S. and Canadian researchers established a regional geologic and tectonostratigraphic framework (for example, Colpron and others, 2006; Dusel-Bacon and others, 2006) that involves two fundamental components: the allochthonous Yukon-Tanana terrane (YTT) and the parautochthonous North American margin (pNA) from which the YTT initially rifted, and to which it was eventually re-accreted. The boundary between the allochthonous YTT and pNA is one of the fundamental suture zones in the northwestern Cordillera. It has a complex, multi-phase structural and metamorphic history (Hansen and Dusel-Bacon, 1998), and the northeastern Tanacross Quadrangle is one of the rare areas in which it is exposed. The conceptual framework has been developed in the literature but it is not fully represented in published geologic maps of eastern Alaska (for example, Wilson and others, 2015). Chapters C and D (Naibert and others, 2021; Naibert, 2021) addresses the newest structural findings as well as detailed mapping of the YTT/pNA boundary in the area using 40Ar/39Ar dating techniques in conjunction with field data. Recent detailed studies in the northeastern Tanacross and adjacent area include geophysical surveys (Emond and others, 2015; Burns and others, 2011, 2015; fig. 2). These studies can be used for three-dimensional magnetic modeling of features present under the surface, as shown in chapter G (Emond and Wypych, 2021). The complexity of the geophysical data, ongoing U.S. Geological Survey (USGS) studies (Jones and others, 2017a, 2017b), previous 1:63,360-scale mapping in the Eagle A-1 and A-2 quadrangles immediately to the north (Szumigala and others, 2002; Werdon and others, 2001) and resurgent mineral industry interest in the area prompted DGGS to conduct new 1:63,360-scale geologic mapping in this area (chapter G; map sheet 1 in chapter B).

GEOLOGIC BACKGROUND

The northeastern Tanacross Quadrangle is characterized by a very complex geologic history, which can be distilled to four main periods. Prior to the Late Devonian the region experienced passive margin deposition equivalent...
Figure 1. Location of the Northeast Tanacross geologic map area, Tanacross D-1, and parts of the C-1, D-2, and C-2 quadrangles, Alaska.
Figure 2. Magnetic surveys overlain on hillshade relief map with location of main prospects in the Northeast Tanacross map area.
to Selwyn basin. In the Late Devonian to Early
Mississippian the YTT rifted away from the
North American margin, which resulted in a
major magmatic episode, emplacing plutons and
depositing volcanic rocks, and in the formation
of an ocean basin—the Slide Mountain/Seventymile
ocean (Dusel-Bacon and others, 2013). From
the Mississippian through the Permian, the YTT
underwent multiple episodes of arc magmatism
while pNA was magmatically quiet. During
the Permian the Slide Mountain/Seventymile
ocean was consumed by subduction beneath
the Klondike arc, and prolonged re-accretion
of YTT began (Dusel-Bacon and others, 2013;
Beranek and Mortensen, 2011). This resulted in
polydeformed metamorphic rocks that underwent
regional metamorphism up to amphibolite grade
and subsequent exhumation and cooling in the
Jurassic to mid-Cretaceous (Hansen and Dusel-
Bacon, 1998; Dusel-Bacon and others, 2002). Triassic to Paleogene magmatism variably affected
the YTT and pNA as the YTT was re-accreted to
form the integrated southern Alaska margin.

Previous 1:250,000-scale reconnaissance
mapping of the Tanacross Quadrangle does not
address the terranes present; however, it does
delineate general amphibolite faces, greenschist
faces and carbonaceous Paleozoic units, Tertiary
mafic volcanic rocks, Mesozoic granitic rocks,
and Paleozoic or Precambrian metamorphic units
(Foster, 1970). Coney and others (1980) proposed
a “suspect Yukon-Tanana composite terrane” due
to the existence of fragments of oceanic arcs and
an unknown origin of the metamorphic rocks in
this region. The composite Yukon-Tanana terrane
concept evolved and was eventually defined as
both a parautochthonous continental margin of
North America, represented in the southern part
of the map area by the Lake George assemblage,
and an allochthonous YTT, which is represented
by the Fortymile River assemblage in the northern
half of the map area (Colpron and others 2006,
Dusel-Bacon and others, 2006; Dusel-Bacon and
Hansen, 1992).

Lithotectonic units of the allochthonous
Yukon-Tanana terrane (locally represented by the
Fortymile River and Nasina assemblages; Dusel-
Bacon and others, 2017; Szumigala and others,
2002; Werdon and others, 2001) present in the
northern part of the Tanacross map area are inter-
preted as arc and basinal deposits formed on top
of, and adjacent to, the rifted YTT during the early
Mississippian and thrust over pNA during Permian
to Jurassic time (Dusel-Bacon and others, 2006,
quadrangles revealed the complexity of this terrane
immediately north of the field area, and provided a
very detailed framework to guide mapping within
the Fortymile River assemblage in the northeastern
Tanacross Quadrangle (Szumigala and others,
2002; Werdon and others, 2001).

Regionally, metamorphic assemblages of
YTT and pNA are intruded by Triassic, Creta-
ceous, Quaternary, and possibly Neogene volcanic
and plutonic rocks. The oldest Mesozoic magmatic
body in the region, the Taylor Mountain bathol-
ith, is described by Werdon and others (2001) as a
multi-phase intrusion with structural fabric present
only on the margins of the batholith. This pluton
has a complex intrusive history but, based on a
titanite U-Pb crystallization age, it was emplaced
around 214 Ma (Dusel-Bacon and others, 2009).
Mid-Cretaceous intrusions include granites such as
the ca. 117 Ma Crag Mountain pluton in the Yukon
(Yukon Geological Survey, 2019) as well as gabbro,
granodiorite, and quartz monzonite ranging in age
from ca. 97 to 101 Ma along the Alaska Highway
(Solie and others, 2019). Regionally, vein, scarn,
and porphyry-style mineralization is often attributed
to the mid-Cretaceous intrusions (Allan and others,
2013). Late Cretaceous intrusions include the
Mount Fairplay syenite (Foster, 1967), a known
rare earth element prospect (Newberry, 2020), and
other granodiorite, diorite, monzonite, trachyandes-
itic porphyries, and andesite bodies in the region,
which have a narrow age range between ca. 68
Ma and ca. 76 Ma (Benowitz and others, 2017).
Cu-Mo-Au porphyry mineralization is often associ-
ated with Late-Cretaceous rocks in the uplands, for example, Taurus porphyry present in the map area (Harrington, 2010). The youngest igneous rocks in the adjacent Eagle A-2 and A-1 quadrangles are gabbro/diabase emplaced ca. 58 Ma (40Ar/39Ar crystallization age; Werdon and others, 2001) and basalt with a ca. 14 Ma 40Ar/39Ar whole rock age (Szumigala and others, 2002), respectively. Small fault-bounded sedimentary basins were mapped in the Eagle A-1 and A-2 quadrangles (Szumigala and others, 2002; Werdon and others, 2001).

The sedimentary successions consist of conglomerate, sandstone, coal, siltstone, and graywacke, with local felsic tuff, and are Cretaceous to Paleogene (Szumigala and others, 2002; Werdon and others, 2001).

CHAPTERS INCLUDED IN THE REPORT:

- Chapter A: Introduction to the northeast Tanacross geologic mapping project
- Chapter B: Northeast Tanacross geologic map and map units and descriptions
- Chapter C: Metamorphic cooling history of the Fortymile and Lake George assemblages from 40Ar/39Ar data from northeast Tanacross
- Chapter D: Structural geology observations in northeast Tanacross
- Chapter E: Geochemical interpretation of samples of igneous rocks from northeast Tanacross
- Chapter F: Observations on the economic geology of northeast Tanacross
- Chapter G: Magnetic modeling of northeast Tanacross

ACKNOWLEDGMENTS

The DGGS Northeast Tanacross project was funded by the USGS National Cooperative Geologic Mapping Program under STATEMAP award number G18AC00137 for 2018, and by State of Alaska general funds.

We would like to thank James V. Jones III (USGS, Anchorage) and Robert Gillis (DGGS) for thorough and constructive reviews of the geologic map, map unit descriptions, and report.
REFERENCES

Dusel-Bacon, Cynthia, Slack, J.F., Aleinikof, J.N., and Mortensen, J.K., 2009, Mesozoic magmatism and base-metal mineralization in the Fortymile...

Twelker, Evan, and Newberry, R.J., 2021, Chapter F: Observations on the economic geology of the northeast Tanacross map area, in Wypych, Alicja, Northeast Tanacross geologic mapping project, Alaska: Alaska Division of Geological & Geo-
physical Surveys Report of Investigation 2020-9F. doi.org/10.14509/30557