| /* */ | |--| | Title: Engineering-geologic map, Delta Junction to Dot Lake, Alaska Highway Corridor | | Publication: PIR 2008-3B | | URL: http://www.dggs.dnr.state.ak.us/pubs/pubs?reqtype=citation&ID=17981 | | /**/ | | | | | | | T | | | |----------|--|--|--|--|---|--|---| | Map Unit | Component
Geologic
Units* | Surface
drainage | Seasonal frost
susceptibility | Permafrost and
thaw stability | Slope
stability | Suitability for construction | Potential engineering considerations | | Al | Qa, Qaa | Well drained near steep stream banks
and where water table is deep;
seasonally flooded | Subject to deep, dry freezing where coarse
grained and water table is deep; subject to
intense frost heaving where silty | Unfrozen to discontinuously frozen with low to
moderate ice content where silty; may be thaw
unstable where silty and perennially frozen | Highly susceptible to lateral erosion and collapse near active channels | Excellent source of clean, sandy gravel aggregate and clean fill material; may be poorly graded; well-drained sand and gravel provide excellent foundation | Subject to inundation every 1-5 yr during high stream
stages (Chapin and others, 2006) and by aufeis in
braided reaches; shallow water table limits depth of
excavation; thawed fine sand and silt subject to
liquefaction; responses to seismic shaking may vary
considerably, especially near frozen zones | | A2 | Qai | Generally poor due to shallow water
table and shallow permafrost; moderate
to good on natural levees and crevasse
fills | Generally subject to intense heaving in fine-
grained cover deposits and channel fills;
otherwise, generally not susceptible unless
silty | Unfrozen in younger areas to discontinuous in older
areas, generally with low to moderate ice contents;
high ice content in frozen organic sand and silt
channel fills; thaw unstable where frozen and ice rich | Highly susceptible to lateral erosion and collapse near
active channels; subject to differential settlement when
thawed | Where thawed, excellent source of sandy gravel aggregate beneath
silty surface layer; presence of permafrost and shallow water table
may limit potential as source of sandy gravel aggregate and
suitability for foundation | Subject to inundation at least once or twice every 100 yr
(Chapin and others, 2006; Yarie and others, 1998);
shallow water table limits depth of excavation; where
thawed, fine sand and silt subject to liquefaction;
responses to seismic shaking may vary considerably. | | A3 | Qab | Generally poor due to widespread
shallow permafrost | Subject to intense heaving in fine-grained
cover deposits and silty channel fills; not
susceptible where coarse grained | Generally frozen with low to moderate ice content;
high ice content in frozen surface peats and organic
sand and silt channel fills; thaw unstable where
frozen and ice rich | Susceptible to lateral erosion and collapse near active
channels; subject to differential settlement when thawed | Widespread permafrost and shallow water table limit potential as
source of sandy gravel aggregate and suitability for foundation | Subject to inundation every 500 to 1,000 yr (Mann and others, 1995; Mason and Begét, 1991); shallow water table and presence of permafrost limit depth of excavation; subject to liquefaction where thawed; responses to seismic shaking may vary considerably; sensitive to surface disturbance | | A4 | Qat | Good near descending scarps; fair to
poor away from scarps; subject to local
flooding | Intense in fine-grained cover sediments and silty channel fills; otherwise not susceptible where coarse grained | Continuously to discontinuously frozen with low to
moderate ice content; high ice content in frozen
surface peat; thaw unstable where frozen and ice rich | Susceptible to lateral erosion and collapse near active
channels; frozen zones subject to differential settlement
when thawed | Excellent source of sand and gravel beneath fine-grained cover
sediments, although shallow permafrost may limit depth of
excavation; bedrock shallow in strath terraces; excellent
foundation where thawed | Bedrock shallow in strath terraces; locally subject to
seasonal slope and stream flooding; where saturated,
fine-grained cover sediments subject to liquefaction;
seismic shaking may vary considerably, especially near
frozen zones; locally sensitive to surface disturbance | | A5 | Qaf | Generally good, except in frozen distal
zones | Intense in fine-grained cover deposits and silty zones, otherwise not frost susceptible | Unfrozen to discontinuously frozen, except in fine-
grained distal zones, where permafrost is continuous;
ice contents low to moderate; thaw unstable where
fine grained | Subject to lateral erosion and collapse near active
channels and in proximal zone of fan | Generally unsuitable as aggregate source because of numerous
boulders, high silt content, and permafrost; moderate suitability for
foundations | Proximal zones subject to torrential flooding, snow
avalanches, debris flows, and mudflows; subject to
sudden shifts in channels and sites of deposition and
erosion | | A6 | Qer, Qfs | Generally poor; may be seasonally flooded | Intense | Permafrost is discontinuous to continuous with
moderate to high ice content; thaw unstable | Highly susceptible to gullying and piping when
vegetation is removed; subject to differential settlement
when thawed | Source of organic material for landscaping; suitable for
foundations only when permafrost is preserved | Thawing produces mudflows and hyperconcentrated
flows; subject to seasonal stream and slope icings;
sensitive to surface disturbance | | F | Qfb | Generally excellent to good, except
moderate to poor where shallowly
frozen | Intense in fine-grained cover sediments;
otherwise, not susceptible | Unfrozen to discontinuously frozen with low ice
content; generally thaw stable | Subject to lateral erosion and collapse near active channels | Good source of sand and gravel; large flood boulders locally
abundant; excellent foundation material | Bedrock shallow in strath terraces | | С | Qc, Qca, Qcd, Qcf,
Qcg, Qcl, Qcr, Qct,
QTr | Generally good | Susceptible where silty | Unfrozen to discontinuously frozen with low to
moderate ice content; generally thaw stable, except
where silty | Generally stable unless toe or margin of slope is
removed; locally subject to sloughing and sliding;
subject to snow avalanching and rock falls | Generally unsuitable as aggregate source because numerous large
angular fragments require special handling; where frozen, may
require ripping or blasting; poor foundation where blocks are loose
and unstable to good foundation where coarse and fine fractions
are mixed and stable | May become unstable if margins or toe removed | | El | Qel | Generally good, except poorly drained
where frozen | Intense where moist to wet; low where dry | Generally unfrozen, except discontinuously to
continuously frozen with moderate to high ice
content on lower south-facing and on north-facing
slopes; thaw unstable where ice content is moderate
to high | Highly susceptible to gullying and piping; subject to
differential settlement upon thawing where frozen and
ice-rich | Source of fines for landscaping and mixing; makes good
foundation where thawed and dry; muddy when wet; dusty when
dry | Vertical cuts can be stable if drainage is provided. Ice-
rich areas sensitive to surface disturbance | | E2 | Qes | Generally good, except poorly drained
where covered with frozen silt | Generally unsusceptible, except in silty cover deposits | Generally unfrozen to dry frozen, except silty cover
sediments are discontinuously to continuously frozen
and locally ice rich | Highly susceptible to gullying and deflation where
vegetation cover is disturbed | Difficult to compact for foundations | Subject to deflation where unprotected | | Gl | QTgdp, Qgdo,
Qgdy | Generally good on upland surfaces and poor in depressions | Generally low susceptibility where well
drained, moderate to intense where matrix is
silty and in silty slopewash in depressions | Unfrozen to discontinuously frozen with low to
moderate ice contents, depending on silt content of
matrix; generally thaw stable, except may be thaw
unstable in silty tills and silty kettle fillings | Generally stable where frozen or dry; subject to
instability where fine-grained tills are thawed and ice
content is moderate to high | Highly variable but can be good local source of mixed coarse and
fine fractions for fill; local sources of water-washed sand and
gravel; good foundation where thawed and dry | Subject to gullying where surface runoff is concentrated | | G2 | Qgey, Qgeo | Generally good | Generally low susceptibility where drained | Unfrozen to discontinuously frozen with low ice contents | Generally stable except subject to raveling where steep
gravel slopes are undercut | Highly variable but may be good source of water-washed sand and
gravel; good foundation where thawed and dry | Locally rich in oversize material | | G3 | Qgfo, Qgfy | Good | Generally unsusceptible, except intense in silty
cover deposits | Unfrozen to discontinuously frozen with low ice
content | Subject to lateral erosion and collapse near active channels, steep cut faces subject to raveling | Excellent source of sand and gravel; excellent foundation | Easily compacted, although locally contains numerous
large boulders | | LI | Qlb, Qld | Very poor; subject to seasonal flooding | Intense | Discontinuous to continuous permafrost with
moderate to high ice content; thaw unstable | Subject to lateral thermoerosion and collapse near active channels | Generally unsuitable; muddy when wet | Subject to seasonal flooding during high stream stages | | L2 | Qlr | Generally good, but variable | Intense if wet or moist | Unfrozen to discontinuously frozen with low to
moderate ice content; thaw unstable where frozen and
ice rich | Subject to differential settlement where frozen and ice rich | Possible low-volume source of sandy gravel and organic material for landscaping; generally unsuitable for foundations | Subject to ice shoving in winter near lake shores | | P | Qp | Generally very poor; subject to seasonal
flooding | Intense | Discontinuous to continuous permafrost with
moderate to very high ice content; thaw unstable | Subject to lateral erosion and collapse near active
channels; subject to subsidence when thawed | Source of organic material for landscaping; unsuitable for
foundations unless permafrost is preserved | Difficult to excavate and compact; subject to seasonal
slope and stream icings | | В | b, b', b+b' | Generally poor except where highly broken | Low, except where rock is highly weathered or fractured | Generally thaw stable, except where ice forms in extensive fracture spaces | Generally stable, except where orientation of joints,
fractures, or foliation may cause failure | Can be good source for crushed aggregate and rip rap where rock is hard, fresh, and not highly fractured | Quality of rock will vary depending on lithology, degree
of weathering, and fracturing; local zones of weathering
or shearing may be clay rich | $^*\mbox{derived}$ from geologic units in Reger and others, 2008.