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ABSTRACT 

This paper describes the Northern coal fields, the environment in which they are 

situated, and various routes and systems for transporting metal I urgica l qua1 ity coal from 

these deposits to a potential market in Japan. Each transportation mode i s  discussed with 

respect to northern Alaska conditions. Capitol and operating costs were developed for 

each system. 

If the coal must support the entire transportation system cost, the transportation of 

coal from the North Slope of Alaska to Japan appears to be economically feasible only 

from easily mined areas which are close to an ocean shipping port. In the case of trans- 

portation cost sharing by other users, or by government subsidization, the prospects of 

northern coal exploitation would be enhanced. 

The final feasibility of developing any of this coal deposit cannot be determined un- 

t i l  the mining costs and the factors which influence these costs are known. 
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CHAPTER I 

INTRODUCTION 

Early in the twentieth century, a significant portion of the revenues of the Terri- 

tory of Alaska came from placer gold mining on the Seward Peninsula and in Interior Alaska, 

from lode gold mining in  the Juneau area and from copper mining near McCarthy in Southern 

Alaska. Since that time, increasing operational costs without a proportional increase in 

the price of gold, and closure of the lode gold mines during World War II to increase base 

metal in production has resulted in  the discontinuance of the larger gold mining operations. 

The largest copper producer suspended its operation when high qua1 ity ore became scarce. 

I t  is  generally agreed that Alaska has significant mineral potential, but develop- 

ment has been slow because of high capital and operational costs, long distances to a mar- 

ket, lack of internal transportation and recently for political and ecological reasons. 

The recent discovery of oil at Prudhoe Bay on the Arctic Ocean and the subsequent 

planning of the Trans-Alasko pipeline has demonstrated that a number of these problems can 

be overcome. A copper mine in Northern Alaska, and a fluorite mine on the Seward Penin- 

sula, which has been proposed for operation in the late 1970ts, must surmount similar devel- 

opmental difficulties. Perhaps these activities are the harbingers of o new mining era in 

Alaska, and wil l  lead the way to a resurgence of other mining developments in the State. 

One of these developments could be coal mining. Barnes (1967) estimated the coal resources 

of Alaska to be approximately 130 billion tons, of which 120 billion tons exist in nofihern 

Alaska. Recent tests have indicated that part of this deposit i s  coking coal, a commodity 

which i s  in demand on the world markets. 

IMPORTANCE OF THE PROBLEM 

The economic considerations for the establishment of a commercial coal mining 

activity on the North Slope fall into two basic elements: mining costs and transportation 

costs. I t  i s  essential that good estimates of both of these elements are known before invest- 

ment of capitol i s  considered. 

I t  i s  important that a l l  types of applicable transportation methods are also studied 

from aspects other than economic considerations; namely, flexibi lily, ecolo gical effects, 

and future development. 

I t  i s  only after the above i s  accompl ished that a reasonable conclusion of North 

Slope coal development can be reached. 

1 



PREVIOUSLY RELATED RESEARCH 

Collier (1905) described coal deposits of the Corwin Bluff area which were investi- 

gated by a U . S . Geological Survey party in 1904. Coal wcls discovered near Cape Beau- 

fort in  1826 by A. Collie, who accornpunied Captain Beechey to the Arctic Ocean. Whalers 

used the coal from beds near Corwin Bluff, 28 miles east of Cape Lisburne between 1880 and 

1905. In 1900 and 1901, about 1000 tons of this coal was mined and sold at Nome for fuel . 
(Collier, 1905). 

Smith and Mertie (1930) and Chapman and Sable (1960) reported the results of the 

reconnaissance of northern coal deposits in 1926-1927 and 1944-53 during U . S . G . S. investi- 

gations of Petroleum Reserve No. 4. In 1946, the U. S. Bureau of Mines investigated the 

coal deposits to assess the possibility of their use for heating in local Eskimo villages*(San- 

ford, 1946, Toenges, 1947). A small mine on the Meade River supplied coal to the village 

of Barrow from 1944 until gas became available as a substitute fuel. 

In 1954, representatives of the Morgan Coal Company drove a 70 foot adit and a 

raise in  the coal beds of the Kukpowruk River and extracted a bulk sample from this raise 

(Warfield, 1969). In the field seasons of 1962, 1963, 1964, and 1966, Bureau of Mines purties 

gathered samples from surface outcrops, trenches and at depth with the use of a diamond dri l l  

from the coal beds of the Kokolik and Kukpowruk Rivers. Extensive carbonization studies 

were conducted on some of these samples (Warfield, 1966, 1969). 

Callahan (1969, 1971) reported the results of U . S . G .S . reconnaissance surveys and 

surface mapping performed in 1966 and 1967 along the Kukpowruk River and in two adjoining 

townships, and of surveys done in 1969 i n  the Cape Beaufort area and near Corwin Bluff in 

1970. In the summer of 1970, Kaiser Steel Corporation made a brief study of the coal occwr- 

rences along the Kukpowruk River ("Kaiser Steel---", 1970). 

The Bureau of Mines continued their drilling program on the coal deposits near Cape 

Beaufort in  the summer of 1972. 

Several major studies concerning transportation to northern Alaska have been performed 

although none of them were directly related to the exploitation of the northern coal fields. 

Bush (1942) conducted investigations for the U. S. Army Corps of Engineers on the feasibility 

of a railrocld or highway route from Fairbanks to an ocean port on the Seward Peninsula. In 

1967, the NORTH Commission was established to foster the development of the northern area 

of the state of Alaska. Under the direction of this Commission, EBS Management Consultants 

(1967) performed a study on a proposed extension of the Alaska Railroad to Kobuk, Alaska. 

In connection with this proposed extension, Heiner and Wolff (1968) performed a study on a 
2 





CHAPTER II 

THE NORTH SLOPE COAL DEPOSITS 

LOCATION AND EXTENT 

The northern coal fields are situated mainly in northwestern Alaska, bounded ap- 

proximately by the Arctic Ocean and the Chukchi Sea to the west, the Arctic Ocean to the 

north, the lower Colville and ltkillok Rivers in the east and the Brooks Range in the south. 

The coal bearing area covers about 30,000 square miles of which 24,000 square miles is  

included in Naval Petroleum Reserve No .  4. 

fhrnes (1967) estimated the coal resources of the region to total 120,197 mill ion 

tons under less than 3000 feet of overburden, of which 19,292 mill ion tons i s  bituminous 

coal in beds of more than 14 inch thickness and 100,905 million tons i s  subbituminous coal 

in beds of more than 2 1/2 feet thick. The locations of the bituminous and subbituminous 

coal are shown in Figures I and 2, and the reserves of each district of the coal field are 

listed in Table I. 

ANALYSIS 

Warfield (1966) reported that the majority of samples taken from a 20 foot seam in  

the Kukpowruk River coal beds were found to have significant coking qua1 ities. He also re- 

ported that exposure of one of these samples to air for extended periods did not reduce the 

coking qualities more than noted in similar treatment of an eastern U. S. coking coal. 

Several coal deposits sampled in 1964 and 1966 in the Kukpowruk River, Kokolik 

River and Cape Beaufort areas were established as good quality and of possible use for coke 

production (Warfield, 1969). In the Cape Beaufort area, none of the surface samples showed 

coking properties, but a drill sample from a depth of 200 feet had a higher heating value 

and pronounced coking characteristics. 

Warfield (1969) also reported that the coal from these areas has a low moisture, ash 

and sulfur content. 

STRIPPABLE RESOURCES 

A recent Bureau of Mines report ("Strippable Reserves---", 1971) listed the strippuble 

coal reserves of the northern coal fields. These estimates are listed in  Table 2. 

Only coal with a seam thickness of 14 inches or more under 120 feet or less of ovar- 
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Table 1 

District 

Corwin Bluff - Cape Beaufort 

Kukpowruk River 

Kokolik River 

Utokok River 

Meade River 

Colville River 

Kuk River (Wainwright) 

Kugra River (Peard Bay) 

lkpikpuk River 

Total 

Coal Reserves of the North Slope 

Coal Fields, by District 

(mil l ions of short tons) 

Bituminous Subbituminous 

982.3 

3065.3 

2336.1 

2737.9 44,738.1 

2948.3 39,756.3 

7222.3 11,489.1 

1,457.7 

840.2 

2,623.9 

Source Barnes, (1967) 



Capa Liaburne . 

B i t  uminour A Araoa of minobla thickness 

14" for  bi tuminour 

Sub b i  tuminour 30" for  aubbituminour 
and l i g n i t e  

6 A r e o r  where information on 
the qua l l ty  and thicknas* 1s 

Lacklng 

F I B U R E  2 

C L A S S I F I C A T I O N  OF COAL IN THE 

N O R T H  S L O P E  C O A L  F IELDS 

S o u r c e  - Bornes (1961) 



burden was counted as reserves. 

Table 3 i s  an estimate of the strippable coal reserves in each of the northern coal 

field districts. These estimates were computed with the use of the following equation: 

Reserves in the District 
x Total Strippable Reserves 

Total Reserves 

The purpose of this table was only to give an indication of the strippable resources in each 

district and i s  not intended to be completely accurate. 

LAND STATUS OF THE NORTHERN COAL DEPOSITS 

Most of the northern coal fields are contained in  Naval Petroleum Reserve No. 4 

which at the present time i s  not open to mineral leasing. 

Coal prospecting permits in the Kukpowruk River area have been issued to Morgan 

Coal Company. Applications for prospecting permits on approximately 140,000 acres i n  

other parts of the coal fields have been submitted by various organizations and are pending 

approval from the Bureau of Land Management (Bureau of Land Management, 1972). No  

coal leases have been issued for the northern coal fields. 

The most recent (March 17, 1972) Land Classification of Alaska i s  shown in  Figure 

3. Only land which i s  classified as unreserved public lands i s  open to mineral leasing at 

the present time (October, 1972). 

MARKET 

The markets for coal fal l  into two main categories, coking coal and non-coking 

coal. Coking coal i s  a necessary ingredient in  the manufacture of steel, whereas non- 

coking coal is  used mainly for fuel in  thermal-electric plants. 

The market for the non-coking coal of the northern coal fields is very limited. The 

domestic market for coal in Alaska i s  presently being f i l led by a producing mine i n  the 

Nenana coal field. Oil and natural gas have replaced coal i n  the Anchorage and Kenai 

areas. I t  i s  possible that small markets for steam coal could evolve i f  mining or other devel- 

opments occur near the northern coal deposit. 

In Canada and the lower 48 states, there are adequate supplies of non-coking coal 

to last several hundred years at the present rate of consumption. 

A t  the present time, Japan i s  the most favorable market for coking coal from Alaska 

(Japanese Government regulations restrict the importation of steam coal.) Alaskan coal has 

8 



Table 2 

Grade 

B i  tuminous 

Subbituminous 

Strippable Resources and Reserves of Coal in Northern Alaska 

(millions of short tons) 

Source - ("Strippable Reserves---," Bureau of Mines, 1971) 

Remaining 
Strippable 
Resource 

1,197 

5,293 

Recovemble 
Strippable Strippable 
Resource Reserves 

957 478 

4,234 3,387 

Total 6,490 5,191 3,865 

Table 3 

Strippable Reserves by District 

(mil l ions of short tons) 

District 

Corwin Bluff - Cape Beaufort 

Kukpowruk River 

Kokol ik River 

Utukok River 

Meade River 

Colville River 

Kuk River 

Kugrua River 

lkpikpuk River 

Total 

Bituminous 

24 

76 

58 

68 

73 

1 79 

Subbituminous 





a geographic advantage over many of Japan's coking coal suppliers; this advantage could 

result in a favorable competitive position through lower shipping costs. 

In 1971 , 20 mi l  lion tons or 34.4 per cent (See Fig. 4) of U. S. coal exports were 

shipped to Japan (International Coal Trade, February, 1972). In recent years, Canada and 

Australia have captured an increasing portion of the Japanese market. In the first quarter 

of 1972, Australia displaced the United States as Japan's leading suppl ier of coking coal . 
The U .S. S. R .  has proposed to Japan the development of the South Yakutsk, 

Siberia coal field at a cost of 175-185 million dollars (International Coal Trade, May 1972). 

Japan conveyed their intention of importing up to 10,000,000 tons per year from this field 

in the late 1980's provided the qua1 ity meets their requirements. Figure 5 shows estimates 

of Japan's coking coal imports to 1979. ("Iron and Steel---", 1971). 

Selling price. The average price per metric ton of coking coal in 1971, C. I .F. 

Japan was $21 .OO (C . Itoh and Company, 1972). This i s  equivalent to $19 -20 per short ton. 

The premium coking coal from the eastern United States demand a higher price. In the first 

quarter of 1972, coking coal was purchased C. I. F. Japan at the following prices: (Interna- 

tional Coal Trade, May 1972) 

Country Price per Metric Ton Price per Short Ton 

U.S.A. $24.46 to $28.20 $22.40 to $25.80 

Australia $16.58 $15.20 

Canada $20.83 $19.15 

U.S.S.R. 

Pol and 

Since very l i t t le of the northern coal has been analyzed, i t  i s  difficult to project 

what sales price i t  could demand. However, the tests performed to date indicate that the 

northern coking coal i s  a blending coal and would therefore sell at the medium to low cok- 

ing coal prices. 

AREA GEOGRAPHY 

Northern Alaska i s  composed of four physiographic divisions: namely, moderately 

high rugged mountains, low mountains, plateaus and highlands and plains and lowlands 

(See Fig. 6). The major topographic features are the Arctic Coastal Plain, the Arctic Foot- 
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hi1 Is and the Brooks Range. 

Arctic Coastal Plain. Wahraftig (1965) described the Arctic Coastal Plain as a 

smooth plain rising imperceptibly from the Arctic Ocean to a maximum altitude of 600 feat 

at its southern margin. Thousands of shallow lakes from 2 to 20 feet deep and from a few 

feet to 9 miles long pockmark the coastal plain. The plain i s  poorly drained, and as a re- 

sult, swampy conditions are prevalent during the summer. Pingos and ice-wedge polygons 

are common features in this area. Permafrost to depths of 1000 or more feet underlie most 

of this area. The active layer i s  from three inches to four feet deep. 

Arctic Foothills. The arctic foothills are plateaus and low mountains ranging from 

600 to 3500 feet in altitude. The northern section of the foothills i s  dominated by mesalike 

mountains. The southern section is  characterized by irregular buttes, mesas and ridges inter- 

rupted by undulating tundra plains. The entire area i s  underlain by permafrost. (See Fig.7). 

Brooks Range. The mountains of the Brooks Range rise to summits of 7000-8000 

feet in altitude in the southern part. In the higher areas of the range, small glaciers are 

common. The main north flowirg rivers begin at the head of the wide flat-floored glacier 

valleys of the Brooks Range. 

Drainage and Water Resources 

Table 4 i s  an outline of the major rivers in northern Alaska. Rivers east of the Col- 

v i l le River in the Arctic Coastal Plain have numerous braided channels, whereas rivers west 

of the Colville meander sluggishly in valleys 50-300 feet deep (Wahraftig, 1965). Most 

streams in the Arctic Foothills have swift braided courses across broad gravel flats. The 

major rivers of the Brooks Range flow nor+h to the Arctic Ocean, and south to the Kobuk, 

Koyukuk and Yukon Rivers. 

The many small lakes on the Arctic Coastal Plain are limited to low volume uti l ira- 

tion because low annual precipitafion results in slow replenishment rate.  In most hreas, 

permafrost to depths of over 1000 feet prevents the formation of any subsurface water 

(Parker, 1972). 

In winter, ice cover of approximately 6 feet builds up on al l  surface water bodies. 

Many streams are locally covered in winter with extensive sheets of anchor ice. Even in the 

largest rivers, flow in winter i s  approximately 5 per cent of the summer flow (See Fig. 8). 

Water i s  available from lakes which do not freeze to the bottom and from unfrozen 

aquifiers beneath the rivers. Williams (1970) reported that aquifien in the Colville River 
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Table 4 

Major Rivers in Northwestern Alaska 

Drainage 
Area 

River (sq. miles) 

Kukpowruk 4,178 

Meade 3,850 

lkpikpuk 4,540 

Colville 24,000 

Kukparuk 3,659 

Sagavanirktok 5,546 

Length of Estimated Average 
Main Stream Annual Flow 

(mi l es) (cu.ft./sec.) 

Source - Parker (1972) 



. 

L 

v 
0 

' 3 a s  > a d  s ~ a b a w  s ! q n a  a b ~ o q a s ! a  o 
-I 

o o O o o  rlr w 
0 s  0 LT I 
r - w  n c d  R1 - w 

0 c 
c 0 
u Q 
I ' o  

& ;  

CJ 
(D 

m - 
C 

W L  
0 PD 
P > 
c .- - , =  N 

r- 
a m  CID - - - s .d - 
C " >  ", - 

0 

E 
o m  ; 
s 

O D , +  
0 
I 
0 
0 - =  L W L .- 

0 0 0 0 
0 0 0 0 
u1 0 P n 

O 
(\I E 

E D P  l a d  s u o +  p o o l  p a p u a d s n s  



yield from several hundred gallons per minute from alluvium to less then ten gallons per 

minute from bedrock. 

Vegetation 

Most of the Arctic Coastal Plain consists of tundra which i s  characteristically tree- 

less. Trees of the willow and poplar variety do exist along the larger valleys in the Arctic 

Foothills and to a lesser extent in the mountain valleys. 

In the Brooks Range, the tree line along the southern slopes usual ly occurs between 

the 1000 to 2000 foot elevations. The most prevalent plant l i fe i s  the cotton grass tussock 

which i s  6 to 10 inches in width and height, and i s  separated by mossy channels a few in- 

ches wide. Other types of vegetation common to northern Alaska are mosses, lichens, sed- 

ges, dwarfed berry bushes and many wild flowers. 

Climate 

Al l  of northwestern Alaska i s  considered to have an arctic climate (Johnson, 1971). 

This arctic climate i s  characterized by light precipitation, strong winds and a 10' to 20' F 

mean annual temperature, Marine influence affects this climate somewhat in summer, but 

to a lesser extent in winter. 

Temperatures of -4Q0 F. are common in the winter and have been known to drop 

to -65' F.  Strong winds and storms, many approaching gale velocities are common. Table 

5 i s  a summary of climatological data at various points in northwestern Alaska. 

Settlement and Accessibility 

Settlement in  northwestern Alaska consists mainly of isolated Eskimo coastal v i l -  

lages, the largest of which is Barrow with more than 1000 residents. Oil comprrr;~q engag- 

ing in exploration and construction maintain temporary camps at several points i t !  14le region. 

The area contains no roads, railroads or trails. None of the major rivers are navi- 

gatable except the Colville River which i s  navigatable by barges with a three foot draft. 

Travel i s  pr inc ip l ly  by air although tractor trains have been used in past explora- 

tion programs. Supplies are brought into the coastal villages by ship and barge in the late 

summer. 

Northwestern Coast 

Continental shelves of the Bering and Chukchi Seas create fairly shallow waters on 
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Mean 
Annual 

Location Preci p . 

Ft. Lay 6 

Cape Lisburne 8 

Cape Thompson 8 

Mean 
Annual 
Snowfal I 
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Cl imatological Data at Various 
Locations in Northwestern Alaska 

Mean 
Mean January 
Annual Minimum 

**?.O -24 

10 -18 

15 -20 

**19.0 -16 

17 -16 

Temperature F 

Mean Mean 
January July 
Maximum Minimum 

Mean 
July 

Maximum 

Kotzebue 8 40 21 -16 0 46 60 

* Number of degree days below 65 F for one year. 

**Source - U. S . Dept. of Commerce, Environmental Science Services Administration 

Source - Adapted from Johnson, Hartman 1971 

* Heating 
Degree 

Days 



the northwestern coast. (See Fig. 9) Water depths of sixty feet are at least three miles 

from shore. Port Clarence and Golovnin Bay, both of which are on the Seward Peninsula 

are the only natural deep harbors north of Norton Sound. The next natural deepwater har- 

bor past Port Clarence i s  at Herschel Island in the Canadian Arctic. 

At Kotzebue, sea going ships must anchor 14 miles offshore, where cargo i s  trans- 

ferred to shallow draft lighter barges. At Prudhoe Bay, cargo i s  transferred from ocean 

barges to lighter barges 6 miles from shore (Moreau, 1970). 

In 1958 a study was undertaken by the U . S . Geological Survey (Pewe, 1958) to 

determine the most suitable site on the northwestern coast of Alaska for the excavation of 

an artificial harbor by a nuclear device. The harbor site recommended in this study was at 

the mouth of Ogotoruk Creek, about seven miles south-east of Cape Thompson. At this 

point there exists a seavalley which starts one quarter mile from shore and extends seaward 

for 15 miles to a depth of 135 feet (Sainsbury, 1966). 

Seafloor. Reflection studies between Cape Lisburne and Cape Seepings and be- 

tween Icy Cape and Point Barrow have indicated that bedrock is exposed or nearly exposed 

on the seafloor in many areas (Craeger, 1967). Sainsbury and Scholl (1966) found outcrops 

exposed on the surface of the seafloor near the mouth of Ogotoruk Creek. 

Coastline topography. Nearly continuous steep sea cl i f f s  characterize the coastal 

region from Ogotoruk Creek to Cape Beaufort. Breaks in these cliffs occur where stream 

valleys meet the coast. Beaches are generally steep and narrow except at Point Hope where 

barrier islands project offshore. 

From Cape Beaufort to the Utukok River, about 25 miles south of Icy Cape, the 

coastline consists of almost continuous sea c l i f k  from 15 to 45 feet high. In the Cape Beau- 

fort area, the cliffs are directly exposed to the ocean. From approximately 25 miles north 

of Cape Beaufort to the Utukok River, the coast i s  fronted with low relief barrier islanck 

which enclose small shallow lagoons. 

The shoreline from the Utukok River northeastward to Point Barrow i s  characterized 

by moderate to low relief sea cliffs which are either directly exposed to the sea or are 

fronted by sedimentary barriers (Hartwel I, 1972). 

Tides. Tides along the northwest coast are weak. Normal maximum tides range 

from three feet near Kotzebue to 0.6 feet near Point Barrow (Johnson, 1971). Storms can 

cause changes in the sea level, such as one storm in 1963 when three meter high waves 

caused flooding and about three mil lion do1 lars damage to the village of Barrow (Hartwel I, 
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1972). 

Ice Conditions. In northwestern Alaska, ice begins to form on the beaches in the 

late fall and remains for approximately 8 months. This ice attains a thickness of about 5 

feet (Hartwell, 1972). If shearing occurs between the fast ice (ice frozen fast to the shore) 

and the floating ice offshore, large pressure ridges and jumbled ice fields usually occur. 

Pack ice usually forms a major pressure ridge offshore at Barrow and at times grounds on the 

sea floor to depths of 60 to 100 feet. Even during the normal ice-free season at Barrow, an 

onshore wind can bring the pack ice into shore. When the protective fast ice thaws, the 

sea ice may be driven onshore by winds. These major ice shoves can produce ridges up to 

6 feet high. Coastal ice scour i s  prevalent during the winter months. Deep hulls of pres- 

sure ridges which extend beneath the floating sea ice rub and gouge the sea floor from shore 

to depths of 100 feet. Some of this gouging in  the Beaufort Sea has produced troughs in the 

sea floor from 2 to 30 feet deep. ("Ice Gouging---", Whitehorse Star , 1972). 

Table 6 i s  a list of the dates of break-up and freeze-up at locations in northwestern 

Alaska. 



Location 

Table 6 

Dates of Ice Break-Up and Freeze-Up 

Ice Break-Up Ice Freeze-Up Ice-Free Months 
Ice Light Heavy 

Ave . Earl iest Latest Ave . Earl iest Free Ice Ice Latest 

Golovin Bay May 23 May 13 June 14 Nov 2 Oct 8 Nov 19 

Te\ler-Port Clarence June 7 May 12 June 18 Nov 10 N w 1 3  Dec26 *3 * 4 * 5 

Kotzebue May31 May17 June8 Oct  23 Oct 2 Nov 5 

Point Hope June 20 May 30 July 8 Nov 11 Oct 6 Dec 19 **3 **3 **6 
tQ 
P 

Point Lay June 24 June 1 July 10 Nov 4 Oct 12 Nov 27 **2.5 **3 **6.5 

Wainwright June 29 June 7 July 26 Oct 2 Sept26 0 d 9  *2 *3 *7 

Point Barrow July 22 June 15 Aug 22 Oct 3 Sept31 Dec19 *2 **3 **7 

* Source - U. S. Coast Guard, Polar Transportation Requirements 

Source - U. S. Coast Pilot No. 9, 1964 

** Estimated from above sources 



CHAPTER Ill 

COAL TRANSPORTATION METHODS 

RAIL ROAD 

The most widely used method of transporting coal overland today i s  the railroad. 

Railroads have been constructed and successfully operated in many types of environments 

and climatic conditions. 

Early railroads in Alaska were the Seward Peninsula Railroad, the Copper River and 

Northwestern Railroad near Valdez and the Alaska Railroad which extends from Fairbanks 

to Seward. Only the Alaska Railroad is  stil l operating. At the present time, approximately 

one mil lion tons of freight are hauled over the Alaska Railroad annually. 

Other railways built in northern areas and still operating are the Labrador Ungava 

Railway, the Great Slave Railway, the Hudson Bay Railway, all of which are in  Canada 

and the White Pass and Yukon Railway which operates between Whitehorse, Yukon Territory 

and Skagway, Alaska. 

Construction in Permafrost 

A railroad built in areas where permafrost i s  prevalent requires large amounts of 

f i l l  material. This f i l l  material serves as a railroad bed and as an insulation layer to retard 

the thawing of the underlying permafrost (See Fig. 10). The general method of construction 

on permafrost i s  to preserve the frozen condition by building on it, rather than excavating 

into it. Side hi l l  railroad construction i s  a technique which i s  applied in northern areas. 

Valley bottoms are often flooded during the spring run-off. 

Drainage i s  also an important consideration for railroad construction in permafrost 

areas. Water in contact with the permafrost causes thawing, the result being settling of 

the railroad bed. 

Construction Costs 

Railroad construction costs in northern areas vary with the location, but in general 

these costs are substantially higher than for railroads in southern areas. The main reasons 

for the higher costs are: importation of labor, severe climatic conditions hence lower labor 

and machine efficiency, the large volumes of f i l l  required, and the transportation costs for 

supplies and materials from southern areas. Table 7 shows the construction costs of existing 

and proposed railroads in  northern areas. 
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Gravel Fill  

f r o s t  table ', 
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F I G U R E  10 

PROFILES OF T R A C K  CONSTRUCTION IN  PERMAFROST 

S o u r c m  - ~ o n o d i a n  l n r t i t u t r  o f  Guided G r o u n d  T r a n r p o r t  ( 1 9 7 2 )  
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Table 7 

Rail road 

1 .  Great Slave Railway 

2. Quebec North Shore and 
Lclbrador Railway 

3. Extension of the Alaska 
Rail road 

8 
4. Railway to the Arctic 

5. Railroad North of Fairbanks 

6. Railroad to North Slope 

Construction Casts of Existing and Proposed Rail roads 

Locaf ion 

Year 
Length Constructed 
(miles) or Proposed 

Roma, Alberta to Hay River, 377 
N.W.T. 

Sept Iles, Quebec to 360 
Sheffervi l l e, Labrador 

Dunbar, Alaska to 
Kobuk Alaska 

Trout River, Alberta to 1240 
Prudhoe Bay, Alaska 

Nenana, Alaska to 
Deadhone, Alaska 

Construct ion 
Cost per mile 
(dot Ian) 

Sources: 1- Charles (1965) 4 - Canadian Institute of Guided Ground Transport (1972) 
2- Pryer (1963) 5 - Polar Transportation Requirements (1968) 
3- ERS Management Consultants (1967) 6 - Tudor, Kelly, Shannon (1972) 



Unit Trains 

The unit train technique i s  0 relatively new concept in railway transportation. The 

first unit train system started in the United States in  1959. In 1967, 327 coal mines were 

shipping coal by unit trains (Glover, 1970). 

The unit train concept usually involves the following: 

a) A train or number of trains dedicated to the haulage of the bulk material. 

b) A long term contractoral agreement between the shipper, supplier and receiver. 

c) One source and one destination. 

d) A predetermined louding, unloading and travel time schedule. 

The major advantages of the unit train are: high equipment utilization, low 

clerical costs, and higher shipper and receiver benefits due to the precision of advanced 

scheduling. 

SLURRY PIPELINE 

Slurry transmission by pipeline has been in existence since before the 20th century, 

but i t  has been only in recent years that long distance transmission has developed. Two of 

the most noted pioneer efforts in bulk movement by slurry pipeline were built in 1957. A 

71 mils long pipeline used to transport Gilsonite extended from Bonanza, Utah, to Grand 

Junction, Colorado, and a 108 mile long coal slurry pipeline was constructed between Cadiz 

and Cleveland, Ohio. 

The most recent efforts in  the use of slurry pipelines are the 53 mile long Savage 

River pipeline in Tasmania which transports iron ore slurry, and the 273 mile long Black 

Mesa pipeline which transpork a coal slurry between Arizona and Nevada. A 490 mile long 

pipeline to transport coking coal from eastern British Columbia to the Pacific coast has been 

proposed for operation in the late 1970's ("World Wide---", 1972). 

A long distance slurry pipeline has only one source and one destination. Each ap- 

plication i s  a separate case and normally cannot be used interchangeably with other mater- 

ials. The general requirements for pipeline construction are large ore reserves and a long 

term market contract. The main advantages of a slurry pipel ine are low operating costs and 

low material losses. In many slurry pipelines, the pumping stations are automated or semi- 

automated, A pipeline i s  a closed system, therefore dust losses or contamination of the en- 

vironment i s  minimal. Mosf pipelines are buried, consequently, they do not occupy the land 

surface or create surface obstruetims. 
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Table 8 i s  a list of data on some commercial pipeline applications. 

Slurry Pipeline Design 

Link (1972) stated that slurry transport in many cases i s  still more of an art than a 

science. A number of commercial pipeline construction projects have been precluded by 

extensive laboratory and pilot plant testing. 

Particle size, pumping velocity and solids concentration are three of the most im- 

portant factors in slurry pipeline design. 

Pumping velocity. In slurry pipelines i t  i s  important that the solid particles remain 

in  a homogeneous suspension. In every ease, there exists a critical velocity, the point at 

which particles begin to settle to the bottom of the pipe. The pumping velocity must be 

above this critical velocity. I f  not, solid particles tend to be dragged along the bottom of 

the pipe causing excessive pipe wear and creating unstable flow conditions. The optimum 

velocity for commercial coal slurry applications has been determined to be between 3 and 6 

feet per second (Wasp, 1971). 

Solids concentration. The concentration of solids in a slurry has a direct influence 

on the particle settling velocity and the pumping velocity. Commercial coal slurry pipe- 

lines use solids concentrations of 45 t o  60 per cent by weight. Beyond 60 per cent, small 

increases in  concentration mean large increases in the pressure drop, hence a higher pumping 

horsepower and higher cats with disproportionate gains in the amount of material transported. 

Another factor in the design of a pipeline i s  the carrier fluid. In most cases, wafer 

i s  used as the carrier fluid although i t  i s  possible to use oil, gasoline, or other hydrocarbons 

i f  readily available. However, i t  i s  the rare case where the markets are available for the 

exact balance of the solids and the carrier fluid. 

Major pipeline Components 

Pumps. Slurry pipelines have employed centrifugal pumps and piston and plunger 

reciprocating pumps. Centrifugal pumps are used where the pump discharge pressure i s  re- 

latively low, below 650 p . ~ .  i. Piston reciprocating pumps are normally used for pressures 

up to 2000 p.s. i., plunger pumps are used where pressures up to 4000 p.s. i. are required 

(Thompson, 1972). 

The main advantage of the reciprocating pump i s  the higher operating pressure. 

This higher pressure allows a greater distance between pumping stations, hence a lower sta- 
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Table 8 

Some Long Distance Slurry Pipelines 

Pipel ine Location Pipe Annual Material % Solids 
Size Tonnage Transported by wt. 

(Length) (mill ions) 

American Gilsonite Co. Utah, 10" 0.4 Gi lsoni te 48 
Colorado (72) 

Consolidated Coal Co. Ohio 
( I bKi 1.3 Coal 50 -60 

ConsoliaatedCoalCo. Virginia, 18" 10 Coa 1 N .A. 
New York (350) 

Black Mesa Pipeline Co. Arizona, 18" 5 Coal 45-50 
Nevada (273) 

Savage River Tasmania 9" 2.25 iron Ore 60 
(53) 

Cascade Pipeline British N.A. 10 Coal N.A. 
Ltd. Columbia (500) 

* Closed due to decreased railroad tariffs 

Construction Year 
Cast Started or 

(mil lions) Proposed 

N.A. 1957 

N.A. *19P 

200 1969-P 

Sources - Job (1969) 
* Longest Largest Coal Slurry---" (1971) 

Love (1969) 
McDemott and others (1968) 



tion cost. One of the largest slurry pumps constructed at present i s  1750 horsepower, where- 

as earlier commercial coal pipelines used motors of 450 horsepower. 

Another advantage of the reciprocating pump is  that they can work effectively 

under abrasive conditions. In a centrifugal pump, the slurry must be conveyed through the 

body of the pump, whereas in a reciprocating pump water can be forecsd into the face of 

the piston and plunger so that slurry contact with the components of the pump i s  minimal. 

h. Slurry pipe generally has a higher carbon content than pipe used for oil 

transmission. 

Pipelines conveying a highly abrasive material such os iron ore have to be rotated 

at intervals. Coal i s  from onequarter to one-half as abrasive as iron more, thus pipe wear 

i s  not as serious a consideration. 

Preparation and dewatering plant. The cost of the slurry preparation and subse- 

quent drying, if required, may be an added c a t  of slurry transportation i f  the coal i s  marketed 

in the dry state. 

Slurry Pipelines in Northern Areas 

The cold northern climate poses some unique problems to slurry pipeline construc- 

tion and operation. 

Water. The scarcity of water in northern, particularly arctic areas in the winter - 
may require consideration of seasonal operation, a smaller water supply line from a large 

water source, or recirculation of water. 

Permafrost. Normally pipelines are buried except over river crossings or when 

travelsing a mountainous terrain. Burying a pipeline in  permafrost may cause complications. 

Lachenbruch (1970) studied the effects of a hot oil 48 inch diameter pipeline buried in perma- 

frost and concluded that a cylindrical thaw region 20 to 30 feet in diameter would occur af- 

ter several years of operation. He also aoncluded that insulating the pipe would increase 

the oil temperature rather than decrease the thawing. A similar effect, although much less 

severe, may result i f  a slurry pipeline i s  buried. Heat i s  generated from the abrasion of the 

slurry along the pipe and pump walls. Although this heat generation rate may not be high, 

i t  wil l  have to be accounted for. 

Climate, Slurry pipeline operation could be either seasonal or year round. A sea- 
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sonal operation would avoid the severe winter tempemtures but would have to be propor- 

tionately larger than a year-round system. 

A year round pipeline system would have to be insulated and/or heated to prevent 

freezing. No long distance commercial slurry pipelines exist in areas where freezing of the 

line i s  a problem. Many short distance pipelines exist in cold areas, but these are either 

heated or the exposure time to cold temperatures is  minimal. 

ROADS AND TRUCKS 

Compared to other,modes of bulk transport,trucking i s  considered the most flexible . 
In the development of a system to move large amounts of bulk materials over long distances, 

the establishment of a road and truck system normally involves a lower capital cost, but a 

higher operating cost than other systems. Where the belt conveyor and slurry pipel ine are 

designed for a maximum amount of material to be transported, a road-truck system can be 

expanded simply by the addition of more road and more trucks. Since each truck i s  self 

propelled unit requiring one or two operators, the labor costs and maintenance costs are 

higher than for other systems. Roads are not as limited to grade as are railroads. Railroads 

generally are restricted to grades close to 2 percent where roads can be constructed with 

grades of 8 percent or more. To move material from the same source to the same destination 

in an undulating terrain, a railroad would then normally be longer than a road. 

Trucks 

There are two major classes of trucks fm the movement of bulk materials: on-the- 

highway trucks and off-the-highway trucks. Off-the-highway trucks with capacities up to 

250 tons are presently being usd, and trucks with capacities greater than 300 tons are anti- 

cipated in the near future. These large trucks are normally used for short hauls in open pi t  

mines or in large construction projects. On-themhighway trucks can be of two types: those 

operating on public roads and those operating on private roads. Trucks operating on public 

roads are subject to width, length and weight restrictions. In Alaska, the weight restriction 

i s  18,000 gross pounds per axle for single wheels, and 20,000 gross pounds per axle for dual 

wheels (Alaska Department of Highways). The maximum allowable truck width i s  8 feet and 

the allowable length is 70 feet. In the Yukon Territory, the maximum allowable gross weight 

per truck i s  95,000 pounds (Baker, 1971). As a result of these restrictions, truck payloads 

normally range from 25 to 30 tons. 
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On-the-highway trucks which operate on private roads are not normally subject to 

restrictions, except those imposed by the condition of the roads on which they operate. A 

trucking system which has the advantage of greater labor and truck utilization than on pub- 

l i c  roads operates at a phosphate mine in Idaho. Each truck hauls three 70 ton capacity 

trailers a round trip distance of 31 miles (Atwood, 1971). 

Northern road construction 

Road construction over permafrost requires the some special consideration as rail - 
road construction. Damage to the insulating tundra layer wi l l  cause rapid degradation of 

the road bed and adjacent area. Protection of this insulation layer can be accomplished by 

covering the tundra with large amounts of gravel or sand f i  11 material. (Foam insulation i s  

presently being considered for use in road beds to reduce the amount of f i l l  required .) Stokes 

(1971) suggested that a 5 foot deep fill layer over high center polygons and a 6 foot deep f i l l  

over low areas makes an adequate roadway on the North Slope which requires l i t t le maint- 

enance. Drainage i s  another important factor in road location. Ditching i s  not always 

possible because i t  may result in erosion of the permafrost. An adequate number of drainage 

culverts are necessary to prevent water from melting the permafrost beneath the road beds. 

Figure I1 i s  a cross section of a typical road constructed on permafrost on the North Slope. 

Construction Costs 

The cost of a road varies with the types of road required. A winter road can be 

constructed at a very low cost but i t  can only be utilized for a portion of the year. In most 

cases, there i s  a tradeoff between the initial road construction cost and the yearly mainten- 

ance cost of the road and trucks. Table 9 i s  a summary of the construction costs of various 

types of northern rmds . 

BELT CONVEYORS 

Belt conveyors have been used extensively for the movement of bulk materials since 

the late 19th century. At the present time, belt conveyors are probably handling more mater- 

ial than any other system. An overland conveyor system i s  usually composed of a number ofsingle 

flight conveyors. The length of a conveyor system appears to be unlimited, but the length 

of a single flight is limited by the maximum tension rating of the belt. Until recently, con- 

veyor belts were composed of rubber with a cotton carcass. New developments such as the 

nylon belt, the steel cord belt and the cable belt have increased belt tension ratings, which 
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Road 

1. Minimal Road 
Class I 

2. Minimal Road 
Class I f  

i2 
3. Minimal Road 

Class Ill 

4. Al l  Weather 
Track 

5. Earth Road 

6. Permanent 
Earth Road 

7. Tarred or 
Surfaced Road 

Table 9 

Types of Roads and Construction Costs 

Description 

Clearing of existing trails 

Clearing surface vegetation 
Natural earth surface 

Minimal cut and fill 

Filling, drainage systems 
Ferries at river crossings 

Capable of hand1 ing heavy 
truck traffic in good weather 

A l l  traffic - al l  year 
al l  crossings bridged 

A1 l traffic at high 
speeds a1 l year 

Construction C a t  
(per mile) 

$500,000 or greater 

Source - Ehrl ich (1969) 



have permitted increases in the length of single flight belt conveyors. 

In nylon and steel cord belts, the nylon or steel cords act as the tension members. 

The cable belt conveyor consists of a belt held on two parallel wire ropes, and drive power 

is  transmitted down the ropes, instead of through the belt. The cables and belt are suppor- 

ted by cable sheaves instead of the idlers which are used for the support of nylon and steel 

cord be1 ts . 
Before the development of these stronger belts, i t  was unusual to have a single 

flight conveyor more than one mile in length. A conveyor manufacturer has reported that 

within the next year, two conveyors, each of which wi l l  be 5 miles between head and tail 

pulleys, wi l l  be installed (B.F. Goodrich, 1972). New drive concepts are being tested to 

permit longer single flight conveyors - up to 50 miles between centers (B. F. Goodrich, 

1972) . 
The main advantage of longer single flights i s  in the reduction of transfer points. 

Transfer points are normal ly  the areas where spillage occurs most frequently . Transfer points 

cause increased wear on the belt due to the impact of the material, increased chute wear, 

dust problems, possible sources of plugging, and a greater horsepower requirement due to the 

added height required. 

Conveyors are widely accepted as a transpofiation vehicle for two main reasons: 

ease of operation and relatively low maintenance costs. However, long distance conveyor 

systems are inflexible: thcrt is, they are designed for a specific tonnage, source and destina- 

tion. Also, conveyors create a surface obstruction which i s  more apparent than obstructions 

caused by other transportation modes such as roads and railway. Table 10 i s  a list of some 

existing conveyor systems. 

Construction and Operation in Cold Weather 

The primary consideration in the construction of a belt conveyor system i s  belt 

alignment. A misaligned belt wil l  result in excessive be1 t wear and possibly spillage. Align- 

ment wi l l  be a more serious problem in northern areas because of the land shifts caused-by 

frost action. Stability can be attained with the use of sunken pilings to support the structure, 

but this wi l l  be expensive. 

Belt conveyors have operated successful ly in temperatures below -45' F and belts can 

be designed to operate in temperatures as low as -67' F . ( Goodyear, 1972). Conveyors 

which are operated in cold climates are normally shut down only for short periods of time. 

When material is not being transported, the conveyor continues to run, but at a creep speed, 
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substantially lower than the normal operating speed. 

In areas where snow and wind are common, protective covering of the conveyor is  

a necessity. Bearings, drives and other mechanical equipment must be designed to withstand 

extreme temperatures, and must be kept well lubricated with low temperature lubricants. 

Problems wil l  occur during the freeze-up or thaw times of the year when temperatures are 

near the freezing point. Ice may build up unevenly on the belt and idlers, which may came 

belt run-off and eventual spillage (Oszter, 1965). A conveyor operating in cold weather 

should be either completely unheated, or completely heated. Problems occur most frequently 

when freezing takes place on the belt conveyor. Horsepower requirements are normally 

greater for cold weather operations due to increased friction resistance. A friction multip- 

lier, which accounts for the resistance to idler rotation, used in conveyor belt design at 
0 

-40°F i s  three times the multiplier used at 30 F (Conveyor Equipment Manufacturers Assoc., 

1966). 

Construction Cost 

Capital cost estimates of various widths of conveyor belts are shown in Table 11. 

These costs are probably representative of conveyors constructed in southern areas where 

problems associated with cold temperatures are minimal. 

Total capital and operating cost of be1 t conveyors vary from $ .02 to $. 07 per ton 

mile, depending on the amount of material transported and the annual operating time 

(Maddex, 1971). 

SHIPPING 

For the movement of large amounts of coal from the N0rl.h Slope of Alaska, stock- 

piling and handling at both Japan and the northwest coast of Alaska would be minimal i f  

year round shipping could be achieved. However, the problems of year round shipping to 

northwestern Alaska may become paramount over the alternative extra stockpiling and handl- 

ing problems. To date, there has been no successful navigation north of the Bering Strait in 

winter, even by icebreakers (Lyons, 1972). Alternatives to year round shipping exist, but 

these may be less satisfactory to the supplier und receiver. Some of the possible alternatives 

are: 

I) Shipment of al l  the coal to Japan during the ice free season. This alternative may 

have a negative effect on the marketability of the coal. Large stockpile areas would be re- 
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Belt width 
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Belt Conveyor Costs 
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Idlers Be1 ting S ~ P P *  
4 & \ O f t .  I000 ft. Frame and 
spacing $ per Iin.ft. Decking 
$ per lin.ft. $ per lin.ft. 

Installc~tion 
and Training 

$ per ft. 

Total 
installed 
$ per ft. 

Source - Maddex, P. J. and W. F . Haddon (1971) 



quired in both Alaska and Japan. Assembl ing enough ships for the short season and arrang- 

ing haul contracts for the remainder of the year for supplier owned ships may be difficult. 

2) Shipment of the coal to a transhipment point during the ice-free season, then 

from this point to Japan for the remainder of the year. This alternative requires the dupli- 

cation of harbors and an increase in the ship loading and unloading costs, however, ships 

could be employed year round and Japan would have a more consistent coal delivery. 

3) Same as No. 2 except coal would be delivered simultaneously to Japan and the 

transhipment point during the ice-free season, Japan would then have a consistent coal 

delivery throughout the year. A possible problem of alternatives 2 and 3 may be the in- 

equality in  the number of ships required between the ice-free season and the remainder of 

the year. The difficulty of arranging hauling contracts or leasing ships may occur, but to a 

much lesser extent than in alternative No. 1 . 
4) Extension of the shipping season: A renewed emphasis has been placed on arctic 

shipping as a result of the successful voyage of the 108,000 ton dwt . ice-breaking tanker, 

"Manhattan ", through the Northwest Passage in September of 1969. This voyage proved 

that the technology exists to build ice-breaking carriers and that winter shipping by this 

method i s  operationally feasible. It may be a few years before i t  can be determined i f  

winter shipping through ice i s  economically feasible. 

The first consideration for winter shipping i s  probably the capital cost of the ships. 

German (1971) estimates the incremental cost of an icebreaking carrier to be 40 per cent 

over the cost of a conventional vessel of the same size. This incremental cost i s  for ice 

conditions which might be comparable to the first year ice which would be encountered on 

the northwest coast of Alaska north of the Bering Strait. The next consideration would be 

additional operating costs. Insurance costs would be very high at least for the first few 

years of winter shipping. Ice-breaking ships would encounter pressure ridges that can be up 

to 20 feet in height and five times as deep beneath the water. An aerial reconnaissance of 

the Bering Strait was made in May of 1968 by the U. S. Coast Guard (Polar Transportation 

Requirements, 1968) to view the area in terms of sea transport. One of the conclusions 

made from this study was that, "travel through the Bering Strait in the event of closed leads 

i s  impossible without passing through pressure ridges. " The ship must be able to pass through 

these ridges without stopping, or trcwel time would be excessive. German (1971) gave a 

hypothetical example where a ship had to stop and ram an ice ridge once every 20 miles, 

then regain its travelling speed of 8 knots through the ice. The result was an increase in 

the voyage time of 54 per cent. 
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Another consideration is  the extent of ice-breaker support that would be required 

for winter shipping. A Coast Guard study (Polar Transportation Requirements) estimated 

the user cost of such an ice-breaker would be $22,500 per day. 

Terminal facilities in the arctic require special innovations. Underwater pipelines 

would be exposed to ice gouging. Bubbling systems for piers and wharves have been tested 

in Tuktoyaktuk on the arctic coast of Canada (Inee, 1963) and in Thule, Greenland (Dehn, 

1972). These bubblers worked effectively against ice formation; however, Dehn (1972) 

observed that when a wind blew in the wrong direction, the ice was pushed up against the 

wharf. This phenomenon can also occur in an open channel broken by an icebreaker. A 

wind con shift the sea ice together and close the channel completely. 

The Soviet policy at present i s  to use icebreakers to serve locations in northern 

Siberia for I 4 months, thus extending the shipping season frun 2 4 months to 4 months 

(Armstrong, 1970). Up to the present time, no ship greater than 10,000 tons dwt. appears 

to have been used for the Northern Sea Route. The shallow waters of the continental shelf 

in this area would present difficulties to larger ships. 

The cost of shipping North Slope coal in ice conditions was not developed in this 

study. It is  the opinion of the author that winter shipping in  this area has potential, but 

that cost estimates of this shipping could only be made properly after more information on 

the ice conditions becomes available, and a feasible harbor design has been developed. 

In the analyses in the following chapter, 100,000 ton dwt. ships were used for the 

computation of shipping costs. This size of ship was selected as a trade-off between econ- 

omy of scale (Figure 12) and the draft of the vessel (Figure 13). The draft of the ship i s  an 

important consideration due to the shallow waters along the northwestern coast of Alaska. 

The ocean freight rates for coal from the east coast of the United States to Japan 

vary from $3.70 to $4.50 per ton for single trips (International Coal Trade, 1972). Single 

or spot trips w i l l  generally be higher than for long term contracts. Cunningham (1972) esti- 

mates the cost of shipping coal from Vancouver to Japan ranges from a low of $2.25 per ton 

for 100,000 ton dwt. ships to a high of $3.25 per ton for 50,000 ton dwt. ships. 

Barging 

Tug and barge combinations for the movement of bulk materials have traditionally 

been confined to inland waterways and coastal areas. I t  has only been in the last few years 

that ocean barge developments have become significant. The main reason for the relatively 

slow progress in tug-barge ocean application was the difficulty in developing a method of 
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coupling the tug and barge together. 

Barges up to 30,000 tons dwt, are presently being used in the Gulf of Mexico for 

the shipment of bulk commodities between ports in Florida and Texas. 

The use of a trans-ocean tug barge system for the movement of coal from northern 

Alaska has a n u d e r  of advantages over self propel led ships. 

I) Crew - Tugs require smaller crew than ships:approximately I0-12versus 40 or 

more for ships. 

2) Terminals - A tug-barge system can operate in  much shallower waters than a 

ship, consequently, less elaborate harbor facilities are required. 

3) Util itation - With the use of extra barges, loading and unloading can be accom- 

plished when the tug i s  not in port. The only tug port time required would be the 

time required to change one barge for another. 

There are two major disadvantages of tug-barge transport. Tug-barge combinations 

have a relatively slow cruising speed so the turnaround time i s  higher than that of a ship. 

Secondly, tugs are restricted to the ice free season. 

The capital costs of tugs and barges are lower than ships mainly because of their 

relatively simple design. This advantage may be partly offset by the higher insurance costs 

ctssociated by tug-barge transport. Insurance costs for barges in Alaska are among the high- 

est in the world (Parker, 1972). 

In the analyses in the following chapter, 60,000 ton dwt. barges were used to com- 

pute the shipping costs, There are no barges of this size presently being utilized, but i t  i s  

anticipated that technological developments wi l l  make construction and operation possible 

in the near future. 

HARBORS 

If the North Slope coal i s  to be transported to Japan, it wi l l  be necessary to estab- 

lish a port site or sites in Alaska and have adequate loading facilities for ocean going ore 

carriers at these sites, 

Natural deep water ice free harbors exist in the southern areas of Alaska, but these 

harbors are at least 600 miles from the northern coal fields. On the tip of Cape Darby on 

Golovnin Bay, water depths of 60 feet exist close to shore (C. and G ,S. Survey map 9302). 

This site i s  approximately 380 miles from the northern coal fields. Also on the Seward Pen- 
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insula i s  the natural harbor of Port Clarence, which i s  between 40 and 45 feet deep. Port 

Clarence has a good potential for harbor development, but would require dredging i f  large 

ocean vessels were to be used. Its usefulness to the nor+hem coal deposits i s  again limited 

by the distance between the coal and the harbor. As previously noted in Chapter II, no 

natural harbor exists in Alaska north of Port Clarence. 

A potential site for the construction of an artificial harbor close to the coal i s  at 

the mouth of Ogortoruk Creek, south of Cape Thompson. At this site, the shoreline is 

fairly flat, and the sixty fmt  water depth i s  closer to shore than at most points on the north- 

west coast. This potential harbor site was used in the analysis of several trans portation 

systems in Chapter IV. 

The information available on the seabottom of the Northwest coast indicates that 

bedrock i s  at or near the surface of the sea floor. The general cost of removing overburden 

(sediments) from the seafloor is from $0,40 to $2.50 per cubic yard, while the cost of 

blasting and removing rock from the sea floor normally ranges from $15.00 to $25.00 per 

cubic yard (Koisch, 19A). An excavation close to shore and a channel to this excavation 

large enough for large ore carriers would require the removal of approximately 10,000,000 

cubic yards of material. One estimate of a deepwater Arctic Port was 500 million dollars 

(Moreau, 1970). A nuclear device was considered for the excavation of an artificial har- 

bor at the mouth of Ogotoruk Creek. However, the ecological consequences of this dstona- 

tion were determined to be long lasting, and the projected movement of materials through 

the harbor was not sufficient to warrant the expenditures required for its construction. At 

the present time, a plan such as this would have considerably more opposition. It would 

probably have to be a national emergency before such a method could be employed. 

I t  i s  doubtful that the exploitation of coal deposits alone could carry the economic 

burden of the construction of an artificial harbor by conventional methods. 

The exclusion of an artificial harbor as an alternative does not necessarily rule out 

shiploading i n  this area. Other methods presently in use in other areas are: 

I) Structural steel, concrete, or earth fil led piers to deeper water. 

2) An artificial island in  deep water to act as base for smaller lighter craft from 

shore. 

3) A slurry pipeline from shore to a moored vessel in  deep water. 

4) The use of lighter craft to a moored ship and loading to the large vessel in  open 

water. 



Piers - 
The northwest coast of Alaska i s  an area of extreme ice activity. While i t  may be 

possible to design and construct steel and/or concrete piers to withstand the ice pressures, 

this wi l l  be accomplished only after intensive experimentation. Such piers do exist in 

southern areas, but the ice problem in these areas is  either minimal or non-existent. 

An eat-bh fil led pier three miles long would not be without serious problems, such 

as wave and ice erosion and perhaps movement by the ice. However, this type of construc- 

tion would probably be able to cope with the ice pressures more easily than other types. 

An earth and gravel fil led pier about one mile long has been designed for a fluorite mine 

near Port Clarence, where winter ice conditions are a major design factor. The projected 

cost of this pier i s  between 10 and 15 million dollars (Sheardown, 1972). The design and 

c a t  of an earth and gravel fil led pier in the Cape Thompson area are contained in 

Appendix C. 

Artificial Island 

An artificial island in deep water would require large amounts of f i l l  material. 

This f i l l  material could either be transported from shore or seabottom by pipeline, or by 

barge from shore. This island would also be vulnerable to wave and ice erosion. 

A 50 acre artificial island, connected to shore by a three mile long causeway has 

been constructed in  Vancouver, B.C., for the rnovemed of coal from Japan (Singhal, 

1971). Preliminary designs have been made for a 300 acre island three to four miles from 

shore in the Delaware Bay area for the stockpiling and loading of coal and iron ore 

("Zapata Plans---", 1971). In the Beaufort Sea, a two acre island has been constructed 

for an oil dri l l  site ("Imperial Beaufort---", 1972). Although this island has not yet been 

subject to ice pressures, i t  withstood severe storms without a significant loss of material 

(Imperial's Man---, 1972). 

A main objection to an artificial island, other than the high initial cost might be 

the additional handling and equipment required for the lighter craft required to convey the 

coal from the shore to the island. 

Slurry Loading 

Slurry Loading is a system which has evolved over the last few years and has opera- 

ted successfully for iron ore as well as other mineral ores. 

A slurry loading system usually consists of a large slurry pond on shore from which 
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the slurried material i s  drawn by a floating suction dredge, then pumped to the ship off- 

shore by a moored floating pump. The obvious advantage to this system i s  that neither a 

harbor nor a pier i s  required. 

I t  may be possible that a slurry pipeline loading system could be applied to the 

transportation of North Slope coal. The design of this system would have to include the 

following considerations: 

I) Coal has a specific gravity of 1.5, iron ore has a specific gravity of approxima- 

tely 5.2, consequently a much higher settling rate. In order to minimize a ship- 

loading time, the unsettled decanted coal fines would have to be returned to a 

settling pond on shore by another pipeline, then recovered when shiploading i s  

not in  progress. This means the additional expense of another pipeline and 

another settling pond. 

2) Ice gouging of the seafloor may damage the pipelines i f  they were left submerged 

on the ocean bottom for winter months, but summer storms would probably pre- 

clude a floating pipeline. 

3) Slurry ponds would freeze to a depth of six feet in the winter months, hence 

either continued agitation of the pond or dry storage of the coal would be re- 

quired i f  an extension of the shipping season were contemplated. 

A cost estimate of a proposed coal slurry loading system on the Northwest Coast of 

Alaska i s  outlined in Appendix F, 

Lighter Craft 

Lighter craft are presently used for unloading cargo and yearly supplies at most 

coastal villages in Northwestern Alaska, For the movement of large amounts of coal, 

lightering i s  not practical because of the ship wailing time required, and because of the 

problems of transferring the coal from the barge to the ship. The waiting problem may be 

overcome by mooring a number of fil led barges in deep water to anticipate the arrival of 

the ship, however, transfer of the coal would still remain a problem. 

In summary~an efficient shiploading system at a harbor close to the coal deposits i s  

a necessity i f  the north slope coal i s  to be transported economically. 

Several harbor designs have been considered. The two most practical designs ap- 

pear to be the earth and gravel pier and slurry loading (See Fig. 14). These are the only 

two.designs used i n  the cost analyses of Chapter IV. Both designs could be applicable to 
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most areas on the northwestern coast although the eat+h fil led pier would have a length and 

economic I imitation. 

COAL GASIFICATION 

Introduction 

Manufactured gas from coal or coke i s  not a new concept. Coal gas was used before 

oi l  well drilling was developed in Pennsylvania in 1886. 

Producer gas and coke oven gas were of considerable importance to industry in the 

past. Producer gas is  made by blowing air or air and steam through an incadescent fuel bed. 

Producer gas from coke contains several percent methane, some hydrogen, nitrogen, carbon 

monoxide and carbon dioxide. I t  has a heating value as high as 180 BTU per cubic foot 

(Battelle, 1950). Producer gas from coal contains l i t t le or no methane and less hydrogen than 

coke producer gas, consequently, i t  has a lower heating value. Coke oven gas i s  the gas re- 

leased from bituminous coal during the manufacture of coke. This gas has a heating value of 

approximately 600 B . T. U. per cubic foot. 

In 1926, there were 11,000 manufacturers of producer gas, but when natural gas be- 

came available at low cost, producer gas manufacture was eliminated. 

Renewed interest in the gasification of coal has resulted from projected shortages of 

natural gas within the next decade. In July 4, 1971, the President's message announced a 

major new initiative in cool gasification. Under a joint government-industry program, ex- 

penditures into coal gasification research would be $30 million per year. 

Important considerations which resulted in this expanded program were summarized 

in  a hearing before the Committee on Interior and Insular Affairs on July 27-28, 1971. 

I. Natural gas i s  the least polluting of the fossil fuels. 

2. Natural gas can be produced and transported with less environmental de- 
gradation than other fuels. 

3. For three consecutive years, the amount of gas consumed in the U. S. exceeded 
new supplies found in the contiguous forty-eight states. 

4. Projections of future gas demand are such that every new supply source must be 
developed, including natural gas by pipeline, importation of liquified natural 
gas from overseas sources and the gasification d coal. 

5. I t  i s  important to provide the cleanest fuel to the American consumer using 
resources that can be produced by American mines and which are secure from 
the vagaries of foreign suppliers . 



Existing Technology 

A number of processes can be employed to gasify coal. Most of these processes 

consist of three stages. The first stage consists of the oxidation of the carbon with steam, 

producing a hydrogen rich gas. 

The second stage consists of the removal of sulfur and other impurities. At the end 

of the second stage, the resultant gas i s  a producer gas which has a heating value of about 

160B.T.U. per cubic foot. 

The third stage consists of conversion of the low B.T.U. gas to a high methane con- 

tent, high B.T.U. gas (950-1000 B.T.U. per cubic foot). 

After moisture removal, this gas i s  considered pipeline quality gas and i s  very 

similar in chemical and physical properties to natural gas. 

At present, there are no operating commercial plants manufacturing gas from coal. 

Pilot plants exist in Homer City, Pa., Chicago, II I., and Rapid City, South Dakota. Each 

plant employs a different method for converting coal to gas. Plans have been revealed for 

the construction of two commercial plants in southwestern U.S. for the production of syn- 

thetic natural gas from coal (Levene, 1972). 

Demand 

The U.S. gas supply balance i s  shown in Figure 15. 

As previously noted, the greatest advantage of natural gas i s  its clean burning 

characteristics. Other energy sources listed below have inherent disadvantages or limita- 

tions that may restrict their use in the future. 

Coal. The greatest disadvantage of burning coal directly i s  the resultant air pol- - 
lution from sulfur, f ly ash and nitrous oxides. 

Nuclear Power. It i s  anticipated that 10 per cent of the nation's power wil l  be 

provided by nuclear energy by 1980 and 23 per cent by 1990. 

Oil. By 1985, 50 per cent of the nation's oil requirements wi l l  be imports from - 
other countries. 

Hydropower. Most of the sources of hydropower are being utilized. 
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Others. Geothermal sources are not expected to contribute to the nation's 

energy needs for years to come. Solar energy, tidal energy and other variable sources are 

limited by the lack of developed technology on the storage of such energy. 

Economics 

The cost of natural gas at present is  approximately 3 q  to 3 5 ~  per thousand cubic 

feet or 2 7 ~  to 3 2 ~  per million B.T. U. and i s  increasing with increased demand. 

A feasibility study performed in 1967 by Consolidated Coal Company for the Office 

of Cool Reseurch estimated the cost of a high B.T.U. synthetic gas from coal would cost 

8.397 per million B.T. U. This study was based on a 250 mil lion cubic foot per day plant 

production and a coal cost of $1.50 per ton. Costs are broken down as follows: 

 million B.T.U. 

Lignite cost 16.9 

Direct processing 12.6 

Capital charges 10.2 

Total 39.7 

Another study performed by the Institute of Gas Technology for the Office of Coal 

Research estimated a cost of 46.6~ per million B.T.U. based on a production of 250 million 

cubic feet per day and a bituminous coal cost of $3.00 per ton. 

Gasification of North Slope Coal 

The maior part of the North Slope coal is sub-bituminous and non-coking. I t  i s  

unlikely that much of this low rank coal would be transported for use as steam coal because 

of its low value and distance to large consumers of power. If this coal were to be used to 

any large extent, i t  wi l l  probably be converted to another higher value product at or near 

the mining site. 

The recent discovery of oi l  and natural gas at Prudhoe Bay has resulted in investi- 

gatiotx into the design of a natural gas pipeline. This pipeline i s  reported to be designed 

for a daily capacity of three billion cubic feet of natural gas ('In the 'Greatt---", 1971). 

The cost of the pipeline wi l l  be about five billion dollars. This high construction cost wi l l  

result in  high gas costs to the consumer, high enough to compare with the cost of synthetic 

gas ("Northwest Project---", 1972). 

The construction of the gas pipeline may become an important factor in the econo- 
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mics of developing the North Slope coal reserves. I t  may be possible that the coal could 

be gasified at the mine site, then transported to the existing pipeline by a smaller pipeline. 

The synthetic gas produced from North Slope coal would have to compete with gas 

produced from the large coal reserves in the lower western states, which are accessible to 

existing natural gas pipeline networks. However, i t  may be possible that gas production 

could exist in both areas. At the present lime, i t  appears that coal gasification wi l l  be 

the only way that the lower grades of the North Slope coal can become a significant energy 

source. 



CHAPTER IV 

TRANSPORTATION SYSTEMS 

This chapter contains the results of cost analyses performed on five separate sys- 

tems used for transporting coal from the North Slope of Alaska to Japan (See Fig. 16). 

Each of these systems consists of three stages: each stage i s  treated as a single 

entity. In most cases, the cost estimate of each stage was performed in three steps: design 

of the transportation mode, division of each mode into its basic elements, and summation of 

the costs of these elements. I f  i t  was not feasible to break a transportation mode into basic 

elements, costs were derived from pub1 ished information on existing systems and adapted to 

the situation with the use of cost indexes and cost capacity factors. There are several in- 

stances where portions of the systems involved designs or methods which have not been 

proven technically feasible. In these cases, the author assumed that i t  is  likely they would 

be proven feasible when such a system i s  required. Also, since the designs of the transpor- 

tation modes were used only to facilitate cost estimates, some generalizations were made 

that otherwise may have to be proven experimentally i f  the mode were designed for actual 

use. 

The cost of transportation was computed under the assumption that the coal pro- 

ducer would bear the total cost of the system. Government sponsorship or additional reve- 

nue from other agencies using the transportation system was calculated in the costs in only 

one case. Al l  total system transportation costs were F. 0. B. Yokohama, Japan. 

The capital costs of construction and equipment were converted to annual costs 

based on a 20 year operating period and a 15 per cent rate of return. Twenty years was 

selected because large capital expenditures in a transportation system would be made only 

i f  a long term agreement was made between the supplier and purchaser, especially if this 

system i s  exclusive to coal. A fifteen per cent rate of return was used because this i s  con- 

sidered the minimum rate which wil l  attract large investments to these coal deposits. 
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SYSTEM I 

System I consists of a railway which connects a mining area on the eastern portion 

of the northern coal deposits to the port of Seward on the southern coast of Alaska. This 

system requires the construction of a 492 mile railroad from the existing Alaska Railroad at 

Nenana to the coal deposits, and the construction of coal handling facilities at Seward. 

In this analysis, i t  i s  assumed that the Alaska Railroad could bear the additional traffic 

without significant modification. 

Unit trains transporf. the coal directly from the northern coal fields to Seward with- 

out any handling or excess waiting time between the source and destination. Coal is un- 

loaded at Seward, stockpiled, then loaded onto 100,000 ton deadweight ore carriers for 

year round conveyance to Japan. 

Table 12 i s  a summary of the cost analyses of this system. The analysis and cri- 

teria used are contained in Appendix A. Figure 17 i s  a graphical illustration of the trans- 

portation costs of System I. 

The total transportation cost to move coal by System I varies from $21.02 per ton 

for 15,000,000 tons per year to $46.82 per ton for 5,000,000 tons per year. The rail 

transportation cost is  from 80 to 90 percent of the total transportation cost. 

If the coal deposit must support the construction of a 492 mile long railroad, then 

the transportation costs alone are prohibitively high to allow an economically feasible opara- 

tion. Figure 17 shows that an increase in the number of tons of coal transported over 15 

million tons per year does not lower the transportation cost per ton significantly. 



Table 12 

System I - Annual Costs in Thousands of Dollars 
Railway from North Slope Coal Deposits to Seward, Dry Loading, 

Shipment to Japan by 100,000 ton dwt. Ore Carriers 

Tons 
Transported 
Annual I 
(million$ 

5 

10 

15 

Total 
System 

Cost 

233,395 

274,106 

315,826 

s 

Tons 
Transported 

Annually 
(millions) 

5 

10 

15 
L 

Total 
System 

Cost Per 
Ton 

(dol I an) 

46.82 

27.41 

21.02 

Shipping 

Percent of Transportation Cost 

Total 
Cost 

18,069 

36,139 

54,208 

Rai I 

90.5 

84.4 

80.0 

Cost Per 
Ton 

(do1 lars) 

3.61 

3.61 

3.61 

Rail Harbor 

Total 
Cost 

210,763 

231,104 

252,505 

Harbor 

1.9 

2.5 

Total 
Cost 

4,563 

6,863 

9,113 

Cost Per 
Ton 

(do1 lars) 

42.30 

23.20 

16.80 

Shipping 

7.6 

13.1 

Cost Per 
Ton 

(do! lars) 

-91 

-69 

.6 1 

2.9 I 17.1 
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SYSTEM II 

This transportation system proposes the use of the road that i s  to be constructed 

from Fairbanks to Prudhoe Bay. The coal deposits are reached by travelling 500 miles from 

Fairbanks on this road, and 100 miles on a secondary road which would be constructed. 

These two roads supply a linkage to the Alaska Railroad at Fairbanks where the coal i s  

loaded into railway cars and shipped to Seward for futherance to Japan. Since State road 

weight limitations restricts the use of trucks greater than approximately 25 tons net capa- 

city, 25 ton trucks are used in this analysis. 

Annual costs, which are outlined fully in Appendix B were computed only for the 

transportation costs incurred from the coal fields to Fairbanks. 

The cost of ownership and operation of the trucks i s  a direct function of the tons 

transported, therefore, i f  more coal was moved, the annual truck costs would increase 

accordingly. Consequently, the annual truck cost per ton of coal cannot go below $29.63 

On the other hand, i f  the tonnage transported per year was less than 5,000,000 tons, the 

road costs would become more significant and the cost per ton of coal transported would 

Increase. 

Table 13 is  a summary of the coal transportation costs using System II. 

To move 5,000,000 tons of coal per year by truck from the North Slope to Fair- 

banks, i t  costs $32.69 per ton of coal of which $29.63 per ton i s  the cost of owning and 

operating a fleet of trucks. As in System I, this transportation cost i s  too high to allow an 

economically feasible operation. The high cost of truck transportation in this System pre- 

eluded any further investigation into railway costs from Fairbanks to Seward. 



Table 13 

System I I  

Truck Transportation from Northern 
Coal Fields to Fairbanks 

5,000,000 tons per year 

Annual Cost 

Capital Cost of Trucks 

Operation and Maintenance of Trucks 

Road Cosb (Capital and Maintenance) 

Loading and Unloading 
(Capital, Operating, and Maintenance) 

Total Annual Costs 

Total Annual Cost per ton = $32.69 

Total Annual Truck Cost per ton = 29.63 



SYSTEM Ill 

System II I involves the movement of coal by an overland system 350 days per year 

to a harbor near Cape Thompson on the Chukchi Sea. During the ice free season, the stock- 

piled coal at this port i s  shipped simultaneously to Japan and to on ice free transhipment 

port at Dutch,Harbor in the Aleution Islands. The purpose of the simultaneous shipment i s  

to maintain a consistent delivery schedule to Japan. The coal shipped to Dutch Harbor i s  

stockpiled until the ice begins to form at the Chukchi Sea port. At this time, the coal 

stockpiled at Dutch Harbor i s  shipped to Japan. 

Three types of overland systems were considered in this analysis: railroad, slurry 

pipeline and be1 t conveyon. Two types of shiplooding techniques were also considered: 

dry loading and slurry loading, 

In this system, no definite mining site was established. Instead, costs were com- 

puted as a function of the overland distance from the coal source to an ocean port. 

In the analysis performed for slurry pipelines, the costs of a secondary smaller 

pipeline was added to the total cost. Because of the scarcity of an inland winter supply 

of water in this region, feed water would either have to be recirculated or transported from 

a large lake or the ocean in order to operate a slurry pipeline year round. 

In order to use slurry loading for ship loading, two ponds would have to be con- 

structed on shore, one for the actual loading of the coal to the ship and the second as a 

settling pond for the fine suspended material decanted from the ship. 

Tables 14-19 are the summaries of cost analyses performed for System Ill. Figure 18 

i s  a graphical illustration of thee results. Cost computations and criteria are outlined in 

Appendices C, D, E, and F. 

For the movement of 5,000,000 tons of coal per year, railroad i s  the most expen- 

sive form of overland transportation, belt conveyor i s  the next most expensive and slurry 

pipeline, the least expensive. At 15,000,000 tons per year, railroad, belt conveyor, and 

slurry pipeline transportation costs are very simi lar. 

Overland transportation costs range from a low of $1.35 per ton for 50 miles for 

15,000,000 tons to a high of $15.00 per ton for 200 miles for 5,000,000 tons per year, 

Slurry loading costs are approximately 50 per cent less expensive than dry loading 

costs. A significant part of the dry loading cost is  the capital cost of a harbor on the shallow 

coast of the Chukchi Sea. 

The cost of ocean shipping, which includes the conveyance of the coal to a trans- 

shipment point and furtherance to Japan i s  $3.57 per ton. 
60 



Given the total transportation cost to Japan cannot exceed $10.00 to be econo- 

mically feasible, then the maximum overland distance in which the coal can be transported 

can be determined in Figures 18 a, b, and c. For a railroad, this distance ranges from 45 

miles to 200 miles depending on the number of tons transported annually . For a slurry pipe- 

line, the distance i s  from 80 miles to 200 miles and for a conveyor, it i s  from 70 miles to 

200 miles. 

The slurry lad ing  costs for System Ill are the same regardless of the transportation 

mode from mine to port. This wculd be true i f  the coal was stored at the port site in the 

dry state. Some savings would occur in a slurry loading operation directly connected to an 

overland slurry pipeline. This savings would be relatively small and probably would not 

change economic relationship of the different systems. 



Table 14 

System I II - Annual Costs i n  Thousands of Do! I a n  
Railway from Coal Deposits to a Port near Cape Thompson, Dry Loading, 

Shipment to Japan v ia a Transhipment Point at Dutch Harbor by 100,000 ton dwt. Ore Ships 

Total 

System 
Cost 

Per Ton 
(do1 Ian) 

10.61 

1 4.39 

21.63 

7.63 

9.65 

13.66 

6.58 

7.97 

10.84 

Total 

System 
C a t  

53,076 

71,940 

108,141 

76,315 

96,455 

136,649 

98,870 

119,634 

162,631 

Tons 
Trcmsporfed 

Annually 
(mi l l  ions) 

5 

Shipping 

Total 
Cost 

17,871 

17,871 

17.871 

Dry Loading 

Total 
Cost 

15,288 

15,288 

15,288 

10 

15 

Cost 
Per Ton 
(do1 tan) 

3.57 

3.57 

3.57 

Cost 
PerTon 

(do1 Ian) 

3.06 

3.06 

3.06 

Rail 

Cost 
Per Ton 
(do! lars) 

3.98 

7.76 

15.00 

R~~~ 
(miles) 

50 

100 

200 

35,657 1.89 

1.89 

1.89 

1.47 

1.47 

1.47 

Total 
Cost 

19,917 

38,781 

74,982 

3.57 50 

100 

200 

21,718 

41,858 

82,052 

2.17 

4.19 

8.20 

35,657 

35,657 

50 

100 

200 

18,940 

18,940 

18,940 

3.57 

3.57 

53,613 

53,613 

53,613 

22,036 

22,036 

23,221 

43,985 

3 . 9  

3.57 

3.57 

I .54 

2.93 

86,982 5.80 22,036 
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Table 16 

System I t l - Annual Costs in Thousands of Dollars 
Slurry Pipeline from Coal Deposits to a Port near Cape Thompson, Dry Loading 

Shipment to Japan via a Transhipment Point at Dutch Harbor by 100,000 ton dwt. Ore Ships 

Total 
System 

Cost 
Per Ton 

(do1 lars) 

9.04 

10.61 

13.74 

7.44 

8.74 

11 -32 

6.94 

8.22 

10.79 

Tons 

Annually 
(millions) 

Total 
System 

Cost 

Shipping Dry Loading 

Total 
Coat 

Total 
Cost 

Slurry Pipeline 

Cost 
Per Ton 

(do l !an) 

Cost 
Per Ton 
(do l ta n) 

5 

15,288 

15,288 

15,288 

18,940 

1 8,940 

18,940 

Cost 
Per Ton 
(do1 Ian) 

. P i p 1  ine 
(miles) 

50 

100 

200 

12,064 2.41 

~ o t a l  
Cost 

3.57 

3.57 

3.57 

3 . 9  

3.57 

3 . P  

3.57 

19,891 

35,553 

3.06 

3.06 

3.06 

1.89 

1.89 

1.89 

45,223 

53,050 

68,712 

74,410 

87,347 

113,221 

: 104,123 

3.98 

7.11 

1.98 

3.28 

5.86 

17,871 

17,871 

17,871 

35,657 

35,657 

35,657 

19,813 

32,750 

58,624 

50 

53,613 

10 

22,036 

3.57 

3.57 

100 

200 

15 

t 

1.47 

123,387 

161,914 

50 

100 

200 

22,036 

22,036 

28,474 

47,738 

86,255 

1-90 

3.18 

5.75 

1.47 

1.47 

53,613 

53,613 
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Table 19 

System I l l  - Annual Cosfs in Thousands of Dollars 
Conveyor from Coal Deposits to a Port near Cape Thompson, Slurry Loading, 

Shipment to Japan via a Transhipment Point at Dutch Harbor by 100,000 ton dwt. Ore Ships 

Total 
System 
Cost 

Per Ton 
(dollars) 

7.39 

9.95 

15.07 

6.22 

7.85 

11.17 
d 

5.83 

7.16 

9.86 

Total 
System 

Cost 

36,985 

Tons 
Transported 
Annually 
(mil lions) 

Shipping 

5 

10 

Total 
Cost 

17,871 

Slurry Loading 

Total I Cost Cost 
Per Ton 
(dollan) 

3.57 

Conveyor 

Cost 

6,314 

6,3 14 

6,314 

10,240 

Per Ton 
(dollars) 

1.26 

Cost 
Per Ton 
(do l 1 an) 

2.56 

5.12 

10.24 

1.63 

3.26 

' 

Conveyor 
(miles) 

50 

100 

200 

50 

100 

6.52 

1.35 

2.70 

Total 
Cost 

12,800 

25,600 

51,200 

16,300 

32,600 

49,785 

76,071 

65,200 

20,200 

40,400 

10,240 

3.57 

3.57 

1.26 

1.26 

15 

17,871 

17,871 

3.57 

3.57 200 

50 

100 

1.02 

1.02 

78,497 

111,097 

- 

35,657 

35,657 3.57 

200 

1 3,674 

13,674 

13,674 80,800 

35,657 

62,197 

10,240 

.91 

.9 1 

.91 5.40 

1.02 

87,487 

107,687 

148,087 

53,613 

53,613 

53,613 

3.57 

3.57 

3.57 
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SYSTEM IV 

In this system, coal i s  transported overland by either conveyor belt, railroad or a 

slurry to a port near Point Lay. At this port, the cml  i s  loaded on 60,000 ton 

capacity ocean barges by either dry loading or slurry loading. 

At Point Lay, forty feet of water depth can be reached approximately tw miles 

from shore. The sixty foot water depth i s  approximately eight miles from shore. This eight 

mile distance would preclude dry loading into a 100,000 ton ore ship because o f  the high 

cost of a pier facility. In this analysis 60,000 ton dwt. barges are used to move the coal 

from the Northwestern Coast of Alaska to Japan. The harbor facility for dry loading these 

barges consists of an earth and gravel pier I& miles in length. 

The greatest advantage of a port at Point Lay over a port near Cape Thompson i s  

i t s  proximity to the maior portion of the coal reserves. A limitation of this port i s  its 

shorter ice free season of 75 days compared with a 90 day ice free season at a port near Cape 

Thompson. 

The usefulness of the relatively shallow draft ocean barge in  this situation i s  off- 

set somewhat by their inherent low speed characteristics (average speed of II knots versus 

16 knots for ships). More tugs and barges are required than ships because of their lower 

capacity and their slower speed. 

During the ice free season, the coal is  transported to Japan and simultaneously to 

o transhipment point at Dutch Harbor. The coal stockpiled at Dutch Harbor would then be 

transported to Japan by ocean barges when the Point Lay area i s  non-navigatable due to ice 

conditions. 

The cost of the tug-barge combination depends upon whether or not these quality 

for the government shipbuilding subsidy of 41 per cent (the U.S. Government ollows Ameri- 

can shipbuilders in American shipyards a 41 per cent subsidy on merchant ships). Therefore, 

the tug-barge costs were computed with and without the subsidy. 

The transportation costs of the northern coal under System IV are summarized in 

Tables 20-25. These same costs are shown graphically in Figures 19 a, b, c. The criteria 

and computation used for System IV are in Appendix G. 

The cost of barging from Point Lay to Japan, including a transshipment point is  

$3.58 per ton i f  the shipbuilding subsidy i s  granted or $4.80 per ton without the subsidy. 

Dry loading costs are lower in System IV than System Ill because the harbor facilities for 

60,000 ton barges are not as expensive as those required for 100,000 ton ships. 

Again, if $10.00 i s  the maximum transportation cost allowed in order to make fhe 
70 



operation economic, then the maximum number of overland railway miles varies from 35 

miles for 5,000,000 tons per year to 160 miles for 15,000,000 tons per year of coal transpor- 

ted. Similarly, these respecfive number of miles for slurry pipeline are 65 miles and 155 

miles; for conveyor they are 55 miles and 170 miles. 



Table 20 

System IV -Annual Costs in Thousands of Dojlan 
Rail way from Cool Deposits to a Port near Point Lay, Dry Loading, 

Shipment to Japan via a Transhipment Point at Dutch Harbor by 60,000 ton dwt. Ocean Barges 

Bar! bor 
Cost Total 

Per Ton Cost 
(do1 lars) 

2.48 23,998 
* 17,900 

2.48 23,998 
* 17,900 

2.48 23,998 
I *17,900 

1.60 47,996 
*35,800 

1.60 47,996 
*35,800 

1.60 47,996 
* 35,800 

Cost 
Per Ton 
(do1 lard 

Total 
System 
Cost 

Total 
System 
Cost 

Per Ton 
(do1 Ian) 





Table 22 

System IV - Annual Costs in Thousands of Dollan 
Slurry Pipeline from Coal Deposits to a Port near Point Lay, Dry Loading, 

Shipment to Japan via a Transhipment Point a t  Dutch Harbor by 60,000 ton dwt. Ocean Barges 





Table 24 

System tV - Annual Costs in Thousands of Do1 Ian 
Cwlveyor from Coal Deposits to a Port near Point Lay, Dry Loading, 

Shipment to Japan via a Transhipment Point at Dutch Harbor by 60,000 ton dwt . Ocean Barges 

Total 
System 
Cost 

Tons 
Transported 
Annual ly 
(millions) 

Total 
System t 

Cost / 
Per Ton 

(do1 l an) 

9.84 
* (8.62) 
12.40 

*(I 1.18) 
17.92 

* (16.30) 

8.03 
*(6.81) 
9.66 

* (8.44) 
12.92 

7.43 
"(6.21) 
8.78 

* (7.56) 
11.48 

"110.32) 

Dry Loading Conveyor Barging 

Total 
Cost 

Total 
Cost 

Cost 
Per Ton 

Cost 
Per Ton 

I 
Conveyor 
(miles) 

'4 
01 

Cost 
Per Ton 

12,387 

12,387 

12,387 

16,004 

15,004 

16,004 

19,121 

19,121 

19,121 

Total 
Cost 

C 

5 

23,998 

23,998 

23,998 

49,997 

49,997 

49.997 

71,994 

71,994 

71.994 

(dollan) 

2.48 

2.48 

2.48 

1 .&0 

1.60 

1.60 

1.28 

1.28 

1.28 

(do1 Ian) 

2.56 

5.12 

10.24 

1.63 

3.26 

6.52 

1.35 

50 

100 

200 

50 

100 

200 

50 

10 

2.70 

5.40 

12,800 

25,600 

51,200 

16,300 

32,600 

65,200 

20,200 

100 

200 

(do! Ian) 

4.80 
* (3.58) 
4.80 

*(3.58) 
4.80 

* (3.58) 

4.80 
*(3.58) 
4.80 

*(3.58) 
4.80 

*(3.58) 

4.80 
"(3.58) 
4.80 

*(3.58) 
4.80 

"(3.58) 

40,400 

80,800 

49,185 

61,985 

87,585 

80,300 

96,600 

129,200 

111,315 

131,515 

171,915 
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SYSTEM V 

This system consists of either a railway, pipeline or conveyor system to a coastal 

point near Point Lay. A slurry ~ i p e l  ine system loads 100,000 ton ore ships anchored 8 to 10 

miles offshore. 

Al l  loading from this port is  accomplished during the 75 day ice free season. The 

coal i s  shipped to Japan and to Dutch Harbor simultaneously during the summer months as in 

Systems I l l  and IV. The analysis of this system i s  in Appendix H. Tables 26-27 are the re- 

sults of the analysis, and Figures 20 a, b, c are these results presented graphically. 

The total cost of 'transportation using ships in System V i s  less than the total cost 

using barges in System IV when no subsidy on barge cost i s  considered. When this subsidy 

i s  considered, then System V total costs are higher than System IV total transportation costs. 

The maximum number of railroad miles the coal can be moved to remain below 

$10.00 total transportation cost i s  60 miles for 5,000,000 tons per year and 175 m i l e  for 

15,000,000 tons per year. For a slurry pipeline, the respective distances are 120 miles and 

190 miles, and for a belt conveyor these distances are 85 miles and 200 miles. 



Table 26 

System V - Annual Costs in  Thousand; of Do1 lars 
Railway from Coal Deposits to a Port near Point Lay, Slurry Loading, 

Shipment to Japan via a Tmnshipment Point at Dutch Harbor by 100,000 ton dwt. Ore Ships 

, 

Tons 
Transported 
Annual ly 
(mil lions) 

Rail 

Rail 
(miles) 

I 
19,917 50 

12.98 

20.22 

45,995 

Total 
System 

Cost 

3.98 

Total 
Cost 

6,502 

Slurry Loading 

9.20 

Total 
System 
Cost 

Per Ton 
(dollars) 

Shipping 

Cost 
Per Ton 
(do1 lars) 

1.30 

Total 
Cost 

19,576 

Total 
Cost 

Cost 
Per Ton 

(do1 lars) 

3.92 

19,576 5 

Cost 
Per Ton 
(do1 Ian) 

38,781 

74,982 

100 

200 

10 

3.92 

21,718 

41,858 

82,052 

50 

100 

200 

7.76 

15.00 

64,859 

39,152 

39,152 

39, I52 

101,060 

3.92 

3.92 

3.92 

19,576 

71,367 

91,507 

131,701 

15 

I 

6,502 

6,502 3.92 

I 
2.17 f 10,497 7.13 

9.15 

13.16 
I 

50 

100 

1.30 

1.30 

1.04 

I 200 

95,924 

116,688 

23,221 

43,985 

6.39 

7.78 

4.19 I 10,497 1.04 

.93 

.93 

10.65 

1.54 

2.93 

1.04 
I 

86,982 

13,975 

13,975 

58,728 

58,728 

8.20 

5.80 13,975 

3.92 

3.92 

58,728 

10,497 

I .93 159,687 
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SYSTEM V 
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AN ILLUSTRATIVE EXAMPLE FOR SYSTEMS Ill, IV, AND V 

In order to illustrate the transportation costs more clearly, four poink in the coal 

bearing areas were selected and the cost of transporting the ccal by various systems were de- 

rived from the systems tables and graphs. These costs are only for an annual movement of 

5,000,000 tons per year, but the costs for 10,000,000 and 15,000,000 tons per year could 

be determined readily by using the appropriate tables and graphs. 

Costs were also computed for systems without a transhipment point: that is, the 

movement of al l  the coal to Japan during the ice free season. This method has been dis- 

cussed under the section on Shipping. These costs wi l l  not indicate marketability or ship 

lease problems which may occur when all the coal i s  shipped in such a limited time period. 

Figure 21 i s  a map of the coal area showing the 4 possible coal mining areas. 

Tables 29 to 32 are summaries of the transportation cost from these mining areas. 

Table 29 i s  a summary of the total transportation cost from point I to Japan using 

System Ill. The total transportation costs vary from a low of $6.07 per ton of coal using a 

slurry pipeline, slurry loading and shipping without a transhipment point to a high of $10.10 

for a railroad, dry loading, shipping with a transhipment point. A l l  of the total transporta- 

tion costs are below $10.00 per ton except one, which i s  $10.10. 

The results summarized in Table 30 show that the total transporl-ation costs from 

point 2 to Japan using System II I are very close or above the $10.00 economic l imi t, but 

are well below this limit when System IV or V i s  used. Total transportation costs from point 

3 to Japan (Table 31) are above a $10.00 economic limit except in one case using System 

Ill, but are below this limit using Systems IV and V. Transportation costs from point 4 

(Table 32) using systems IV and V vary from $7.32 per ton to $15.60 per ton. The least ex- 

pensive method of transportation in this case i s  pipelining, slurry loading, barging or ship- 

ping without a transhipment point. 

In summary, this example has shown that i f  there exists a $10.00 economic limit 

on total transportation costs, then there i s  a combination of transportation modes whose 

total costs are below this limit for each of these possible mining area for the movement of 

5,000,000 tons of coal per year. 

Figures 18, 19 and 20 show that transportation costs lower with increased annual 

movement. The movement of 10,000,000 tons per year or 15,000,000 tons per year means 

that the total transportation costs from points I to 4 to Japan are substantially lower. 
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Table 31 

Cost Per Ton To Transport 5,000,000 Tons of Coal 
Per Year From Point 3 to Japan 

System Overland System Elements 
Used Miles Overland Ship Shipping 

(approximate) Loading 

*with subsidy 

Tofal Transportation Cost 
Without With 

Transhiprnent Transhipent 
Point Point 





CHAPTER V 

CONCLUSIONS 

Remarks 

The results derived from the analysis of System I indicate that i t  would not be 

economically feasible to construct and operate a railroad from the North Slope to Fairbanks 

i f  the coal deposit must support the entire construction and operation. However, the trans- 

portation economics may be entirely different if this railroad was constructed by state and 

federal governments and the costs were shared by the users of the railroad (eg. coal and oil 

producers and other developments which may occur along the railroad route). 

The transportation of coal by truck from the North Slope to Fairbanks would be pro- 

hibitively expensive even i f  the coal did not have to support any of the main road con- 

struction and maintenance costs. The high cost of truck transportation in System II results 

from the road weight limitations, hence the large number of trucks required. However, even 

with larger capacity trucks, i t  i s  doubtful the transportation cost could be low enough to al- 

low this coal to be competitive with other sunpliers to Japan. 

The transportation cosfs of moving the coal from the Northwest coast of Alaska ap- 

pears to be competitive with the transportation costs of existing coking coal suppliers to 

Japan palticularly i f  these w a l  deposits are on or near the coast. As the overland distance 

to the coal deposits increase, the costs become greater and coal becomes less competitive. 

I f  the total transportation costs cannot exceed $10.00 per ton to be economically feasible, 

and the transportation system was one outlined in  Systems Ill, IV, and V, then the overland 

distance cannot exceed I20 miles at the 5,000,000 ton per year production level and 200 

miles at the 15,000,000 ton per year production level. 

In Systems Ill, IV and V the railway i s  the most expensive method of overland 

transportation, whereas conveyor and pipeline have similar transportation costs. As pointed 

out previously, conveyors and pipeline in most cases can transport material from the same 

source and destination as a railroad over a shorter route. But, both conveyors and pipelines 

are inflexible to increased production and new developments, and do not provide backhaul 

capabilities. A railroad can easily accommodate increased tonnages and backhaul traffic. 

The costs of shiploading by slurry pipelines are less than the cost of shiploading by 

conventional dry methods. One reason is  the large capital expenditure required to build a 

pier facility on any part of the shallow northwestern Alaskan coast. 

Ocean transportation costs by 60,000 ton dwt. tug-barge and 100,000 ton dwt. 

ore ships are almost the same. The fact that ocean going tug-barge combinations are slower 

92 



than ships means that more of them are required, but each unit costs less to build and less 

to operate than a large ship. The tug-barge combination has one advantage over a ship i n  

northern Alaska; a barge can operate in much shallower waters. 

Summary 

On the North Slope of Alaska, there is  approximately 120 billion tons of subbitu- 

minous and bituminous coal, some of which is  coking coal. This coal may be in  an advan- 

tageous geographical position to one of the world's largest importers of coking coal, Japan. 

This study was undertaken to determine the economics of transporting coal From 

the North Slope of Alaska. Five transportution systems were analyzed. The first two systems 

linked with the existing Alaska Railroad and a shipping point at Seward on the Pacific Coat. 

The remaining three systems consisted of an overland transportation mode to a shipping point 

on the northwestern coast of Alaska. 

The costs of transporting North Slope coal to Japan via a port on the Pacific Ocean 

are too high to be economically feasible if the coal deposit must support the transportation 

network. 

Overland transportation costs from the coal deposit to a hahor on the northwest 

coast vary from $0.80 per ton mile at a production level of 5,000,000 tons per year to 

$.025 per ton mile at a production level of 15,000,000 tons per year, Shiploading costs 

vary from $3.06 per ton for dry loading, at 5,000,000 tons per yeor to $.91 per ton for 

slurry loading at 15,000,000 tons per year. (Loading costs are the total of the Dutch Harbor 

costs and the Chukchi Sea harbor costs). The costs of shipping coal from the northwestern 

coat  to Japan, with a transhiprnent point between varies between $3.58 per ton and $4.80 

per ton. 

Given a sales price of $20 per ton in Japan, and allowing $10 per ton for mining 

costs, profit and unloading costs in Japan, then at a production level of at least 5,000,000 

tons per year, part of the North Slope coal reserves i s  economically competitive wi th 

Japan's present coking coal suppliers. As the production rate increases, more of the re- 

serves fall into the economic category. At 15,000,000 tons per year, coal up to 200 miles 

from a harbor site could be transported to Japan for less than $10.00 per ton. 

The overland distance which the coal can be transported economically i s  sensitive 

to the market price, mining cost, profit and shipping cost, 



Future Research 

There are several aspects of coal transportation in  northern Aluska which require 

further research. The foremost of these are marine terminals and shiploading techniques. 

Before any quantity of coal i s  moved from the northern coal fields, a suitable harbor and/ 

or shiploading method must be available. Slurry loading of coal onto ore carriers seems to 

be promising, but this technique has not been fully developed for coal to date. 

Extensive design and test work, probably on a pilot plant scale, i s  necessary to 

design a slurry pipeline system which can operate year round in the arctic. The market- 

ability of the fine coking coal required by such a pipeline also needs investigation. 

Fu~her  research and experience into shipping should be undertaken to determine 

the costs and benefits of extending the shipping season to northwestern Alaska. This research 

should include a study of the requirements and necessity of transhipmsnt points. 

Lastly, and probably most important, the delineation of favorable mining areas, 

a study of the mining costs and a full marketability study are all necessary before the eco- 

nomic feasibility of development of the Nor+h Slope coal reserves can be determined. 
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Analysis l - Annual Costs 

Railroad. 

Operating Basis. 

Production - 5,000,000 tons per year 

Schedule - 350 operating d ~ ~ s / ~ e a r  

Round trip time - 50 hours (30 mileshr.) 

Loading time - .05 hours 
and 

Unloading time 

S i re  of trains - 13,000 tons/train (8 locomotives, 
125 cars 

Number of operating trains - 3 

Performance of each train - 225,362 miles per year I 
126 trips per year I 
1,666,000 tons per year I 

Cost of Equipment. 

Gondola cars @ $15,000 

Locomotives @ $340,000 $ 8,160,000 I 
Loading Equipment $ 550,000 I 
Unloading Equipment $ 1,450,000 I 

Total $15,785,000 

Train Operating Cost. 

Locomotives 24 @ $1.20 per locomotive mile $ 6,490,426 I 

Gondola Cars 375 @ $0.06 per car mile $ 5,070,645 , 

Labor 52 @ $30,000 per man $ 11560tOO0 

Total $13,121,071 

Cost of Railroad. 

Nenam to North S lop  

Communications @ $5000/mile $ 4,471,500 

Buildings & Auxilary Equipment $ 5 , ~ , ~ 0  

Total $1,216,638,173 



Annual Maintenance Cost. 

$14,00O/mile x 894.3 miles $12,520,200 

Total Annual Costs of Railroad. 

Equipment - $15,785,000 (A/P, 15, 20) $ 2,525,600 

Operating Cost $ 13,121,071 

Rui l road Capital Cost 
(1,207,166,673) (A/P, 15, 20) 

Railroad Maintenance Cost $ 12,520,200 

Total $210,662,571 

Annual Harbor Cost 

Capital Costs. 

Equipment and Dock (14,150,000) (A/P, 15, 20) $ 2,162,500 

Operating Costs. 

Labor, Supervision 

I Power, Tugs $ 2,000,000 

Maintenance Costs $ 200,000 

Total $ 4,562,500 

Shipping 

Operating Basis. 

Schedule - 335 operating days/-eur 

Round Trip Time - 19 days (16 knots) 

1 Loading Time - 20 hours 

Unloading Time - 20 hours 

Number of ships required - 3 

Ship Size - 100,000 tons deadweight 

Performance of each ship - 17.6 trips per year 

Annual Cost. 

Capital Cost @ 14,750,000/ship 
Vessel Expense @ $7500/day/shi 

Fuel Costs $ 2,777,016 

97 Total $ 18,069,615 
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APPENDIX B 

SYSTEM l l  

Operating Busis 

Production 

Schedule 

Round Trip Time 

- 5,000,000 tons per year 

- 300 operating days per year 

- 40 hours (30 m.p.h.) 

Loading and Unloading Time - .05 hours 

Truck Capacity - 25 tons 

Performance of each truck - 198,000 miles per year 

Number of trucks opemting - 1112 trucks 

Annual Road Costs 

*Capital Cost @ $300,000/mile - $ 4,500,000 

Maintenance @ $2700/mile (Rhoads- $10,27O,OQO 
+. 02 per ton mile 1972) 

Total $14,770,000 

Annual Truck and Equipment Costs 

**Capital Cost @ $49,00O/twck - $60,073,020 

Operating Cost @ $.40 per truck per mile - $88,070,400 

Capital C a t  of Loading Equipment - $ 320,000 

Labor Cost for Loading & Unloading - $ 240,000 

Total $148,703,420 

*Annual cost baed on 15 per cent rate of return and perpetual life. 

**Referring to Figure 22, the annual cost of the trucks over a 20 year period truck l i fe  of 
7200 hours i s  110.25% of the original purchase price of the trucks. 
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APPENDIX A 

SYSTEM I 

Railroad Criteria 

Maximum speed - 60 m . p. h. 

Maximum speed on curves - 25 m. p. h . 
Maximum grade - 1.75 per cent 

Construction cost of the 492.2 mils long railroad 

(Based on the results of the 3 million dollar, 3 year long study entitled "Alaska Trans- 
portation Corridor Study", by Tudor, Kelly, Shannon, Alaskan Transportation Consul - 
tank) 

Consfruc t ion - $ 922,445,000 

Engineering Services 146,354,923 

Contingencies 138,366,750 

Total $1,207,166,673 

Cost Per Mile $2,452,594 

Maintenance Cats, variable with tonnage transported 

Tonnage Per Year - $/mi le/-ear 

5,000,000 14,000 

10,000,000 22,000 

15,000,000 30,000 

Other Capital Costs 

Communication cost - $5000 per mile 

Buildings and Auxiliary Equipment - $5,000,000 Total 

Train and 'loading Equipment. 

Looding Time - 80 seconds per car 

Unloading Time - 100 seconds per car 

Number of Engines - 8 per 125 car train 

Average Speed - 30 m . p. h . 
Number of days in  use per year - 350 

Gondola type 105 ton capacity car with rotary 
coupler 

$15,000 each 



Six axle, 3000 H.P. Locomotives $340,000 each 

Loading Equipment 
Feeders and Hoppers 

Unloading Equipment 

Rotary Dumper with foundations 

Train Positionar erected 

Hoppers and Feeders 

$550,000 total 

$500,000 tota I 

$400,000 total 

$550,000 total 

Operating and Maintenance Cost of Trains 

Locarnot ives - $1.20 per mile per locomotive 

Cars - $0.06 per mile per car 

Labor - $30,000 per man per year 

Harbor Criteria 

Capital Costs. 

Stockpile Area 

Dock and Shiploader 

Stacker Reclaimers 

Total 

Shipping Criteria 

Size - 100,000 tons 

Draft - 50 feet 

Averaga S p e d  - 16 knots 

Length - 940 feet 

Cost - $25,000,000 Less 41 p r  cent subsidy 
("Six Hundred---", 1972) 

$10,250,000 

Total $14,750,000 

Daily Expense $7500/day (Polar Transportation Requirements, 1967) 

Fuel Requirements - 1300 bbl/day at sea 

800 bbl/dcy in port 
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SYSTEM Ill 

Analysis I 

Rail road. 

Operating Basis. 

Production - 5,000,000 tons per year 

Rail Length - 50 miles 

Annual Cost,, 

Railroad Construction - $17,406,773 
@ 2,452,594/mi le 

Equipment $ 493,600 

Operation and Maintenance - $ 2,017,570 

Total $19,917,943 

Chukchi Sea Harbor - 5,000,000 tons per year. 

Capital Cost - Construction. 

Stockpile area - $ 561,436 

Rock, gravel pier - $20,373,792 

Total $20,935,228 

Capital Cost - Equipment. 

Stacker-Reclaimers - $ 4,000,000 

Shiploader - $ 3,000,000 

Conveyor System - $ 6,000,000 

Total $13,000,000 

Annual Costs. 

Pier and Stockpile Capital Cost - $ 3,125,284 
(20,373,792) (P/A, 15,OO) 

Equipment Capital Costs $ 2,080,000 
(13,000,000) (P/A, 15, 20) 

Operation & MMntenance $ 3,400,000 

Total $ 8,605,284 
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Dutch Harbor. 

Caaital Costs. 

Dock and Stockpile Area - $10,550,000 

Equipment - $lO,OOO,OOO 

Total $20,550,000 

Annual Costs. 

Dock and Stockpile Area Capital - $ 1,582,500 
Cost 10,550,000 (P/A, 15,OO) 

Equipment Capital Cost - $ 1,600,000 
lO,OOO,OOO (P/A, 15, 20) 

Operation and Maintenance - $ 3,500,000 

Total $ 6,682,500 

Shipping. 

Operating Basis. 

Production - 5,000,000 tons per year 

Ship Size - 100,000 tons 

Round Trip Time - 17 darj  to Japan (16 knots) 
- 6.5 days to Dutch Harbor 

Ice Free Season - 90 days 

Loading Time - 20 hours 

Unloading Time - 20 hours 

Number of Ships - 2 for whole year 

- 2 for 3 months 

- another for 6 months 

Annual Costs. 

Ship Capital Cost - $ 7,OO2,O96 
@ 14,750,000/ship 

Operating Expense - $ 8,122,135 

Fuel - $ 2,746,460 

Total $17,870,691 
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APPENDIX D 

SYSTEM I l l  

Slurry Pipeline Design 

Design Criteria. 

Size of coal - 14 m x 0 

Average size - 28 mesh = .0232 

Specific Gravity of Coal - 1.5 

Concentration of coal by weight in the slurry - 60% 

Concentration by volume - 49.7% 

Flow velocity - 6.0 ft. per second 

Analysis II 

Operating Basis - Slurry Pipeline. 

Production - 5,000,000 tons per year 

I - 634.2 tons per hour 

I Operating Factor .. 90% 

I Pipeline Volume - 3406 gal Ions per minute 

I Slurry Velocity - 6 feet per second 

I Pipeline Diameter 
- 16 inches 

'Frictional Head LOSS - 119.2 psi per mile (assuming gradient of 
-20 feet per mile) 

I 2~orrepower p r  mile 
- 237 

I 3~umps per mile - .201 

Distance between pump stations - 20.0 miles 

Capital Costs. per mile 

Pumps @ $225,000 per pump itstalled - $ 45,225 

-1 -93 
I)Frictioml Head Loss JM = J w  tJwCv280 (Zandi, 1971) 

Where JW = Head loss of clear water at same velocity 
Cd = Drag Coefficient 

g = gravity constant 
2)hooepwer = Q P  Where Q volume in gallons per minute 

mT P = pressure in  p.s,i. 

3 ) ~ 7 5 ~  horsepower per pump and 90% pump efficiency, 3 operating and I spare 
pump per station. 107 



Capital Costs. (continued) 

Pipeline 

per mile 

- $52,800 

Pump Stations $400,00O/station - $20,000 

Piping, Controls per Station $900,000/station - $45,000 

Communications $1000 per mile - $ l,ooO 

Construction Cost $150,00O/mile - $150,000 

Insulation Costs $17,30O/mile - $ 17,300 

Research, Enginaeri ng , Contingencies - $66,265 
20% of Capital & Construction Cost 

Preparation Facility 2.00/ton = $l0,000,000 

Rsceival Facility $!0,000,000 

Total Cost $20,000,000 + $397,590 per mile 

Operating and Maintenance Costs. 

Power @ .03 per kw-hr. - $ 41,801 

Pumps - 0.8 ~ / t o n / ~ u r n ~  station - $ 2,000 

Pipeline - 2% of original cost - $7,040 

Inhibitor = $.I0 per ton = $500,000 

Labor, Administration, General Overhead 
- $ . I0 per ton = $500,000 

Total = $1,000,000 + $50,841 per mi le 

Total Annual Cost = $4,200,000 + $114,455/mile 

Water Pipeline Design and Costs. 

Operating Basis - Water Pipeline. 

Pipe Diameter - 12 inches 

Water Velocity - 5 feet per second 

Head lass - 14.6 p.s.i. per mile 

Horsepower per mi le  - 15.3 

Number of pumps per mile - .0318 
@ 800 H.P. per pump 

Distance between stations - 94.3 miles 
@ 3 pump per station 



Water Pipeline Capital Costs. Cost per mile 

Pumps @ $30,000 per pump 

Pipeline $43720/mile 

Pump Stations $300,000 per station - $ 3,181 

Piping, Controls $750,000 per station - $ 7,953 

Construction Costs $100,000 per mi le  - $100,000 

Insulation Costs - $ 13,000 

Research, Engineering, Contingencies - --.$ 33,760 

Total = $175,000 + $202,%9/mile 

Water Pipeline Operating Costs. 

Power 

Maintenance 

Labor, Administration 

Pipe Heating 

Total $ 9,758 

Total Annual Water Pipeline Cost = $28,000 + $42,169/mile 

Slurry and Water Pipeline - 10,000,000 tons per year. 

Slurry Pipeline. 

Pipe Diameter - 24" 

Frictional Head Loss - 115 p.s.i. per mi le  

Horsepower required per mile = 457 H. P. 

Number of pumps per mile = .387 pumps 

Distance between stations - 10.6 miles 

Capital Cost = $30,300,000 + $618,776 per mile 

Operating and Maintenance Cost - $2,000,000 + $100,527/rnile 
Total Annual Slurry Pipeline Cost = 6,848,000 + $199,531 per mi le  

Water Pipeline. 

Pipe Diameter = 18" 

Frictional Head Loss =9.1 p.s.i. per mile 

Horsepower required per mile = 18.6 H. P. 

Number of pumps per mile = .0385 pumps 
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Water Pipeline. (continud) 

Distance between stations = 77.8 miles 

Capital Cost = $175,000 + $293,929/mile 

Operating and Maintenance Cost = $12,179/mile 

Total Annual Water Pipeline Cost = $28,000 + $59,208/mile 

Slurry and Water Pipeline - 15,000,000 tons per year. 

Slurry Pipeline. 

Pipe Diameter - 2, 20 inch pipes 

Frictional Head Loss - 127 p.s.i. per mile per pipe 

Horsepower required per mile - 378.6 H. P. per pipe 

Number of pumps per mile = .320 pumps per mi le  

Distance between stations = 12.5 miles 

Capital Costs = $38,640,000 + $925, 715/mile 

Operating and Maintenance = $3,000,000 + $158,36O/mile 

Total Annual Slurry Pipeline Cost = $9,182,400 -t $306,474/rnile 

Water Pipeline. 

Pipe Diameter = 20 inches 

Frictional Head Loss = 10.9 psi per mi le 

Horsepower required per mi le  =:32.6 H.P. 

Number of pumps per mile = .0678 

Distance between stations = 44.2 miles 

Capital Cost = $175,000 + $381,153/mile 

Operating and Maintenance $17,86I/mile 

Total Annual Water Pipeline Cost = $28,000 + $78, 800/mile 
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SYSTEM Ill 

Belt Conveysrs 

Design Criteria. 

Weight per cubic foot 

Angle of repose 

Surcharge angle 

- 50 lb. 

- 25 " 
- 35 O 

Analysis I l l  

Operating Basis. 

Production - 5,000,000 tons per year 

Be1 t Size - 24 inches 

Idler Spacing - 6.5 feet troughing 

- 10.0 feet return 

Belt Speed - 1000 feet per second 

Idler Configuration - 3 9  

Single Belt Length 
Center to Center 

- 3 miles 

Operating Factor - 90% 

Horsepower at primary drive - 840 

Horsepower at secondary drive - 216 

Tensibn per inch of belt width - 1386 lb. 

Belt Conveyor for 10,000,000 tons per year. 

Belt Size - 36 inches 

Horsepower at primary drive - 1350 

Horsepower at secondary drive - 330 

Tension per inch of belt width - 1473 Ib. 

Belt Conveyor for 15,000,000 tons per year. 

Belt Size - 42 inches 

Horsepower at primary drive - 1880 

Horsepower at secondary drive - 480 

Tension per inch of belt width - 1668 Ib. 

Table 33 i s  a summary of Belt Conveyor Capital Costs; Table 34 is  a summary of 
Belt Conveyor operating and maintenance costs. 
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Table 33 

Belt Conveyors - Capital Costs 

Million Belt 
Tons Width M o b s  
Trans ported Idlers Belting and Structure Cover Instal lation 
Per 1) 2)  3fuileys 4) 5) 6 )  
Year 

1) Stephans-Adamson Co. (1972) - Replaced every 5 years 

2) Adapted from 8. F. Goodrich (1972) - Replaced every 10 yean 

3) Motor cost estimated at $40 per horsepower - pulley costs from 1) 

4) Adapted from Maddix (1971) - includes $50,000 for transfer point 

5) Cover estimated at $ .50 per square foot 

Total 

6) 75% of equipment cost - Hewiff-Robins Co. 





Conveyor Belt - 3 Miles Long 

Annual Cost in thousands of dollars 

Million Eel t Capital Operating Total Total 
Tons Width Cost Costs Per 
Per (inches) 1) M i le  
Year 

I )  Total Capital Cost (P/A, i ,  n) where i = 15% 
n = 20 years 
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SYSTEM Ill 

Ancllvsis IV - Slurry Loading 

Annual Costs - 5,000,000 tons per year. 

Equipment Capital Cost - $ 4,923,800 

Stockpile Cost - Cape Thompson $ 79,715 

Stockpile Cost - Dutch Harbor - $ 82,500 

Direct Cost - Cape Thompson - $ 500,000 
@ $. 10 per ton 

Direct Cost - Dutch Harbor - $ 728,000 
@ $. 10 per ton loading and 
unloading 

Total $ 6,314,015 

Cost Per Ton $1 -26 

Annual Costs - 10,000,000 tons per year. 

Total Cost - $10,239,988 

Cost Per Ton - $1 -02 

Annual Costs - 15,000,000 tons per year. 

Total Cost - $13,673,579 

Cost Per Ton - $.91 
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SYSTEM IV 

Barging 

Design Criteria. 

Tug Barge Speed - I I knots 

Barge Size - 60,000 tons 

Barge Length - 61 1 feet 

Barge Beam - 135 feet 

Barge Draft - 33 feet 

Tug Size - 4400 horsepower 

Crew Size - 10 

Ice Free Season - 75 days 

Operating Basis. 

Product ion - 5,000,000 tons per year 

Round Trip Time - 23 days (I1 knok) 

Loading and Unloading Time - 0 

Tugs Required - 6 a l l  year 
- 6 for 3 months 

Barges Required - 8 a11 year 
- 8 for 3 months 

*Annual Costs - 5,000,000. tons per year. 

Capital Costs @ $8,240,000 per barge - $15,114,800 

1,609,000 per tug 

Operating Costs - Tugs 
Fuel 
Lubricants 

Maintenance and Repair 

Stores and Supplies 

Crew 
Insurance 

Operating Costs - Barges 
Maintenance and Repair 
Insurance 

Total $23,997,711 
*Computed from formulae by Matson Research Corporation, 1970. 
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Annual Costs - 5, 000,000 tons per year. (continued) 

Cost per ton = $4.80 

Annual Costs with Shipbuilding Construction Subsidy. 

Capital Costs - $ 9,017,732 

Operating Costs - $ 8,882,911 

Total = $17,900,643 

Cost. per ton = $3.58 
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APPENDIX H 

SYSTEM V 

Shipping 

Operating Basis. 

Production - 5,000,000 tons per year 

Round Trip Time - 18 days (16 knots) 

Ships Required 

lee Free Season 

- 7 - Ice Free Season 
2 - Remainder of the year 

- 75 days 

Annual Costs - 5,000,000 tons per year. 

2 ships al l  year - $12,046,344 

5 ships for ice free sectson - $ 7,529,165 

Total $19,575,509 

Total Shipping Cost per Ton - $3.92 

Slurry Loading - Annual Costs 

5,000,000 tons per year - $ 6,502,205 

10,000,000 tons per year - $1 0,496,965 

15,000,000 tons per year - $13,974,726 
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In systems Ill, IV and V, a railway capital cost of  $2,452,594 per mile was used for 

determining railway transportation costs per ton of coal. This figure was derived from the 

Tudor, Kelly, Shannon study on the proposed Nenana to Deadhorse railroad, and included 

the cost of traversing major rivers and mountain passes. Since a railroad in  the foothills and 

coastal plain of northwestern Alaska would not be required to cross such formdable terrain, 

a cost of $1,800,000 per mile may be more representative for systems 111, IV, and V. This 

cost was derived from the same report, but from segments which may be more representative 

of northwestern Alaska terrain. The net effect of this lower per mile cost i s  to lower the rail 

costs per ton from 15 to 25 per cent, and the total transportation costs from 5 to 20 per cent. 


