M.I.R.L. Report No. 44

PETROGRAPHIC, MINERALOGICAL AND CHEMICAL CHARACTERIZATION OF CERTAIN ARCTIC ALASKAN COALS FROM THE CAPE BEAUFORT REGION

Ъу

P. Dharma Rao

Mineral Industry Research Laboratory School of Mineral Industry University of Alaska, Fairbanks Fairbanks, Alaska

Apr 11, 1980

NOTICE

The views and conclusions contained in this document are those of the author and should not be interpreted as necessarily representing the official policies or recommendations of the Interior Department's Bureau of Mines or of the U.S. Government.

Published by Mineral Industry Research Laboratory, School of Mineral Industry, University of Alaska, Fairbanks. Research was funded in part by the United States Bureau of Mines, Department of the Interior, Grant No. GDI33125. Publication of this report is funded by the Mining and Mineral Resources Research Institute, Office of Surface Mining, U.S. Department of Interior.

ii

ABSTRACT

Coal seams for the Cape Beaufort region of Arctic Northwestern Alaska were sampled by drilling by the U.S. Bureau of Mines, Juneau and the U.S. Geological Survey, Anchorage). Samples from the drill holes were supplied to the Mineral Industry Research Laboratory. These are Cretaceous coals ranging in rank from high volatile bituminous A to B. A total of 48 samples from 18 drill holes intersecting 14 seams were studied. Floatsink separations were made at 1.50 specific gravity for ten of these samples. Raw coals and float-sink products were characterized for proximate analysis, ultimate analysis, ash fusibility, vitrinite reflectance, coal petrology in reflected light, quantitative determination of mineral matter by x-ray diffraction and infrared spectrophotometry of low temperature ash, major minor and trace elements by atomic absorption and emission spectrochemical analysis. Influence of beneficiation and geological significance of these characteristics, and organic affinity of trace elements are discussed. A generalized scheme for analysis of coal ash by atomic absorption and emission spectrochemical methods is presented.

iii

ACKNOWLEDGMENTS

Parts of this research were conducted under a cooperative grant from the United States Bureau of Mines, Department of the Interior, Grant No. G0133125 (Rao, 1974). Thanks are due to Mr. Robert S. Warfield and Mr. John Mulligan of the Alaska Field Operations Center, U.S. Bureau of Mines, and Mr. James E. Callahan, U.S. Geological Survey, Anchorage, for kindly furnishing coal samples and permitting inclusion of proximate and ultimate analyses of the coal samples in the report; and to Dr. Earl H. Beistline, Dean, School of Mineral Industry, for his interest in the investigation. Special thanks are due to Dr. E.N. Wolff, Associate Director, Mineral Industry Research Laboratory, for his interest and help in the preparation of this manuscript. This work is the result of the cooperative efforts of several individuals, and their contributions are gratefully acknowledged. Namok Veach, State of Alaska Division of Geological and Geophysical Surveys, performed the x-ray diffraction analyses of low temperature coal ashes. Infrared spectrometric determination of kaolinite were done by Hsu-Hui Yang, graduate student in mineral preparation. Maceral point counts and reflectance determinations were done in part by Barbara Carden. This report is published with funds provided through the Mining and Mineral Resources Research Institute, Mineral Industry Research Laboratory, University of Alaska, Fairbanks, by the Office of Surface Mining, U.S. Department of Interior.

iv

TABLE OF CONTENTS

P	age
OTICE	ii
BSTRACT	ii
CKNOWLEDGMENTS	iv
ABLE OF CONTENTS	v
IST OF TABLES	ii
IST OF FIGURES	ix
NTRODUCTION	1
BJECTIVES OF THE INVESTIGATION	10
AMPLE PREPARATION	11
Medium Temperature Ash (MTA)	11
Low Temperature Ash (LTA)	11
OAL PETROLOGY	12
Analytical Procedure	12
Reflectance Measurements	12
Determination of Macerals	13
INERALOGY OF THE COALS	22
X-Ray Diffraction Analyses of Low Temperature Ash	22
Infrared Spectrographic Determination of Kaolinite	28
Fusibility of Ash	33
ETERMINATION OF CHEMICAL COMPOSITION OF ASH	34
Atomic Absorption Analysis	34
Solvent Extraction Procedure for the Determination of Molybdenum (Rao, 1971)	36
Digestion with Hydroflouric Acid	36
V	

TABLE OF CONTENTS, Cont.

												I	age	
EMIS	SION SPECTROCHEMICAL ANALYS	IS	•	g.	1			4			•	•	37	
	Preparation of Standards				2			ł,				•	37	
	Analytical Procedure			1		į.	g. I	1		•		•	39	
DISC	USSION OF ANALYTICAL PROCEDU	URES	5.				Ż					ŀ	39	
	Atomic Absorption	<u>†</u> 1				14-14	÷	÷.		•		•	39	
	Standards for Atomic Absory	ptic	on .			•	•				•	•	41	
	Emission Spectrochemical A	naly	vsis		ţ.			•	•			•	42	
DISC	CUSSION OF RESULTS	. .			ie.			•		•	ł	•	42	
	Major Elements			70	Ş.	-		Ę			•		44	
	Organic Affinity of Major a	and	Min	or	E	Len	ien	ts					44	
	Trace Elements			1.	ł.	•		÷.			•		45	
	Organic Affinity of Trace 1	Elen	ent	s		•	8 i 24	1.1.1	•3		·		45	
REFE	RENCES				ĩ.,		3	The					64	

LIST OF TABLES

TABLE		<u>P</u>	age
1	IDENTIFICATION AND ANALYSES OF COAL SAMPLES	•	6
2	VITRINITE REFLECTANCE		14
3	DISTRIBUTION OF MACERALS IN RAW COALS		15
ų	DISTRIBUTION OF MACERALS IN SINK-FLOAT FRACTIONS .	-	20
5	PREPARATION OF STANDARDS AND CALIBRATION CURVES FOR PLAGIOCLASE, SIDERITE AND ANALCIME FOR ANALYSIS BY X-RAY DIFFRACTION		24
6	PREPARATION OF STANDARDS AND CALIBRATION CURVES FOR QUARTZ, CALCITE AND DOLOMITE FOR ANALYSIS BY X-RAY DIFFRACTION		25
7	DISTRIBUTION OF MINERALS IN THE LOW TEMPERATURE ASH OF RAW COALS		30
8	DISTRIBUTION OF MINERALS IN THE LOW TEMPERATURE ASH OF SINK-FLOAT FRACTIONS	•	32
9	ANALYTICAL SCHEME FOR COAL ASH	-	35
10	EXCITATION CONDITIONS FOR SPECTROCHEMICAL ANALYSIS	•	38
11	STANDARDS FOR EMISSION SPECTROCHEMICAL ANALYSIS	•	40
12	DETECTION LIMITS FOR TRACE ELEMENTS		43
13	ANALYSIS OF MAJOR AND MINOR ELEMENTS IN COAL ASHES		46
14	ANALYSIS OF MAJOR AND MINOR ELEMENTS IN ASHES OF SINK-FLOAT PRODUCTS		48
15	ANALYSIS OF TRACE ELEMENTS IN COAL ASHES		50
16	ANALYSIS OF TRACE ELEMENTS IN ASHES OF SINK-FLOAT FRACTIONS		52
17	ANALYSIS OF MAJOR AND MINOR ELEMENTS IN RAW COALS .	•	54
18	ANALYSIS OF MAJOR AND MINOR ELEMENTS IN SINK-FLOAT		56

19	ANALYSIS OF TRACE ELEMENTS IN RAW COALS	•	58
20	ANALYSIS OF TRACE ELEMENTS IN SINK-FLOAT FRACTIONS	1	60
21	MEAN ANALYSIS OF WHOLE COALS AND ASHES	•	62
22	MEAN ANALYSIS OF FLOAT AND SINK FRACTION AND THEIR ASHES	i	63

LIST OF FIGURES

Figure		Page
l	Generalized stratigraphic correlations of Cretaceous rocks of northwestern Alaska	. 2
2	Location of drill holes in the Cape Beaufort region	. 3
3	Stratigraphic sections of the Corwin formation showing mineable coal beds	. 4
4	Photomicrographs of Cape Beaufort coals showing various macerals, reflected light	. 18
5	Photomicrographs of Cape Beaufort coals showing various macerals and associated minerals, reflected light	. 19
6	Quartz-fluorite calibration curve	26
7	Calcite-fluorite calibration curve	. 26
8	Dolomite-fluorite calibration curve	26
9	Plagioclase-fluorite calibration curve	. 27
10	Siderite-fluorite calibration curve	. 27
11	Analcime-fluorite calibration curve	27

ίx

•

		1.11.11.11.11.11.11.11.11.11.11.11.11.1
		「「「「「「「「「」」」」」」」」」」」」」」」」」」」
		· · · · · · · · · · · · · · · · · · ·
	1.0	
		A REAL PROPERTY AND A REAL

ACCESSION OF

INTRODUCTION

ហ Geolog **m** COa ŵ н 1 10 10 obtain 40 sampl ជ Calla Mines. The ർ Alask north undertaken closest v Ú trillion Thes 98e seams outcrop James resources. 44 0 40 Warfield, holes υ Cretaceous Arcti program Bureau are shipment these by Mr. several drill Interior has were region Alaska's evaluâte energy the U.S. ം ഗ drilling sampled done Ч О 0Ę Robert ц М ocean Beaufort location Corwin formation stimated ч. Ц largest were Anchorage 0 t and to oxidation and weathering, the located 'nd seams ЧЪ. МЪ in the region accessible undertook sample Cape shows the U.S. Department of the direction of Ŵ nation's earlier resources, Survey, ង ភ្លូស the systematically Center, resources in the ц О are the the \sim U.S. Geological investigations fields Figure coal and ч О 0f Operation are found in 1972, under one coast bulk these Alaska's The Coal . form t t coal the west subject program ч О ure 1). eld seams fresh Since ~ slope han, Xtnq ical tons the ⊷) ا⊷ر

1

were and œ Creeks bed ---dri data and Bed 10 the numbers whereas Kahkatak numbers, (Callahan hole for $\overline{}$ റാ igure (1978). sample data rank, drill and bed Ŀ Survey, Anchorage analytical Callahan (NA) the rank bituminous Tulugak with coal from Alaska ۔ م reported by Martin and along seams up-to-date volatile high volatile 'A' along ч 0 sections numbers, and University coal Geological Seams high of various Complete are other correlated shows beds U.S. ane ന 1978). Correlations Figure the region were younger beds ЪЧ Sloan, older hole made and and

<u>___</u>

Figure 1: Generalized stratigraphic correlations of Cretaceous rocks of northwestern Alaska. Wavy lines represent unconformities. Chapman and Sable (1960, p.70).

Location of drill holes in the Cape Beaufort region.

Figure 3

Stratigraphic sections of the Corwin formation showing mineable coal beds (Source: Simplified from: Callahan and Sloan, 1978)

.0

Lsoo

SCALE

Samples were collected either as drill cuttings or cores. A total of 13 holes were drilled. Of these, coal samples from four holes were obtained as cores, the rest as cuttings. Drill hole numbers of these cores are suffixed with C(3C, 7C, 8C, The samples were shipped to the Grand Forks Energy Re-10C). search Laboratory where they were processed under the direction of Mr. Charles C. Boley. Since the drill cuttings were generally 85 to 90% minus 8 mesh, sample splits were taken without further crushing. The cored samples were crushed to 8 mesh and sinkfloated at 1.50 specific gravity. Approximately 250 grams of each of the samples were supplied to the author for the present investigation. Proximate and ultimate analyses of the samples were conducted by the U.S. Bureau of Mines, Pittsburgh Analytical Laboratory (now U.S. Dept. of Energy). Table 1 shows sample designations and the analyses converted to equilibrium bed moisture basis along with the author's determinations of equilibrium bed moisture, low temperature ash (L.T.A.) at 150°C, medium temperature ash (M.T.A.) at 450°C and high temperature ash (H.T.A.) at 750° C. The data are presented by drill hole number along with the seam number designation assigned by Callahan and Sloan (1978). No. 7 seam has been intersected by five drill holes, No. 8 seam by four drill holes and No. 10 seam by 2 drill holes. All other seams were only intersected once. Figure 2 is a geological section showing various coal seams studied. Details of drilling, geological and other analytical information are available in an open-file report by Callahan and Sloan (1978).

	TABLE 1		
IDENTIFICATION AND	ANALYSES	OF COAL	SAMPLES

NO.	SEAM NO.	DEPTH INTERVAL FEET	SAMPLE NO.	PRODUCT (WT %)	BASIS ^O	MOIST. ^b %	V.M. ^c %	۴.C. ^d %	ASH %	HEATING VALUE BTU/LB	H %	C %	N %	0 %	\$ %	F.S.I. ^e	нта ^т 750°С %	MTA ⁹ 450°C %	LTA ^h 150°C %
	7	80-86	UA-1	Row	1	6.13	24.26	32.34	37.27	7885	3.69	45.39	:0.76	12.69	0.20	0,5	38.9	39.8	42.6
		86.4-90	UA-2	Raw	1	5.81	42.85	32.56 58.28	38.32	7753	3.64	45.14	0.71	12.00	0,36	0.5	38.3	38.6	42.4
		90-95	UA-3	Raw coal	1 2	5.47	25.88 46.91	29.30 53.09	39.35	7656 13880	3.82 5.82	43.41 78.66	0.76	12.44 13.72	0.23 0.42	1.0	40.7	41.1	45.4
114	6	70-73	UA-4	Raw	1	5.32	24.69	45.79	24.16	9476 13450	3.79	56.45	0.84	14.58	0.14	0.0	24.6	26.1	28.5
	7	135.5-141	UA-5	Raw cool	1 2	5.05	27.61 34.31	52.87 65.69	14.51	11197 13910	4.33 4.67	65.94 81.95	1.00 1.24	14.07	0.18	0.5	12.1	12.5	`13.6
		141-146	UA-6	Raw coal	1 2	6.66	28.38 44.30	35.68 55.70	29.30	8937 13960	4.15 5.32	51.33 80.12	0.86	14.20 12.95	0.18 0.27	1.8	45.1	47.0	50.8
		146-151	UA-7	Raw coal	1 2	5.44	26.77 43.50	34.75 56.50	33.03	8622 14020	3.92	49.35 80.23	1.32	12.78	0.27	2.0	24.2	25.4	26.4
		151-153.5	UA-8	Raw coal	2	4.14	33.20 45.27	40.14 54.73	22.57	10408	4.72 5.79	58.66	1.00	12.83	0.27	2.3	19.5	19.9	22.8
3C	6	69-72.7	UA-9	Raw coal	12	4.41	23.89 33.61	47.18 66.39	24.54	9530 13410	3.67 4.47	57.19 80.48	0.80	13.60 13.64	0.20 0.28	0.0	24.0	23.1	29.6
	7	135.3-143.3	UA-10	Float 74.2	1 2	5.03	30.97 35.40	56.51 64.60	.753	12388	4.92 4.88	72.12 82.44	1.11	14.22	0.23 0.26		7.5	8.0	9.7
		-do-	UA-11	Sink 25.8	1	4.14	20.85	41.27	33.74	7860	3.13	48.63	0.66	13.68	0.16	ic.st	36,1	38,1	42.3
		143.3-151.3	UA-12	Float 77.3	2	4.31	34.83	59.44	9.82	12380	5.26	83.26	1.11	9.63	0.22	2.8	10.0	10.3	11.3
		-do-	UA-13	22.7	2	4.01	41.40	58.60	41.93	12980	5.04	43.54 80.50	0.50	10.75	0.13		42.4	45.9	48.0
		151.3-152.9	UA-14	89.9	2	4.40	42.39	57.61	4.40	14330	5.91	81.01	1.34	14.34	0.28		4./	5.0	6.0

,

sample; ⁹ Medium temperature ash, authors' sample, ^h Low temperature ash, authors' sample.

σ

DRILL HOLE NO.	SEAM NO.	DEPTH INTERVAL FEET	SAMPLE NO.	PRODUCT (WT %)	BASIS ^a	MOIST. ^b %	V.M. ^c %	F.C. ^d %	ASH %	HEATING VALUE BTU/LB	H %	с %	N %	0 %	\$ %	F.S.I. ^e	HTA ^F 750°C %	MTA ⁹ 450°C %	LTA ^h 150°C %
зс	7	-do-	UA-15	Sink 10.1	12	3.95	23.82 50.27	23.57 49.73	48.71	5512 11640	2.91	34.01 71.76	0.47	13.78 21.75	0.14		57.7	60.9	67.7
5	З	85-86.0	UA~]6	Raw coal	 2	4.54	37.96 45.51	45.46 54.49	12,08	11888 14260	5.21 5.63	67.15 80.50	1.31 1.57	14.02	0.26 0.31	1.9	12.1	13.0	17.3
	4	90-94.1	UA-17	Row coal	1 2	4.77	25.47 47.78	27.82 52.22	41.93	6913 12970	3,32 5,22	41.17 77.26	0.81	12.61 15.73	0,15 0.27	0.0	43.4	44.8	51.1
6	I	75-77	UA-18	Raw cool	1 2	5.85	30.45 43.24	39.99 56.76	23,71	9740 9662	4.49 5.46	55.50 78.80	1.31 1.86	14.73 13.52	0.26 0.36	1.0	25.0	25.9	30.4
	2	122.7-127.7	UA-19	Raw coal	ז 2	5.33	33.84 42.59	45.60 57.41	15,24	11043 13900	4.80 5.30	63.80 80.32	1.41	14.58	0.18	1.9	15.3	16.3	19,1
J		128.3-129	UA-20	Raw coal	1 2	4.44	36.01 47.62	39.60 52.38	19.96	10625 14050	4.91 5.83	59.98 79.32	1.20 1.59	13.68 12.90	0.28 0.36		20.6	21.1	29.4
7C	7	43-49.7	UA-21	Float 88,5	1 2	4.79	33.23 37.81	54.66 62,19	7,29	12527 14260	4.63	71.92 81.83	1,06	14.82	0.25		7.1	7.9	10.0
		-do-	UA-22	Sink 11.5	 2	3.96	27,86 45,89	32.85 54.11	35.36	7250 11930	2.96	45.02 74.15	0.56	15.96 20,48	0.17 0.28		36.7	44.4	47.6
		49.7-57.9	UA-23	Float 82.3	1 2	4.51	34.93 41.16	49.94 58.84	10.58	12190 14370	5.08 5.40	69.14 81.46	1.01 1.19	13.92 11.68	0.23 0.27		11.0	11.6	12.6
		-do-	UA-24	Sink 17.7	1 2	4,91	22.30 42.95	29.63 57.05	43.19	6943 13360	3,19	41.19 79.31	0.54 10.04	11.75 14.25	0,17		42.2	44.5	48.4
		57.9-59.9	UA-25	Floot 89.9	2	4.24	39.18 42.88	52.20 57.12	4.37	14340 13680	5.58	74.25	1.15	14.27	0.37		4.8	5.2	7.6
		-00-	UA-20	510k 10.1	2	3.38	57.15	42.82	61.74	3234 9314	6.31	22.52 64.86	0.38	12.82	0.18		63.6	66.2	74.0
8	8	97-110	UA-27	Raw cool	1 2	4.26	33.33 40.86	48.23 59,14	14.17	11582 14200	4.80 5.29	66.37 81.37	1.05 1.29	13.41 11.82	0,19 0,23	2.1	13.9	15.4	17.8
8C	8	96.9~103.4	UA-28	Float 77,3	1 2	4.32	33.58 38.24	54.23 61.76	7.87	12470 12283	4.80 4.97	72.10 82.11	1,09 1,07	12.51 13.66	0.33 0.33		8.2	8.8	9.9

TABLE 1 Continued IDENTIFICATION AND ANALYSES OF COAL SAMPLES

LEUK (

Statistics.

TABLE	TABLE	Con	tinue	d	
 			0.		C .

IDENTIFICATION AND ANALYSES OF COAL SAMPLES

DRILL HOLE NO.	SEAM NO.	DEPTH INTERVAL FEET	SAMPLE NO.	PRODUCT (WT %)	BASIS ^a	MOIST.b	V.M. ^c %	F.C. ^d %	ASH %	HEATING VALUE BTU/LB	H %	С %	N %	0 %	s %	F,S.I. ^e	HTA' 750°C %	MTA ⁹ 450°C %	LTA ^h 150°C %
8C	8	-do-	UA-29	Sink	1	3,48	27.03	36.37	33.11	7699	3.13	47.69	0.57	15.29	0.20		33.8	39.5	44.4
1.5.1.		103, 4-109, 8	UA-30	Float 88.1	1	4.06	36.74	52.88 59.00	6.36	12887	5.29	73.16	1.17	13.88	0.19	2.3	6.2	6.7	8.0
		-do-	UA-31	Sink 11.9	1 2	3.48	27.15 46.40	31.37 53.60	37.97	7129 12180	3.23 4.85	45.01 76.92	0.58	13.02	0.16 0.27		38.6	44.7	48.3
10C	7	52.2-57.85	UA-32	Float 86.4	1	4.24	33.82 38.23	54.64	7.26	12555 14190	4.99	72.04	1.06	14.35	0.25		6.9	7.4	8.3
		-do-	UA-33	Sink 13.6	1 2	4.52	22.77 38.67	36.11 61.33	36.60	7442 12640	3.22 4.61	45.53 77.32	0.55	13.95 16.88	0.15 0.25		39.7	42.8	46,5
		57.85-61.05	UA-34	Float 86.6	1 2	4.32	35.14 40.23	52.21 59.77	8.33	12424 14230	5.19 5.40	70.90 81.17	1.08	14.22	0.27 0.28	2,2	8.9	9.2	10.3
		-do- ""	UA-35	Sink 13,4	1 2	4.83	20.91 41,44	29.55 58.56	44.74	6573 13020	3.15 5.17	39.35 77.98	0.51	12.17	0.13 0.25		43.3	45.5	48.7
9	8	84-96.3	UA-36	Raw coal	12	4.51	31.14 41.05	44.72 58.95	19.61	10697 14100	4.50 5.27	61.51 81.08	0.97	13.24 12.19	0.14 0.18	2,1	21.0	22.6	24,4
п	8	84.5-91.7	UA-37	Raw coal	1 2	4.92	29.65 40.05	44.39 59.95	21.06	10230 13810	4.49 5.33	59.82 80.79	0,93	13.53 12.37	0.19	1.9	16.5	18.0	19.3
		91.7-96.34	UA-38	Raw coal	1 2	4.75	35.61 43.95	45.42 56.05	14.25	13622 14350	5.30 5.88	66.41 81.75	1.17	12.68	0.23 0.28	3.0	13.8	14.9	15.9
12	10	111-119	UA-39	Raw coal	1 2	3.22	34.90 42.85	46.56 57.15	15.34	11870 11882	4,99 5.70	66.77 81.97	1.35	11.29	0.27 0.27	3.5	17.3	18.0	21.0
15	12	43-46.1	UA-40	Raw	12	3.64	32.96 39.29	50.94 60.71	12.51	12312 14670	4.93 5.44	69.31 82.61	1.32	11.61	0.33	3.2	17.3	17,4	20.0
	13	104-107.5	UA-41	Raw	1 2	3.42	31.51 37.79	51.87	13.24	12184 14610	4.81 5.32	69.32 83.13	1.23	11.16 9.72	0.29	2.7	17.6	18.4	19.6

TABLE	I Continued
-------	-------------

IDENTIFICATION AND ANALYSES OF COAL SAMPLES

	DRILL HOLE NO.	SEAM NO.	DEPTH INTERVAL FEET	SAMPLE NO,	PRODUCT (WT %)	BASIS	моіят. ⁶ %	V.M.° %	F.C. %	ASH %	HEATING VALUE BTU/LB	H %	C %	N %	0 %	\$ %	F.S.I.	HTA 750°C %	MTA ⁹ 450°C %	LTA 150° (%
	18	26	60.9-65	UA-42	Raw	1	2.72	30.48	44.91	21.87	11237 14910	4.60	63.03 83.61	1.56	8,57	0,36	6.1	19.7	20,4	23,0
പ	19	16	48.2-55.3	UA43	Raw coal	1 2	2,91	34.14 38.34	54.90 61.66	8.08	13204 14830	5,18 5.46	74.94 84.18	1.59 1.78	10.04	0.19	5.6	8.9	9.3	10.7
	20	19	72.5-77.1	UA- 4 4	Raw	1 2	3.03	25.16	30.85 55.08	41,00	8004 14300	3.76	45,33 80,93	1.18	8.57	0.20	3.8	39.8	41.7	43.8
			77.5-81.0	UA-45	Raw	1 2	3.80	21.22 47,06	23.86	51.17	6279 13930	3.16	35.53 78.83	1.01	8.96	0.20	2.9	50.2	50.7	57.8
	27	15	22-30.2	UA-46	Raw coal '	1 2	3.78	31.35 36.35	54.87 63.65	9.98	12 <i>45</i> 6 14440	4.85 5.15	71.35 82,75	1,39 1,62	12.17 10.21	0.24 0.27	2.0	6.4	6.8	7.7
	28	9	25,5~29,7	UA~47	Raw cool	ן 2	3.86	33.80 43.29	44.28 56.71	18.05	11331 14510	4.88 5.70	64.10 82.09	1.21	11.50	0.25 0.31	2.5	18.8	19.2	20.8
		10	54-60.8	UA~48	Raw coal	1 2	3.99	32.80 42.34	44.66 57.66	18,53	10986 14180	4.77 5.56	62.73 80.99	1,19	12,48	0.27	1.9	20.5	20.6	22.7

OBJECTIVES OF THE INVESTIGATION

Coal is a complex substance; the nature of its organic and inorganic constituents is determined by depositional and post depositional environments as well as parent plant material. Organic constituents are present as microscopically recognizable components called macerals. The macerals reflect the depositional environments. Reflectance of vitrinite shows the degree of coalification or the rank of the coal. Maceral composition also permits evaluation of coal for coking and coal conversion process.

If the mineral matter is intimately associated with the coal substance, it defies beneficiation processes. Many of these minerals are authigenic. The pH and chemical environment of the swamp determines the mineral suite, and conversely the mineral suite can furnish clues as to the depositional environments. The mineral composition affects ash fusion temperature, an important characteristic in coal combustion, whereas certain minerals are suspected of having catalytic properties in coal conversion.

This investigation involves the most comprehensive characterization so far undertaken for Alaskan coals. Although interpretations are brief, much of the data will have significance in the interpretation of the environments of deposition of Cape Beaufort coals, as well as their utilization potential.

SAMPLE PREPARATION

Coal samples as received were minus 8 mesh in size. They were first crushed in a disc pulverizer, using coal plates, so as to pass a 20 mesh sieve for petrographic analysis. A sample split was further ground to 60 mesh in a hammermill pulverizer.

Medium Temperature Ash (MTA)

Twenty (20) grams of the pulverized sample was weighed into a quartz combustion boat and oxidized in a tube furnace at 450° C while maintaining a positive flow of air using an aspirator for suction. A 24-hour ashing time was allowed for all samples. After completion of ashing, the combustion boat was weighed and the ash was stored in air-tight plastic bags for atomic absorption and emission spectrochemical analysis.

No problems were encountered in ashing two samples at a time in the combustion tube. A total of 48 samples were ashed for analysis. Table 1 gives weight percent ash at 450°C. This value is different from high temperature ash since it has more undecomposed mineral matter, particularly carbonates, and the sulfur was retained as sulfate.

Low Temperature Ash (LTA)

One gram of 60 mesh sample was ashed in the LTA-302 low temperature asher (LFE Corporation) using plasma excited oxygen at a temperature of less than 150°C. The sample was stirred several times during a 48 hour ashing period. This sample was used for x-ray diffraction and infrared studies.

COAL PETROLOGY

Analytical Procedure

Procedures outlined by ASTM (D2797-72, D2798-72, D2799-72), were followed. Fifty grams of minus 20 mesh coal was kneaded with epoxy resin with enough added to wet the grains, and briquetted in 1 inch diameter moulds with a hydraulic press at 4000 to 5000 PSI. The briquets were polished using a Buehler Automet in the following sequence, 320, 400 and 600 grit silicon carbide paper followed by Linde A (0.3 micron) and Linde B (0.05 micron) aluminum oxide suspensions.

Reflectance Measurements

The polished pellets were dried in a vacuum dessicator prior to reflectance measurements. The reflectance apparatus consists of a Leitz Ortholux microscope with a trinocular body. The vertical tube is attached to a photo multiplier, Model 520 B, manufactured by the Photovolt Corporation, with a 60x objective and an 8x ocular. The ocular is fitted with a laser perforated platinum disc with a 100 micron diameter diaphram opening to measure an area on the specimen of 3.2 microns. An interference filter is fitted over the disc to give a peak transmittance at 546 mµ wave length. Bausch and Lomb Co. optical glasses were used as reflectance standards. Mean maximum reflectance of vitrinite was measured in oil along equally spaced traverses. A total of 100 measurements per sample were made, 50 on each of two pellets.

Determination of Macerals

A Swift point counter was used to count macerals. Five hundred counts were made on each of the two pellets in a 0.3 x 0.4 mm grid to make a total of 1000 counts. The macerals counted were: vitrinite, pseudovitrinite, exinite, resinite, fusinite, semifusinite, macrinite (globular), macrinite inertodetrinite, sclerotinite, pyrite and other inerts with varying reflectances. The other inerts are those that could not be classed under any other inert macerals and are closest to semifusinite in characteristics. The macerals are reported as volume percent, on a mineral matter free basis. The maceral concentrations were also calculated including mineral matter on a volume percent basis. Low temperature ash residue was taken as mineral matter. Densities used in calculating temperature ash were 2.8 gms/cm³ for mineral matter and 1.35 gms/cm³ for macerals.

Table 2 shows mean maximum reflectance of vitrinites, ranging from 0.65 to 0.74%.

Table 3 shows petrology of the raw coals. The petrology varies quite widely from seam to seam and also within a seam. For example, No. 7 seam showed lowest inert macerals at the bottom of the seam and increased in concentration towards the top. This trend was consistent with all five locations that No. 7 seam was intersected, showing a gradual change to a drier environment during the formation of the seam. A similar trend is evident for No. 8 seam.

TABLE 2

VITRINITE REFLECTANCE

Drill					1.2.21			Mean Maximum
No.	No.	No.	v,	Vit:	V ₇	s s v	V	Reflectance
	16411			•		•	9	Office
2	7	UA-1 UA-2	2	30 33	53 58	15		.73
	-	OA-3		47	51			. /0
3	6 7	UA-4 UA-5 UA-6 UA-7 UA-8		51 48 82 64 31	41 51 15 36 61	8 1 3 8		.71 .70 .67 .68 .73
3C	6 7	UA-9 UA-10 UA-12 UA-14		33 53 51 57	57 39 45 42	10 8 4 1		.72 .71 .70 .69
5	3 4	UA-16 UA-17	2 3	75 87	23 10			.67
6	1 2	UA-18 UA-19 UA-20		33 46 34	63 50 61	4 4 5		.72 .70 .72
7C	7	UA-21 UA-23 UA-25	13	53 27 38	24 69 58	8 4 4	2	.68 .73 .72
8		UA-27		33	60	7		. 73
8C	8	UA-28 UA-30		25 33	66 61	9 8		.74
100	7	UA-32 UA-34		32 · 28	61 59	7 13		.73 .73
9	8	UA-36		21	69	10		.74
11	В	UA-37 UA-38		18 16	67 68	15 16		.74
12	10	UA-39		13	80	7		.74
15	12 13	UA-40 UA-41		19 12	74 77	7 11		.74 .74
18	26	UA-42		42	51	7		.72
19	16	UA-43	1	36	47	14	2	.73
20	19	UA-44 UA-45		16 14	73 75	11 11		.74
27	15	UA-46		12	80	8		.74
28	9 10	UA-47 UA-48		19 15	70 76	11 9		.74'

TABLE	3
and the second second	

· 如果在11 / 如果/251 / 1 公司的2

DISTRIBUTION OF MACERALS IN RAW COALS

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1 0.7 0.7 7.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.7 7.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7 3.0 0.5 2.0	a sea a s
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5 2.0	0.1 0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.3 33.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1 0.9 2.0	0.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1 0.8 1.7	0.5 14.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.3 0.5	0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3 0.4	12.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.6 18.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.5 15.0	16.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.3 3.0	Tr
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.6 2.7	Tr 9.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	'Tr 5.B 2.5	0.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tr <u>5.2</u> 2.2	0.3 10.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.1 1.1	Tr
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0 1.0	<u> 1r 6.3</u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.3 1.6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.8 1.5	9.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.9 1.7	annual according according
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.6 1.1	33.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.4 2.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.0 1.8	17.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.6 2.7	0.1 1.3
2 10-20 65.4 4.6 4.2 0.3 8.7 5.2 5.6 5.9 0	1.4 2.4	1.3 10.2
	5.6 5.9	
<u>54.5</u> 3.8 3.5 0.2 7.3 4.3 4.7 4.9 0.1	<u>4.7</u> 4.9	16.7
7C 7 UN-21+22 62.6 0.7 6.0 9.9 13.0 2.5 4.3 Tr	2.5 4.3	1.0
57.9 0.6 5.6 9.2 12.0 2.3 4.0 Tr	2.3 4.0	0.9 7.5
10-23+24 73.3 1.6 4.4 0.4 9.2 5.0 0.4 2.3 3.3	0.4 2.3 3.3	0.1
<u>65.9 1.4 4.0 0.3 8.3 4.5 0.4 2.1 2.9</u>	0.4 2.1 2.9	0.1 10.1
UA-25+26 84.3 1.7 5.8 0.2 1.0 4.3 Tr 0.3 2.4	Tr 0.3 2.4	<u>Pr</u>
77.9 1.6 5.3 0.2 1.0 4.0 Tr 0.3 2.2	Tr 0.3 2.2	<u> Tr 7.5</u>
B B UA-27 68.9 0.7 4.1 0.1 7.7 13.3 0.2 1.0 3.B 0.1	0.2 1.0 3.8	0.1
62.4 0.6 3.7 0.1 7.0 12.1 0.2 0.9 3.4 0.1 -	0.2 0.0 2.4	0.1 9.4

בן יט

TABLE 3 (Continued)

DISTRIBUTION OF MACERALS IN RAW COALS

brill Hole No.	Seam No.	Sample No.	Vitrinite	Pseudo- Vitrinite	Exinite	Resinite	Pusinite	Semi- Fusinite	Macrinite (Globular)	Macrinite	Inerto- detrinite	Sclerotinite	Pyrite	Other Inerts	Mineral* Matter
8C	8	WA-28+29	59.9	0.8	4.4		10.5	16.1	0.6	2.6	4.8	Tr		0.3	
			54.3	0.7	4.0		9.5	14.6	0.5	2.4	4.3	Tr		0.3	9.4
		16+0F-70	78.5	1.0	3.5		6.2	5.8	0.2	1.1	1.6	0.1		0.1	100
	1.1.1		13.2	0.9	3.3		5.9	4.0	0.2	1.0	1.5	0.1		0.1	6.7
10C	7	UA-32+33	61.9	1.7	3.9	0.3	10.5	13.8	1.3	2.2	3.4	in the second		1.0	
			57.6	1.6	3.6	0.3	9.8	12.8	1.2	2.0	3.1			1.0	7.0
		UA-34+35	74.8	0.3	2.3	0.1	7.0	10.2	0.5	1.3	3.4				
			68.7	0.3	2.1	0.1	6.4	9.5	0.5	1.2	3.1				8.1
9	8	UA-36	73.9	0.9	3.7	0.4	5.6	10.2	0.1	2.0	1.8	0.1		1.3	
			63.8	, 0.8	3.2	0.4	4.8	8.8	0.1	1.7	1.5	0.1		1.2	13.6
11	8	UA-37	68.0	1.2	1.8	0.3	8.5	12.1	0.3	2.9	3.5			1.4	
			61.0	1.1	1.6	0.3	7.6	10.8	0.3	2.6	3.1			1.3	10.3
		UA-38	90.0	0.8	2.3		1.7	2.2		1.3	1.3		0.1	0.3	
the state of the s			82.5	0.7	2.1		1.6	2.0		1.2	1.2			0.3	8.4
12	10	UA-39	82.7	0.6	3.6	المتحدث المح	4.8	5.0		0.9	1.8	And States	Charles -	0.6	1
		And we have	73.3	0.5	3.2		4.3	4.4		0.8	1.6			0.5	11.4
15	12	10-40	79.5	0.2	2.6	0.4	4.9	7.6	0.3	1.2	2.2			0.9	
2.2	10.0	Contraction of the	71.0	0.2	2.3	0.4	4.4	6.8	0.3	1.0	2.0			0.8	10.8
	13	UA-41	76.6	1.2	3.1		4.8	9.5	0.3	1.5	2.2			0.8	
			68.5	1.1	2.8		4.3	8.5	0.3	1.3	2.0		-	0.7	10.5
18	26	114-42	78.6	0.5	8.7	0.1	4.7	2.7		0.8	3.6	in the second second	0.3		
	-00-	1. ALE 10-14	68.9	0.4	7.6	0.1	4.1	2.4	hard and the second	0.7	3.2				12.6
19	16	IIA-43	77.3	0.6	5.5		4.7	8.4	-	1.1	2.1	0.1		6.2	
anne an		1000	73.1	0.6	5.2		4.4	7.9		1.0	2.0	0.1		0.2	5.5
20	19	10-44	88.2	0.1	2.9		3.6	2.9	121 <u></u> 1	0.5	12	10 <u>10 10</u> 10 10	0.2	0.4	
~~	**		64.2	0.1	2.1		2.6	2.1		0.4	0.9	ليعتبون		0.7	27.3
		UA-45	95.8	0.2	0.7		0.6	1.1		0.2	1.0		0.4		
			57.9	0.1	0.4		0.4	0.7		0.1	0.6				39.8
37	25	DALAG	80.3	0.4	7 5		1 a	47		0.5	1.6	11111	6.1	0.4	-1
2.1	1.5	(24) 40	85.8	0.4	1.4		1.7	4.5		0.5	1.4			0.4	3.9
									1.1 23.			in the start sale			
28	9	UA-47	79.1	0.2	3.4	0.2	2.9	7.9		3.3	2.3			0.7	15.0
	10	115 10	10.2	0.2	1.0	0.2	2.6	7.0		2.9	2.0			0.7	1.1. 2
	10	UA-48	72 0	0.3	4.1		4.1	3.7	13.15	1.0	1.6			0.1	12.4
-	1000	Tell and Designed	12.0	0.3	4.4		4.1	3.2		1.0	1.3	-		0.0	12.4

Tr - Trace * - Includes Pyrite

Figures 4 and 5 are photomicrographs showing the nature and association of various macerals. The coals in general did not have true micrinite as defined by Stach (1976). Many seams were high in pseudovitrinite, fusinite, semifusinite and other noncoking inerts, and this explains the low freeswelling indexes of these coals tested. Samples that gave a freeswelling index of 3 or more had in excess of 80% reactive macerals (vitrinite + exnite + resinite). Another interesting feature is the presence of macrinite, in globules, generally 40-120 microns in diameter (Figure 4C) (80 microns average diameter). Globular macrinite has been found only in seam Nos. 7, 8, 12 and 13, indicative of specific environments conducive to its formation. Although spherical shape is the most common, in a few cases it is found as irregular shapes but always with rounded edges (Figure 4B). It has high relief and generally has a variable reflectance which approaches that of fusinite. Because of its unique characteristics it is counted as a separate maceral and is tabulated as macrinite, globular. It is likely that this maceral could be used in correlating coal seams. Petrology of sink-float fractions, presented in Table 4, shows a higher concentration of fusinite in sinks than in floats due to the higher density of fusinite and the filling of cell cavities with carbonates and clay minerals (Figure 5 C, D, E and F).

A. Pseudovitrinite (PV) Showing higher reflectance than vitrinite (V) (UA-12)

B. Macrinite (M) showing irregular shape and sharp edges (UA-12)

C. Typical aggregate of macrinite (M) globules with transition to fusinite (UA-33)

D. An isolated macrinite (M) globule showing oxidation rim and differential compaction (UA-2)

E. Alginite (A) and sporinite (S) embedded in vitrinite (V) (UA-10)

F. Cutinite (C) embedded in vitrinite (V) (UA-2)

Figure 4. Photomicrographs of Cape Beaufort coals showing various macerals, reflected light, C--air, and all others oil immersion.

A. Trimacerite showing Inertodetrinite(I) Vitrinite (V) and sporinite (S) (UA-2)

B. Inertodetrinite, essentially finegrained macrinite (M) with varying reflectance and embedded spores (S) (UA-2)

C. Fusinite cell cavities filled with carbonate (UA~33)

D. Fusinite cell cavities impregnated with clay minerals (UA-33)

E. Fusinite (F) with bogen structure impregnated with carbonate (C) (UA-29)

F. Carbonate (C) filling fissures (UA-29)

Figure 5. Photomicrographs of Cape Beaufort coals showing various macerals and associated minerals, reflected light, C and D air, all others oil immersion.

cill		G1	1	Sec. 1	Deseuda		- VF124	10 1	Cand	Manufaite	-1	Territo	S. S. S. S. S.	100	-	
le	No.	No.	Product	Vitrinite	Vitrinite	Exinite	Resinite	Fusinite	Fusinite	(Globular)	Macrinite	detrinite	Sclerotinit	e Pyrite	Inerts	Matter
2	7	UA-10	Float	37.8	9.0	3.0	0.2	6.4	19.0		21.8	2.8				<u></u>
				35.9	8.6	2.8	0.2	6.1	18.1		20.7	2.7				4.9
		UA-11	Sink	51.5	1.4	12.9		7.0	20.6		2.5	3.9			0.2	
				38.1	1.0	9.5		5.2	15.2		1.8	2.9			0.2	26.1
		UA-10+11	Recomb.	40.3	7.6	4.8	0.2	6.5	19.3		18.3	3.0	-		Tr	
				36.5	6.9	4.2	0.2	5.9	17.5		16.6	2.7			Tr	9.5
		UA-12	Float	50.2	13.6	2.5	1.5	10.6	11.9		6.5	2.7	0.5			
				47.3	12.8	2.4	1.4	10.0	11.2		6.1	2.5	0.5			5.8
		UA~13	Sink	46.3	1.1	6.0		30.8	9.7	0.3	1.6	1.7	0.1	0.1	2.3	
				32.0	0.8	4.2		21.3	6.7	0.2	1.1	1.2	0.1		1.6	30.8
		UA-12+13	Recomb.	49.6	11.8	3.0	1.3	13.6	11.6	Tr	5.8	2.5	0.4		0.4	
				44.4	10.6	2.7	1.2	12.2	10.4	Tr	5.2	2.2	0.3	-	0.3	10.5
		UA-14	Float	59.5	26.1	3.4	0.2	2.2	6.4		1.1	1.1		-		
		Electrone	1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	57.7	25.3	3.3	0.2	2.1	6.2		1.1	1.1				3.0
		10-15	Sink	61.0	0.6	12.5		19.4	3.5		1 7	1.4		0.2	0 1	3.0
				30.3	0.3	6.2		9.6	1.7		0.7	0.8		V. 6	0.1	50.3
		10-14+15	Becomb	59 6	25.2	3.7	0.2	2.9	6.3		1 1	1.1			0.1	30.3
ġ	de l'Alera	GR 14.15	Neccano.	55.8	23.7	3.5	0.2	2.6	5.9		1.0	1.0			Tr	6.3
с	7	UA-21	Float	63.2	0.6	5.8		8.9	13.4		2.6	4.5			1.0	
				59.9	0.6	5.5		8.4	12.7		2.5	4.3			1.0	5.1
		UA~22	Sink	54.9	1.5	8.1		23.4	8.1		0.9	2.2	0.1		0.8	
		100.000		38.2	1.0	5.6		16.3	5.6		0.6	1.5	0.1		0.6	30.5
		(B-21+22	Recomb.	62.6	0.7	6.0		9.9	13.0		2.5	4.3	Tr		1.0	
				57.9	0.6	5.6		9.2	12.0		2.3	4.0	Tr		0.9	7.5
		UA-23	Float	75.2	1.5	4.4	0.4	7.5	4.8	0.4	2.4	3.3		0.1		
				70.4	1.4	4.1	0.4	7.0	4.5	0.4	2.2	3.1				6.5
		UA-24	Sink	56.4	1.8	4.7	0.3	22.5	7.2	0.8	1.6	3.5		0.3	0.9	
			Part	39.0	1.2	3.3	0.2	15.5	5.0	0.6	1.1	2.4			0.6	31.1
		110-23+24	Recomb.	73.3	1.6	4.4	0.4	9.2	5.0	0.4	23	3.3	-	-	0.0	
		Car Egites	100001001	65.9	1.4	4.0	0.3	8.3	4.5	0.4	2.1	2.9			0.1	10 1
		IA-25	Float	84.7	1.7	5.7	0.2	0.8	4.2		0.3	2.4				20.1
				81 5	1.6	5.5	0.2	0.8	4.0		0.3	2.3		-		20
		110-26	Sink	71 4	0.2	7 5	0.1	8 6	9.1	0.1	0.9	1.3		0.7	0.2	5.0
		04 20	OTH	71.4	0.4	1.5	0.1	0.5	3.1	0.1	0.9	1.5		0.7	V.Z	
		10-25-26	Bacomb	84.2	1 2	5.9	0.2	1.0	4.2	m	0.2	2 4				~
		Un 25720	Neccello.	77.9	1.6	5.3	0.2	1.0	4.0	ጥ	0.3	2.4			ባተ ጥተ	7.5
171	1000		distant second									2,2				
C	8	UA-28	Float	62.4	0.6	4.7	0.1	8.6	15.2	0.7	2.7	4.9			0.1	
			Contraction of the	59.3	0.6	4.5	0.1	8.2	14.4	0.7	2.6	4.6			0.1	5.0
		IA-29	Sink	46.1	1.7	2.3		21.2	20.7	0.3	2.3	4.2	0.1		1 1	
			Q.LIUL	22.2	1.2	1 7		15.3	15.0	0.2	1 7	3.0	0.1		07	27 0
		114-28+20	Record	59 9	0.8	A A	1000	10.5	16 1	0.6	2.6	1.9	0.1		0.0	2/.0
		21 20129	autocality.	54 3	0.7	4.9		9 5	14.6	0.5	2.0	4.0	11		0.0	0 4
		172-30	Float	79.3	1.1	3.6	0.3	5.5	77	0.5	0.9	<u>4, J</u>	<u> </u>		0.3	9.4
		04-30	Ficat	75.5	1.1	2.0	0.3	5.5	7.4	0.2	0.9	1.4	0-1		0.1	
		115. 21	Fink	66.1	1.0	3,4	0.5	16.0	5.9	0.2	2.2	4.6	0.1		0.1	4.0
		UA-31	STIK	00.7	0.2	1.5		10.0	5.8	0.2	3.2	0.2	0.1			
			Descut	45.9	0.2	1-0	1	11.0	4.0	0.2	2.2	4.3	0.1			71.7
		UA-30+3I	NECOMD.	/8.5	1.0	3.5		6.2	5.8	0.2	1.1	1.6	0.1		0.1	·····
				73.2	0.9	3.3		5.9	4.0	0.2	1.0	1.5	0.1		0.1	6.7

TABLE 4 DISTRIBUTION OF MACERALS IN SINK-FLOAT FRACTIONS

TABLE 4 (Continued)

.

DISTRIBUTION OF MACERALS IN SINK-FLOAT FRACTIONS

Drill	Seam	Sample			Pseudo-				Semi-	Macrinite	and sound	Inerto-			Other	Mineral*
No,	No.	NO.	Product	Vitrinite	Vitrinite	Exinite	Resinite	Fusinite	Fusinite	(Globular)	Macrinite	detrinite	Sclerotinite	Pyrite	Inerts	Matter
10C	7	UP\32	Float	63.0	1,6	4.0	0.3	9.4	13.5	1.2	2.3	3,4			0.5	
				61.1	1.5	3.8	0.3	9.0	12.9	1.2	2.2	3.3			0.5	4.2
		UA-33	Sink	41.3	3.2	2.7	0.1	21.9	17.0	2,0	1.7	3.4		1.0	6.6	
				29.1	2, 3	1.9	0.1	15.4	12.0	1.4	1.2	2.4			4.7	29.5
		UA-32+33	Recomb.	61.9	1.7	3.9	0.3	10.5	13.8	1.3	2.2	3.4			1.0	·
				57.6	1.6	3.6	0.3	9.8	12.8	1.2	2.0	3.1			1.0	7.0
		UA-34	Float	76.9	0.2	2.0	0.1	5.8	10.2	0.5	1.2	3.1				
				72.9	0.2	1.9	0.1	5.5	9.7	0.5	1.1	2.9				5.2
		ው 35	Sink	44.7	2.0	6.9	0.5	24.3	10.9	0.3	2.9	7.0		~	0.5	
				30.7	1.4	4.7	0.3	16.7	7.5	0.2	2.0	4.B			0.3	31.4
		(IA34+35	Recomb.	74.8	0.3	2.3	0.1	7.0	10.2	0.5	1.3	3.4			·	
-				68.7	0.3	2.1	0.1	6.4	9.5	0.5	1.2	3.1				8.1

Tr - Trace * - Includes Pyrite

MINERALOGY OF THE COALS

X-Ray Diffraction Analyses of Low Temperature Ash

An internal standard method recommended by Rao and Gluskoter (1973) was used for the quantitative analysis of minerals in low temperature ash. A Phillips Norelco X-ray diffraction system with CuKa Ni-filtered radiation at 40 Kv, 15 ma was used.

Mineral matter residue obtained from low-temperature ashing was first ground in an agate mortar to minus 200 mesh. As an internal standard, 0.02 grams of finely powdered pure fluorite was added to 0.1 gram of sample, and mixed with a spatula on a weighing paper, followed by mechanical mixing in a stainless vial with a stainless ball, using a Spec mixer for 1 minute.

The back-packed cavity mount technique described by Rao and Gluskoter (1973) was used in order to avoid orientation of powdered grains along the preferred cleavage faces of minerals.

A preliminary scan of the 48 samples from 2° to 60° (20) revealed that the minerals in the samples were quartz, calcite, dolomite, plagioclase, siderite, amalcime, kaolinite, illite, and montmorillonite. Two series of standard mixes were prepared. The first set (Standard QCD) of standards consisted of quartz, calcite and dolomite, and the second set (Standard PSA), of plagioclase, siderite and amalcime.

An internal standard of 0.2 grams of fluorite powder, and a clay mixture diluent containing equal amounts of kaolinite, montmorillonite, and illite were added to the series of standard

mixes (Tables 5 and 6). The standard mixes were pulverized in a stainless steel vial in a spec mixer for 20 minutes to obtain optimum grain size. The mounted standards were x-rayed from 14° to 34° 20 with a scanning speed of 1/2 degree per minute and a chart speed of 1/4 inch per minute for accurate peak-height. Peak-height intensities of each mineral were measured in recorded chart units with 500 counts full scale. The reflections of minerals used for peak-height measurements were quartz (101) calcite (104), dolomite (104), siderite (104) analcime (400), plagioclase (002;040), and fluorite (111). Three mounts were prepared for each standard mix and each mount was x-rayed twice. The average value from the six patterns were used for the calibration curves.

The calibration curves of quartz, calcite, dolomite, plagioclase, siderite, and analcime are constructed by plotting the respective peak-height intensity ratios of these minerals with fluorite as the ordinate and grams of the respective minerals per 0.2 grams of fluorite as the abscissa (Figures 6, 7, 8, 9, 10 and 11).

Identical settings of x-ray diffractometer and recorder are used for samples and standards. Percentages of the minerals are **obtained** by referring directly to their respective calibration curves using internal standard sample peak-height ratios.

PREPARATION OF STANDARDS AND CALIBRATION CURVES FOR PLAGIOCLASE, SIDERITE AND ANALCIME FOR ANALYSIS BY X-RAY DIFFRACTION

11.6	Weig	ht of Miner	als In Stand	ard Mixture	e, gms.	Weight Per in Stan	cent of M dard Mixt	Peak Height Ratio			
Mixture Number	Plagioclase P	Siderite S	Analcime A	Fluorite F	Clay Mineral Mixture	Plagioclase	Siderite	Analcime	H _P ∕H _F	H _S /H _F	H _A /H _F
PSA-I	0	0.40	0.40	0.20	0.80	0	40	40	0	1.96	0.97
PSA-2	0.04	0.36	0.36	0.20	0.76	4	36	36	0.08	1.77	0.87
PSA-3	0.08	0.32	0.32	0.20	0.72	8	32	32	0.17	1.57	0.77
PSA-4	0.12	0.28	0.28	0.20	0.68	12	28	28	0.25	1.37	0.68
PSA-5	0.16	0.24	0.24	0.20	0.64	16	24	24	0.34	1.18	C.58
PSA-6	0.20	0.20	0.20	0.20	0.60	20	20	20	0.42	0.98	0.48
PSA-7	0.24	0.16	0.16	0.20	0.56	24	16	16	0.51	0.79	0.38
PSA-8	0.28	0.12	0.12	0.20	0.52	28	12	12	0.59	0.58	0.29
PSA-9	0.32	0.08	0.08	0.20	0.48	32	8	8	0.67	0.38	0.19
PSA-10	0.36	0.04	0.04	0.20	0.44	36	4	4	0.76	0.20	0.97
PSA-II	0.40	0	0	0.20	0.40	40	0	0	0.84	0	٥

* Diluent - A mixture of Montmorillonite, Kaolinite and Illite in equal parts.

N

TABLE 5

TABLE 6

PREPARATION OF STANDARDS AND CALIBRATION CURVES FOR QUARTZ, CALCITE AND DOLOMITE FOR ANALYSIS BY X-RAY DIFFRACTION

	Weig	ht of Miner	uls in Standa	rd Mixture	gms .	Weight P In Sta	ercent of M ndard Mixtu	Peak Height Ratio			
Mixture Number	Quartz Q	z Calcite C	Dolomite D	Fluorite F	Clay Mineral Mixture*	Quartz	Calcite	Dolomite	H _Q ∕H _F	H _C ∕H _F	H _D ∕H _F
QCD-I	0,40	0	0.40	0.20	0.80	40	0	40	3.50	0	1.7
QCD-2	0,36	0.04	0.36	0,20	0.76	36	4	36	2.74	0,17	1.54
QCD-3	0.32	0.08	0.32	0.20	0.72	32	8	32	2.44	0.34	1.37
QCD-4	0.28	0.12	0.28	0.20	0.68	28	12	28	2.14	0,50	1.20
QCD-5	0.24	0.16	0.24	0.20	0.64	24	16	24	1.84	0.67	1.03
QCD-6	0.20	0.20	0.20	0.20	0.60	20	20	20	1.53	0.84	0.86
QCD-7	0.16	0.24	0.16	0.20	0.56	16	24	16	1.23	1.00	0.69
QCD-8	0.12	0.28	0.12	0.20	0.52	12	28	12	0.93	1.17	0.52
QCD-9	0.08	0.32	0.08	0,20	0.48	8	32	8	0,62	1.34	0.34
QCD-10	0.04	0,36	0.04	0.20	0.44	4	36	4	0.31	1.51	0.17
QCD-II	0	0.40	0	0.20	0.40	0	40	0	0	1.68	0

* Diluent - A mixture of montmorillonite, kaolinite and illite in equal parts.

Infrared spectrographic determination of kaolinite

Procedures described by O'Gorman and Walker (1972) and Gong and Suhr (personal comm.) were used. Kaolinite used for the preparation of standards was pulverized wet in an agate mortor and the minus 2 µ fraction separated by sedimentation. LTA samples were pulverized in an agate mortor wetted with ethanol. 1 mg sample or standard was mixed with 200 mg of KBr and pelletized in an evacuated die with pressure maintained at 10 tons/sq. inch for 10 seconds. The pellets were scanned using a Perkin-Elmer model 467 double beam grating infrared spectrophotometer. Kaolinite is determined using the 910 cm -1 peak. Standard curves were drawn of absorbance vs concentration of kaolinite, and these gave an excellent straight line relationship. The baseline method (O'Gorman and Walker, 1972) was used. The baseline is obtained by connecting the background lows on either side of the peak by a straight line. Absorbance A is calculated as follows from the transmittance spectram:

A = -log t = -log <u>reading at peak</u> reading at baseline at same wavelength as peak

"The total other clays" (i.e. montmorillonite and illite and mixed layer clays) is calculated from mineralogical and chemical analysis (Gong and Suhr, per. comm.) as 2 times the remaining SiD₂, calculated as follows:

SiO₂ remaining = SiO₂ in LTA - (Kaolinite x 0.465) + (Analcime x 0.546) + (plagioclase x 0.687) + quartz Total other clays = SiO₂ remaining x 2.

The mineralogy of the coals is shown in Table 7. Clav minerals are by far the most abundant in the samples. A11 samples contained kaolinite. As can be seen in the section (Figure 3) the coal seams 1 through 8 are separated by more than 1600 feet from seams 9 through 20. Analcine was found only in the top portion; in particular, seams 7 and 8, and none in the bottom portions. Mineral assemblage is determined by the chemical environment of the original peat bog. Phase equilibrium studies by Kurt Linn (Blatt et al '72) showed that at room temperature and atmospheric pressure the formation of albiteanalcime-montmorillonite and kaolinite are determined by the concentration of silicic acid and sodium and hydrogenions. For example, the formation of analcime is favored by a high sodium ion concentration, an alkaline pH, and an intermediate concentration of silicic acid. A decrease in pH favors the formation of sodium montmorillonite and finally kaolinite. An increase in silicic acid concentration favors formation of albite. Further lowering of the silicic acid concentration favors the formation of gibbsite. From the fact that analcime is limited to seams in the top section it appears that the environment favored its formation. Mineralogy could give clues to the depositional environment of the swamp as do the macerals themselves. Of the carbonates, dolomite is the most abundant followed by calcite and siderite. Distribution of minerals in the sink-float fractions (Table 8) shows no preferential association of calcite and dolomite with sinks or floats. Siderite however shows a

Drill Hole	Seam	Sample		创作				4		Other	Fusibi Tempe Initial	lity of Ash rature, °F	
NO.	NO.	No.	Quartz	Calcite	Dolomite	Siderite	Plagioclase	Analcime	Kaolinite	Clays	Deformation	Softening	Fluid
2	7	110-1	26		٦	0	. 6	2	ß	50			
	2	13A-2	25	2	ž	õ	2	6	5	54	2300	2350	2550
	7	UA-3	17	ī	1	Ŏ	5	0	16	60	2430	2480	2580
3	6	114-4	4	3	4	Ô	0	0	51	12			
-	7	UA-5	4	9	Ĥ	ž	õ	2	7	50			
	2	UA-6	12	Ó	4	ō	n	4	7	60			
	7	UA-7	18	3	3	1	5	5	8	66	Street, a report of the		
_	7	UA-8	18	4	3	0	0	0	19	58			
30	6	UA-9	з	3	3	1	0	٥	38	34			
and the second	7	UA-10+11	4	2	6	ī	2	ž	31	41			
	7	UA-12+13	21	4	4	1	2	9	10	47	and the set of the second seco		
1.10.11.0	7	UA-14+15	4	6	6	1	2	0	20	38	A STATE OF A STATE OF A		
5	Э	UA-16	8	4	6	0	Û	0	10	31	2250	2300	2350
-	4	UA-17	17	0	4	5	0	0	11	57	2180	2240	2350
6	1	UA-18	3	1	1	0	5	0	22	49	A		
	2	UA-19	21	5	8	6	0	0	10	29			
	2	UA-20	8	0	<u> </u>	0	0	0	24	34	2680	2760	2840
7C	7	UA-21+22	8	7	8	1	0	3	19	27	1 S. 1		
	7	UA-23+24	21	4	3	1	2	5	11	28	1.5		
	7	UA-25+26	5	5	3	1	2	0	21	58	Contraction of the second s		
8	8	UA-27	1	7	11	1	2	5	23	30	1	1	AGACT HIS
8C	8	UA-28+29	2	4	18	2	0	5	20	47			
	8	UA-30+31	1	3	12	1	0	5	9 9	46	anto population		
10C	7	UA-32+33	6	3	6	1	0	3	21	46	24		
	7	UA-34+35	16	4	3	2	0	6	14	52			diane.
9	8	UA-36	5	3	9	1	4	7	30	33			of Gard
11	8	UA-37	7	4	11	0	0	10	18	46			
41.5	8	UA-38	16	3	3	2	0	7	18	27			
12	10	UA-39	2	3	4	0	0	0	19	56	2320	2370	2430
15	12	UA-40	13	2	3	0	4	0	18	43	2300	2360	2420
	13	UA-41	25	1	3	0	10	0	20	27	2230	2280	2380
18	26	UA-42	10	2	4	0	5	0	15	47	2680	2730	2790

DISTRIBUTION OF MINERALS IN THE LOW TEMPERATURE ASH OF RAW COALS

۰.

4

0 - Not Detected

TABLE 7 (Continued)

1

Drill Hole No.	Seam No.	Sample No.	Quartz	Calcite	Dolomíte	Siderite	Plagioclase	Analcime	Kaolinite	Other Clays	Fusibi Tempe Initial Deformation	llty of Ash rature, °F Softening	Fluid
19	16	UA-43	8	7	12	2	0	0	11	33	2090	2140	2190
20	19 19	UA-44 UA-45	18 14	0	0	0	0	0	14 15	61 63	2910+ 2910+		
27	15	UA-46	36	8	28	4	12	0	4	0	2100	2150	2250
28	9 10	UA-47 UA-48	14 22	4	10 9	0	9	0	28	25	2720	2780	2910

DISTRIBUTION OF MINERALS IN THE LOW TEMPERATURE ASH OF RAW COALS

0 - Not Detected

Drill Hole	Seam	Sample	i gên		1.4		36.8	in fan Maria	3/4-1 		Other	Fusibi Tempe Initial	lity of Ash rature, °F	2
NO.	NO.	No.	Product	Quartz	Calcite	Dolomite	Siderite	Plagioclase	Analcime	Kaolinite	Clays	Deformation	Softening	Fluid
3C	7	UA-10	Float	3	3	8		4	5	21	34	2340	2390	2440
		UA-11	Sink	4	2	5	1	0	0	38	45	2770	2820	2870
		UA-10+11	Recomb.	4	2	6	1	2	2	31	41			
		UA-12	Float	15	2	3	2	0	8	13	51	2320	2420	2680
51.4		UA-13	Sink	26	5	5	1	3	9	7	43	2240	2310	2570
		UA-12+13	Recomb.	21	4	4	1	2	9	10	47			
		UA-14	Float	2	7	9	2	0	0	8	30	2200	2260	2360
		UA-15	Sink	5	6	4	0	4	0	30	45	2660	2710	2760
		UA~14+15	Recomb.	4	6	6	1	2	0	20	38			
7C	7	UA-21	Float	5	4	2	2	0	4	23	24			
	ere de la compañía de	UA-22	Sink	12	13	9	ō	Ő	Ó	13	32	والمشتعين والمتحدثان		
		UA-21+22	Recomb.	8	7	8	i	0	3	19	27	Part Part Part		
		UA-23	Float	17	4	3	Ĩ	Ō	5	13	44			-
		UA-24	Sink	28	4	4	0	4	5	9	9			
		UA-23+24	Recomb.	21	4	3	ĩ	2	5	11	28			
		UA-25	Float	2	6	6	2	0	0	10	71	and the second sec		10.00
		UA-26	Sink	7	4	1	ō	Benerican the property of	0	31	47	and the fight of the second second		
il	- delta	UA-25+26	Recomb.	5	5	3	i	2	0	21	58	sos mictor	and a second second second	the set
80	8	UA-28	Float	1	3	12	0	0	6	23	46	2410	2460	2510
1	11.00	UA-29	Sink	3	5	22	Tr	0	5	17	49	2250	2300	2350
		UA-28+29	Recomb.	2	4	18	Tr	0	5	20	47	The state of the second	and the state of	17 10 17
		UA-30	Float	1	2	9	2	0	Ā	11	42	2380	2430	2480
		UA-31	Sink	2	6	15	1	0	7	6	51	2200	2250	2350
L IN		UA-30+31	Recomb.	i	3	12	2	0	5	9	46	D. T. Washington and		
OC	7	UA-32	Float	3	2	6	2	0	4	24	40	There is a second second		
	19-19-10	UA-33	Sink	10	4	7	0	0	2	18	53	MAN MARKET		
		UA-32+33	Recomb.	6	3	6	1	0	3	21	46	a supplier of the		
		UA-34	Float	13	2	3	2	0	5	15	56	 M.S. X(3) * 	and manufactures	13
		UA-35	Sink	19	6	4	1	0	9	12	48	10 10 10 10 10 10 10 10 10 10 10 10 10 1		
		UA-34+35	Recomb.	16	4	3	2	0	6	14	52			

DISTRIBUTION OF MINERALS IN THE LOW TEMPERATURE ASH OF SINK-FLOAT FRACTIONS

Tr ~ Trace 0 - Not Detected consistently higher concentration in floats than sinks. Concentration of quartz is higher in sink ash than in float ash. Plagioclase is quite common in the ashes and has been detected in half the samples. Of the five samples containing plagioclase four showed preferential association with the sinks.

Fusibility of Ash

It is generally recognized that ash fusion temperature is a function of ash composition. The ash fusion temperature is lowered by the presence of the oxides of iron, calcium and magnesium, sodium and potassium. Iron oxide has the highest influence on the ash fusion temperatures. The coals under study, as is the case with all Alaskan coals, are low in total sulfur, and only have traces of pyrite. The ash therefore has a low iron content. The ash fusion temperature of these coals is primarily dictated by the lime and magnesia content of the coal ash, contributed by calcite and dolomite in the coal. As can be seen from Table 7, the maximum initial deformation temperature of 2910°F is obtained from the samples UA-44 and 45, that have no carbonates. Sample No. UA-43 with 21% carbonates gave the lowest initial deformation temperature of 2090°F. Table 8 shows ash fusion temperatures for sink-float fractions. The difference in ash fusion temperatures of sink and float products can be readily attributed to the carbonate content. For example, UA-10, the float product with 13% carbonates has a lower ash fusion temperature compared to UA-11, the sink product, which

contains 8% carbonates. On the other hand UA-28, a float product with 15% carbonates, has a higher ash fusion temperature compared to UA-29 which has 27% carbonates. An understanding of the mineralogy of coals, in contrast to major oxide composition alone, plays a significant role in interpreting the ash fusion temperatures for Alaskan coals.

DETERMINATION OF CHEMICAL COMPOSITION OF ASH

Atomic absorption and emission spectrochemical procedures were used for the analysis. The analytical scheme is shown in Table 9. For Ba, Cu, Mo and Ni, both methods were used. For atomic absorption analysis, sample digestions were made by both lithium metaborate fusions and hydroflouric acid digestions, the latter to permit determination of trace elements.

Atomic Absorption Analysis

In the lithium metaborate fusion procedure (Ingamells, 1970, Meldin, Suhr and Bodkin, 1969) 0.2 g. of coal is mixed with 1 g. of lithium metaborate in a plastic vial in a wig-L-bug mixer. The mixed product is fused for 10 minutes in a graphite crucible at 950°C. The fusion is dissolved in 50 ml. of 5% HNO3 solution in a screw cap test tube while stirring over a magnetic stirrer hot plate. Rapid dissolution will prevent precipitation of silica. The solutions are transferred to polyethylene bottles and capped tightly.

TABLE 9

ANALYTICAL SCHEME FOR COAL ASH

Solvent Extraction Procedure for the Determination of Molybdenum (Rao, 1971)

Lithium metaborate fusions prepared as described above are dissolved in 40 ml. of 10% H₃ PO₄ solution containing 2% H_{2O₂} in a 50 ml. screw cap test tube. The molybdenum, now present as phosphomolybdate, is extracted into 5 ml. of methyl iso-butyl ketone containing 3% aliquot 336 and analyzed by the atomic absorption method. This method allows determination of molybdenum at levels as low as 1 ppm, whereas the lower limit of detection by emission spectrochemical analysis is 6 ppm.

Digestion with Hydroflouric Acid

0.5 gms. of coal ash is weighed and transferred to a 3" diameter Teflon evaporation dish. The sample is moistened with 2 ml. distilled water. After an addition of 4 ml. perchloric acid, the dish is heated on a hot plate until nearly dry. The dish is cooled and 1 ml. perchloric acid and 10 ml. HF are added and evaporated to near dryness. The dish is cooled and 1 ml. HClO3 and 5 ml. HF are added, again evaporated to dryness. The dish is again cooled and 1 ml. HClO3 and 5 ml. 5% boric acid solution are added and swirled to make sure that all the sample is loosened from the bottom of the dish. Any sticking residue is loosened with a polyethylene covered rod. The dish is now heated until dense fumes evolve, without allowing the residue to dry. The dish is cooled and the residue is taken into solution with 20 ml. 25% HCl and made up to 25 ml.

EMISSION SPECTROCHEMICAL ANALYSIS

A Jarrel-Ash, Model 78-090, 1.5 meter Wadsworth grating spectrograph with a reciprocal linear dispersion of 5.4 $A^{O/mm}$ in the second order was used. Details of excitation conditions are given in Table 10. The exposures were recorded in the second order between 2100 A^{O} and 4850 A^{O} using spectrum analysis No. 1 emulsion 35 mm film. The exposed films were processed for 3 minutes at 68° F in D-19 developer using a Jarrel-Ash photoprocessor. The emulsion was calibrated and attenuated using a 7-step rotating sector having a transmission ratio of 1.585 between steps.

All samples were analyzed in duplicate on separate films. Standards were burned in triplicate, spaced in between samples. Standard analyzed rocks were analyzed to check the accuracy of the procedure. Percent transmission of the lines was measured with a Jarrel-Ash microphotometer using a 12.5 micron slit. Background corrections were made for Ge, Pb, Ga, Mo, Sn, V, Ag, Ni, and Co. No corrections were made for the background for Ba, B, Cu, or Cr since the background level for these elements was very low at the step measured.

Preparation of Standards

Spectrographically pure chemicals were used for the preparation of standards. The procedure described by the author was used (Rao, 1968). A synthetic matrix approaching the average composition of ash of Alaskan coals was used for dilution of

TABLE 1.0

EXCITATION CONDITIONS FOR SPECTROCHEMICAL ANALYSIS Spectrograph: Jarrel-Ash, Model 78-090, 1.5 Meter, Wadsworth mounting with reciprocal linear dispersion of 5.4 A°/mm in the second order.

Filtration: 7 step rotating sector with a ratio of 1.585. Steps 5, 6 and 7 having 25.1, 39.8 and 63.1 percent transmission respectively were recorded for each exposure.

Spectral Region: 2100 Å to 4850 Å

Emulsion: SA-1 35mm film, 5 exposure per film strip.

Slit height: 4 mm

Slit width: 25 microns

Total Exposure time = 180 sec. (10 sec. at 3 amps, 10 sec. at 4 amps, 10 sec. at 50 amps and 150 sec. at 9 amps).

Analytical gap: 4 mm

Sample Electrode: Ultracarbon 7075

Counter Electrode: Ultracarbon 52202

Atmosphere: Air

standards. A standard mix was prepared by combining oxides of various elements in the ratio normally encountered in coal ashes. By successive dilutions 7 sets of standards were prepared in such a way that there were standards for each element covering the range occurring in coal ashes. Standard curves were constructed for all the 14 trace elements from the 7 standards. Table 11 gives the concentrations of the elements in each of the standards.

Analytical Procedure

The total energy method was used in which only one exposure is needed for the determination of all elements. 50 mg. of coal ash was mixed with 100 mg of graphic buffer mix (SP-2 graphite containing 12.5% CaCO₃) in a wig-L-bug mixer. 30 mg. of the arc mix was loaded into electrodes and packed. Duplicate exposures are made for each sample.

DISCUSSION OF ANALYTICAL PROCEDURES

Atomic Absorption

Of the two digestion methods used, the lithium metaborate fusion technique is preferred due to the rapidity with which the samples can be brought into solution, and the fact that all elements, including Si could be analyzed. For atomic absorption analysis HF digestions were needed for only two elements, Cu and Ni. Nickel needed deuterium arc background correction for high nonatomic absorption in the flame. The two elements could, however, be determined by emission spectrochemical analysis.

TARI.	F	11
INDL	4	TT.

			Co	ncentrati	on of Eler	nent, PPN	٨	
Element	Compound Used	STD. A2	STD. Al	STD. A	STD. B	STD. C	STD. D	STD. E
Ag	Ag2O	250	125	62.5	31.3	15.6	7.8	3.9
В	H ₃ BO ₃	2000	1000	500	250	125	62.5	313
Ba	BaCO3	15000	7500	3750	1875	938	469	234
Co	Co304	500	250	125	62.5	31.3	15.6	7.8
Cr	Cr203	1000	500	250	125	62.5	31.3	15.6
Cu	CuO	2000	1000	500	250	125	62.5	31.3
Ga	Go2O3	500	250	125	62.5	31.3	15.6	7.8
Ge	GeO2	1000	500	250	125	62,5	31.3	15.6
Mo	MoO3	500	250	125	62.5	31.3	15.6	7.8
Ni	NiO	1000	500	250	125	62.5	31.3	15.6
Pb	РЬО	2000	1000	500	250	125	62.5	31.3
Sn	SnO ₂	500	250	125	62.5	31.3	15.6	7.8
V	V205	2500	1250	625	313	156	78	39
Zr	ZrO ₂	1000	500	250	125	62.5	31.3	15.0

STANDARDS FOR EMISSION SPECTROCHEMICAL ANALYSIS

Although Sr has been determined from HF digestions for the results reported in this research, the concentration of strontium is high enough to be determined from lithium metaborate fusions. The elements for which LiBO2 fusions can be used for analysis by atomic absorption are, expressed as oxides, SiO₂, Al₂₀₃, CaO, Na₂O, K₂O, Fe₂O₃, TiO₂, MnO, and Zn, and possibly Ba0 and Sr0. Cu and Cr in the Cape Beaufort samples were too low in concentration to be determined from these solutions, although their concentrations can be determined for samples high in these elements. In HF digestions, barium precipitated out of solutions made from floats and low ash samples as the sulfate. It appears that since sulfur is retained in the ash as sulfate, low ash samples concentrate more sulfur in the ash. Sink fractions gave barium concentrations comparable to those obtained with emission spectrochemical analysis, showing that barium is present in coal samples in a form other than as sulfate.

The concentrations of Pb, Mo, Ag, and Co in HF digestions were in most cases too low to be determined by atomic absorption. Even by emission methods, Mo in 80% of the samples was at or near detection limits. The solvent extraction procedure proved to be very effective for the determination of molybdenum.

Standards for Atomic Absorption

Analyzed rocks were used as s**tandar**ds for all major and minor elements. Aqueous standards with matched matrix were used for trace elements.

Emission Spectrochemical Analysis

At low concentrations Cu, Ni, Cr, and Pb could be best determined by the emission method. The elements B, Ge, Ga, Sn, V, Ag, Co, and Zr have to be determined by emission methods due to low concentration of these elements in coal ashes. Germanium concentration was at or below the detection limit.

Table 9 shows a recommended analytical scheme for coal ashes, using atomic absorption analysis with lithium metaborate fusions and emission spectrochemical analysis. The scheme covers the determination of major and trace elements. Table 12 shows the comparative detection limits that can be achieved with various methods described in this report. HF digestion followed by atomic absorption analysis gave lower detection limits for Cu and Ni than the emission method. Since the detection limits that could be reached with emission are quite adequate for the analysis of coal ashes, HF digestion is not used in the recommended analytical scheme.

DISCUSSION OF RESULTS

The analysis of major, minor and trace elements of medium temperature ashes of coal samples are shown in Tables 13 and 15, and analyses of ashes of sink and float products are given in Tables 14 and 16. Tables 17 and 19 show the distribution of major and trace elements in whole coals on as received basis and Tables 18 and 20 show distribution in float and sink fractions.

TABLE	12
-------	----

	Analytical	D	etection Limit, PPM Coa	l Ash
Element	Line λ , E.S.	Ε.S.	A.A. LiBO2 Fusion	H.F. Digestion
Ag	3280	ł		
В	2496	15		
Ba	2335	200	125	N.Rc
Co	3453	10		
Cr	4254	30		N. Rc
Cu	3274	10		2
Ga	2493	10		
Ge	2651	15		
Мо	3170	6] *	
Ni	3414	10		5
РЬ	2833	60		
Sn	3175	15		N. Rc
Sr			20	7
Ti			450	
v	3185	15		
Zn			10	
Zr	3392	30		

DETECTION LIMITS FOR TRACE ELEMENTS

* After extraction into 5 ml. MIBK. N.Rc = Not recommended. Table 21 shows mean analysis and standard deviation of whole coals and reconstituted head analyses from sink-float fractions. Table 22 shows mean analysis of sink and float fractions and ashes of these products.

Major Elements

The concentrations of silica, alumina, magnesia, sodium, and potassium concentrations are generally within the range of other U.S. coals. Of particular interest is that iron in the sample is low partly due to low pyrite concentration in the samples. Polished sections showed only sporadic pyrite grains of a few microns in diameter. Manganese concentration was also low. No correlation has been found between manganese and calcium concentration. Carbonates (calcite and dolomite) have been identified in polished sections and low temperature ashes, and account for the high calcium content. In general, sodium concentration was higher than potassium. Of particular interest are barium and strontium, which have been found to be highly concentrated in coal ashes.

Organic Affinity of Major and Minor Elements

The coal ashes of sink float fractions showed that the concentrations of Fe₂O₃, MgO, Na₂O, TiO₂, MnO, BaO, and SrO were significantly higher in float ash than sink ash, signifying the organic affinity of these elements. K_2O and Al₂O₃ did not show any consistently high values either in floats or sinks, whereas SiO₂ and CaO were generally higher in the sinks.

Trace Elements

The concentrations of trace elements is generally low in most samples, except for a few abnormal values. The elements Pb, Cu, Co, Ga, Mo, Ni, Cr, and Ge were all quite low compared to other U.S. coals. B, Zn, and Zr concentrations were within the range of other U.S. coals. The concentration of Ag was less than 2 ppm in the majority of coal ashes.

Certain samples showed high concentrations of trace elements. These samples generally were high in Co, Cr, Cu, Ni, Pb, and Sn. Samples of drill holes 3C, 7C, 8C, and 10C showed abnormally high concentrations of Sn. No investigation was made to determine the mode of occurrence of Sn in these samples.

Organic Affinity of Trace Elements

In general, the trace elements that are highly concentrated in float ash compared to sink ash are Ag, B, Co, Cr, Mo, Ni, Sn, V, and Zr. The elements Ga, Pb, Zn, and Cu did not show any preferential concentration in either floats or sinks. The relatively high concentrations of trace elements in some float fractions would indicate association with the organic phase in the coal rather than as separate mineral species. This is of significance as these elements tend to influence conversion reactions. Of particular interest is molybdenum, which is concentrated in float ash threefold or more, compared to sink ash. Further work on distribution of trace elements in various density fractions of Alaskan coal would be of benefit for future evaluation of the potential of these coals for coal conversion processes.

4.5

Drill Hole No.	Sample No.	s i 0 ₂	A1203	^{Fe} 2 ⁰ 3	Mg0	Ca0	Na20	κ ₂ 0	T10 ₂	Mn0	BaO	Sr0
2	UA-1	67.4	18.2	2.40	1.55	2.15	3.26	1.32	0.72	0,028	0,18	0.028
	UA-2	69.0	18.2	1.92	1.31	3.08	3.05	1.27	0.72	0.030	0.13	0.025
	UA-3	63.4	21.6	2.26	1.78	2.06	2.13	2.48	1.22	0.015	0.14	0.031
3	UA-4	48.1	33.1	2.26	1.65	4.30	0.84	0.54	1.17	0.011	0.19	0,033
	UA-5	35.7	20.9	4.29	2.98	16.2	2.31	0.75	0.90	0.021	0.75	0.20
	UA-6	59.2	25.6	2.22	1.74	2.74	3.62	1.04	1.04	0.011	0.31	0.030
	UA-7	63.6	19.7	2.13	1.41	3.83	3.16	2.07	0.78	0.031	0.28	0.036
	UA-8	64.0	20.7	2.02	1.54	3.23	1.95	1.25	0.97	0.025	0.40	0.077
3C	UA-9	48.8	22.3	7.89	5.39	5.26	0.90	0.47	0.87	0.020	0.15	0.041
F	UA-10+11	46.9	31.3	2.90	2.75	6.10	1.75	0.36	1.19	0.029	0.36	0.057
· · · ·	UA-12+13	58.6	18.6	2.17	1.63	7.84	2.99	0.98	0.72	0.052	0.30	0.054
	UA-14+15	39.0	29.5	3.44	3.14	9.41	2,25	0.49	1.01	0.023	0.52	0.063
5	UA-16	37.2	24.3	4.07	4.15	11.4	1.93	0.56	1.18	0.017	0.92	0.094
	UA-17	57.5	22.6	6.95	2.78	3.13	1.42	1.08	1.18	0.052	0.19	0.020
6	UA-18	48.4	32.3	1.34	1.44	3.17	1.87	0.74	1.15	0.007	0.70	0.12
	UA-19	50.7	15.4	8.19	3.36	5.91	1.69	0.86	0.62	0.068	0.41	0.073
	UA-20	50.5	28.7	1.86	1.77	5.43	1.76	1.02	1.34	0.027	0.37	0.12
7C	UA-21+22	37.2	22.4	3.13	3.08	15.30	2.08	0.46	0.73	0.039	0.64	0.097
	UA-23+24	49.2	23.5	2.43	1.91	7.28	1.72	1.79	0.99	0.051	0,31	0.029
	UA-25+26	51.1	30.4	3.41	3.00	3.44	1.33	2.13	1.28	0.017	0.37	0.070
8	UA-27	35.8	25.5	3.05	3.44	11.8	2.76	2.48	1.63	0.013	0.59	0.098
8C	UA-28+29	37.7	23.5	3.24	5.20	10.3	2.47	0.62	1.10	0.018	0.50	0.066
	UA-30+31	36.1	26.6	4.06	3.99	11.0	3.73	0.80	1.36	0.018	0.70	0.093
10C	UA-32+33	45.0	25.1	2.89	3.04	6.57	2.33	0.71	1.08	0.035	0.74	0.070
	UA-34+35	56.5	23.5	2.69	1.66	4.80	2.88	1.01	0.74	0.070	0.25	0.027
									0.56			

TABLE 13

	A REAL PROPERTY AND A REAL	1. 1. 1. 1.	ANAL	rsis of m	AJOR ANI) WINOK	ELEMENI	S IN COA	L ASHES	(PERCEN	0	1.1.4	
10	Drill Hole No.	Sample No.	si0 ₂	A1203	Fe203	Mg0	Ca0	Na20	к20	T10 ₂	Mn0	BaO	SrO
185	9	UA-36	45.9	31.8	2.57	3.65	4.52	2.90	0.62	1.53	0.018	0.50	0.057
	11	UA-37 UA-38	47.1 44.5	24.5 28.1	2.36 2.76	2.53 3.86	6.29 5.39	3.21 3.26	0.71 0.81	1.22	0.020	0.66	0.075
	12	UA-39	45.7	33.7	2.07	2.82	5.51	2.09	1.42	1.89	0.007	0.68	0.079
	15	UA-40 UA-41	52.2 58.3	29.9 23.6	2.29 2.63	1.68 1.69	3.40 2.92	2.17 2.35	1.02 1.45	1.37 1.39	0.007 0.010	0.77 0.60	0.089 0.052
	18	UA-42	49.7	27.6	3.33	2.45	4.44	2.17	1.72	1.14	0.025	0.78	0.52
. F ."	19	UA-43	34,2	23.0	3,15	4.27	11.8	3.59	1.54	1.01	0.024	0,82	0.62
2	20	UA-44 UA-45	58.0 60.2	28.3 28.8	2.29 2.44	1.49 1.62	0.94 0.58	1.00 0.94	3.42 3.97	1.35 1.35	0.008 0.007	0.16 0.13	0.10 0.055
	27	UA-46	38.8	15.3	7.53	6.47	13.4	3.06	0.80	0.75	0.050	1.1	0.43
	28	UA-47 UA-48	49.4 47.0	29,2 26,5	2.14 2.30	2.16 2.27	4.87 4.54	1.66 2.61	1.04 1.53	1.73 1.61	0.015 0.014	0.64 0.74	0.064 0.070

TABLE 13 (CONTINUED)

.

INCO OCH ITA

	10.2000.00
ΰŢ	
TABLE	

No.	Sample No.	Product	510 ₂	A1203	Fe203	Mg0	CaO	Na ₂ 0	k20	T102	Mn0	Ba0	SrO
30	UA-10	Float	43.0	27.3	4.93	4.06	6.00	2.48	0.58	1.13	0.041	0.63	0.085
	UA-11	Sink	49.3	33.7	1.67	1.95	6.17	1.31	0.54	1.23	0.021	0.20	0.040
	UA 4 0+11	Recomb.	46.9	31.3	2.90	2.75	6.10	1.75	0.56	1.19	0.029	0.36	0.057
	UA-12	Float	56.2	22.7	2.49	1.61	4.62	3.15	1.03	1.01	0.064	0.42	0.052
	UA-13	Sink	60.4	15.5	1.93	1.65	10.32	2.87	0.94	0.50	0.042	0.21	0.055
	UA-12+13	Recomb.	58.6	18.6	2.17	1.63	7.84	2.99	0.98	0.72	0.052	0.30	0.054
	UA-14	Float	24.8	26.1	6.43	5.39	13.9	2.58	0.54	1.38	0.038	1.12	0.11
	UA-15	Sink	49.3	32.0	1.26	1.50	6.15	2.01	0.45	0.74	0.012	0,08	0.029
	UA-14+15	Recomb.	39.0	29.5	3.44	3.14	9.41	2.25	0.49	1.01	0.023	0.52	0.063
70	UA-21	Float	37.7	26.0	3.93	3.19	18.7	2.38	0.41	0.90	0.045	0.73	0.11
	UA-22	Sink	36.4	17.5	2.03	2.94	10.7	1.69	0.54	0.50	0,031	0.52	0.079
	UA-21+22	Recomb.	37.2	22.4	3.13	3.08	15.3	2.08	0.46	0.73	0.039	0.64	0.097
	UA-23	Float	52.0	23.5	2.86	2.16	4.44	2.46	0.83	1.14	0.065	0.33	0.029
	UA-24	Sink	45.8	23.5	1.93	1.61	10.7	0.83	0.68	0.80	0.035	0.23	0.029
	UA-23+24	Recomb.	49.2	23.5	2.43	1.91	7.28	1.72	0.76	0.99	0.051	0.31	0.029
	UA-25	Float	48.6	28.6	6.79	6.13	2.99	1.42	0.74	2.09	0.033	0.79	0.15
	UA-26	Sink	52.8	31.7	1.07	0.83	3.75	1.27	3.09	0.72	0.006	0,08	0.015
	UA-25+26	Recomb.	51.1	30.4	3.41	3.00	3.44	1.33	2.13	1.28	0.017	0.37	0.070
8C	UA-28	Float	42.8	26.3	3.83	4.10	4.32	2.90	0.69	62.1	0.016	0.92	0.069
	UA-29	Sink	33.8	21.4	2.80	6.05	14.8	2.14	0.57	0.57	0.020	0.18	0.064
	UA-28+29	Recomb.	37.7	23.5	3.24	5.20	10.3	2.47	0.62	1.10	0.018	0.50	0.066
	UA-30	Float	35.2	27.8	5.22	4.10	8.34	4.17	0.64	1.48	0.017	0.92	0.087
	UA-31	Sink	37.2	25.2	2.77	3.86	13.9	3.24	0.98	1.23	0.019	0.46	0.10
	UA-30+31	Recomb.	36.1	26.6	4.06	3.99	11.0	3.73	0.80	1.36	0.018	0.70	0.09

TABLE 14 (CONTINUED)

ANALYSIS OF MAJOR AND MINOR ELEMENTS IN ASHES OF SINK-FLOAT PRODUCTS (PERCENT)

Drill Hole No.	Sampte No.	Product	sio ₂	A1203	Fe203	Mg0	Ca0	Na20	к ₂ 0	Ti0 ₂	Mn0	BaO	Sr0
10C	UA-32	Float	40.4	27.3	3,72	3.40	6.58	2,33	0.66	1.45	0.048	1.13	0.10
	UA-33	Sink	50.0	22.7	1.97	2.65	6.56	2.32	0.76	0.67	0.020	0,31	0.038
	UA-32+33	Recomb.	45.0	25.1	2.89	3.04	6.57	2.33	0.71	1.08	0,035	0.74	0.070
	UA-34	Float	56.0	22.8	3.15	1.66	4.55	2,88	1.04	0.86	0.090	0.33	0.026
	UA-35	Sink	57.2	24.5	2.10	1.66	5.12	2.87	0.99	0.58	0.044	0.16	0.029
	UA-34+35	Recomb.	56.5	23.5	2.69	1.66	4.80	2.88	1.01	0.74	0,070	0.25	0.027

TABLE 15

ANALYSIS OF TRACE ELEMENTS IN COAL ASHES (PARTS PER MILLION)

Drill Hole	Sample	Aq	В	Co	Cr		Cu	Ga	٨	No		Ni	РЬ	Sn	v	Zn	Zr
No.	No.			1		A.A.	E. S.		A.A.	E.S.	E.S.	A.A.					
2	UA-1	<2	109	18	<30	22	18	16	7.0	<6	18	12	25	<10	55	118	202
	UA-2	<2	117	15	<30	24	19	19	4.9	<6	19	18	36	<10	76	128	257
	UA-3	7	161	18	96	42	32	20	4.9	<6	34	35	39	<10	250	111	310
3	UA-4	< 2	96	14	30	30	27	42	7.0	6	27	37	55	< 10	110	104	620
	UA-5	<2	445	30	33	57	46	19	7.0	6	27	25	21	<10	203	76	335
	UA-6	<2	106	<10	<30	36	38	30	5.2	<6	18	10	38	<10	51	79	302
	UA-7	7	240	<10	31	33	38	24	6.1	<6	29	27	40	<10	84	89	280
	UA-8	<2	302	55	61	47	48	27	7.0	<6	47	50	41	<10	113	137	402
3C	UA-9	<2	110	<10	<30	25	31	39	5.7	<6	27	37	50	<10	70	72	610
	UA-10+11	<2	285	16	<30	44	52	37	8.0		19	30	253	45	75	79	506
	UA-12+13	<2	406	<10	<30	42	41	21	6.7	<6	34		66	158	132	290	591
S dini:	UA-14+15	<2	743	81	56	- 72	90	40	9.7		65	62	59	794	126	70	931
5	UA-16	<2	470	150	157	72	80	42	9.0	10	106	97	55	23	245	201	180
n	UA-17	<2	200	16	114	40	43	34	4.6	<6	48	38	<20	<10	228	119	250
6	UA-18	<2	210	27	<30	27	23	42	7.0	<6	33	30	56	<10	55	107	755
	UA-19	<2	545	20	<30	20	26	27	4.1	6	44	30	<20	<10	54	80	375
	UA-20	<2	210	89	57	42	34	25	7.5	6	73	75	57	12	130	86	1170
7C	UA-21+22	<2	367	12	<30	46	42	25	6.0		. 20		48	145	65	47	395
	UA-23+24	<2	393	22	<30	49	44	21	6.9		42		48	47	112	86	683
	UA-25+26	<2	500	115	88	88	98	38	9.8		71	71	46	119	141	145	818
8	UA-27	6	265	14	62	42	34	34	4.7	6	25	27	48	17	92	58	505
8C	UA-28+29	<2	231	18	41	40	37	18	6.5		28	21	48	580	100	89	780
	UA-30+31	9	498	417+	36	41	36	32	9.0		43	55	58	1990	128	90	47
10C	UA-32+33	9	464	18	<30	51	59	30	7.4		23		57	4600	118	64	329
	UA-34-35	17	503	19	<30	36	36	23	7.2		30		51	2200	93	59	511
9	UA-36	<2	225	24	36	47	39	36	5.9	<6	38	20	52	<10	130	107	420

TABLE 15 (CONTINUED)

Di H	rill ole	Sample	Ag	В	Co	Cr	A. A	Cu F.S.	Ga	AA	Ao FS	۲ F S	Vi A A	Pb	Sn	v	Zn	Zr
1	1	UA-37 UA-38	<2 <2	315 425	11 34	31 28	32 53	29 48	31 29	5.0 7.4	6 8	29 36	20 35	51 49	22 <10	118 135	133 114	465 422
1	2	UA-39	<2	545	26	28	44	38	46	3.6	<6	39	37	75	<10	176	155	615
1	5	UA-40 UA-41	<2 <2	985 540	19 26	72 86	48 51	44 43	32 29	2.5 4.0	<6 <6	40 57	58 55	45 52	<10 <10	180 155	88 76	680 670
1	8	UA-42	<2	575	35	53	37	4]	32	4.7	7	62	55	98	98	140	163	865
1	9	UA-43	< 2	930	46	65	46	43	33	5.1	6	54	55	80	<10	152	233	500
2 51	0	UA-44 UA-45	5 15	243 260	12 8	141 153	45 47	36 41	35 28	2.0 2.6	<6 <6	39 46	37 40	79 39	<10 <10	240 257	81 111	335 308
2	7	UA-46	2	2500	48	57	42	45	17	4.9	6	93	87	<20	200	100	153	322
2	8	UA-47 UA-48	< 2 7	580 865	16 17	38 44	48 41	44 39	53 38	4.3 2.8	<6 <6	43 41	40 40	56 60	<10 10	167 147	105 86	895 655

ANALYSIS OF TRACE ELEMENTS IN COAL ASHES (PARTS PER MILLION)

A.A. - Atomic absorption Analysis E.S. - Emission Spectrochemical Analysis

TABLE 16

ANALYSIS OF TRACE ELEMENTS IN ASHES OF SINK-FLOAT FRACTIONS (PARTS PER MILLION)

Dril	I Sam-	- 4. A. A. S. C.	11	1	14	8 8 C			14.35	CHICK I			3. 64				Nillion	
Hold No.	e ple No.	Pro- duct	Ag	В	Co	Cr	A.A.	Cu E.S.	Ga	A.A.	Ao E.S.	E.S	NI . A.A.	РЬ	Sn	v	Zn	Zr
3C	UA-10	Float	<2	590	27	30	86	96	30	13.5	12	34	37	250	77	118	108	590
	UA-11	Sink	<2	99	<10	<30	27	26	42	4.6	<6	<10	25	255	26	49	61	455
	UA-10+11	Recomb.	<2	285	16	<30	49	52	37	8.0		19	30	253	45	75	79	506
	UA-12	Float	<2	760	27	<30	64	63	26	10.5	<6	54	42	92	350	250	296	1070
	UA-13	Sink	<2	134	<10	<30	25	25	17	3.7	<6	18	<10	46	<10	41	286	224
	UA-12+13	Recomb.	<2	406	<10	<30	42	41	21	6.7	<6	34		66	158	132	290	591
	UA-14	Float	<2	1600	178	93	129	176	39	19.7	25	141	125	93	1060	242	104	2020
	UA-15	Sink	<2	120	<10	<30	31	28	40	2.5	<6	<10	17	35	600	41	45	139
the state	UA-14+15	Recomb.	<2	743	81	56	72	90	40	9.7		65	62	59	794	126	70	931
7C	UA-21	Float	<2	540	13	<30	62	45	26	9.0	8	27	27	46	240	81	58	535
л	UA-22	Sink	<2	130	< 10	<30	25	37	23	2.0	<6	11	<10	50	15	84	31	202
3	UA-21+22	Recomb.	<2	367	12	<30	46	42	25	6.0		20		48	145	65	47	395
	UA-23	Float	<2	615	31	<30	56	45	23	9.0	9	61	52	45	78	175	83	975
	UA-24	Sink	<2	125	<10	<30	41	43	19	4.3	<6	20	<10	51	<10	38	89	332
	UA-23+24	Recomb.	<2	393	22	<30	49	44	21	6.9		42		48	47	112	86	683
	UA-25	Float	<2	1080	267	172	156	197	41	21.5	19	145	138	72	275	267	140	1820
	UA-26	Sink	<2	97	<10	30	40	30	36	1.6	<6	19	27	28	<10	53	148	123
	UA-25+26	Recomb.	<2	500	113	88	88	98	38	9.8		71	71	46	119	141	145	818
8C	UA-28	Float	2	425	28	56	58	54	24	10.6	14	43	28	63	1300	163	70	1600
	UA-29	Sink	<2	83	<10	<30	27	24	14	3.4	<6	16	15	36	34	53	103	155
	UA-28+29	Recomb.	<2	231	18	41	40	37	18	6.5		28	21	48	580	100	89	780
	UA-30	Float	10	800	780	41	49	49	25	13.6	12	67	85	61	3000	194	123	785
	UA-31	Sink	8	160	<10	<30	33	22	39	3.9	<6	16	22	54	11	53	52	112
	UA-30+31	Recomb.	9	498	417	36	41	36	32	9.0		43	55	58	1990	128	90	468

TABLE 16 (CONTINUED)

			and the second se	and the second sec	and the second sec	the second s												
Dril Hold No	Sam- a ple No.	Pro- duct	Ag	В	Co	Cr	A.A.	E.S.	Ga	A.A.	Mo E.S.	E.S	Ni . A.A.	РЬ	Sn	V	Zn	Zr
10C	UA-32	Float	15	765	25	32	60	78	32	11.4	10	31	32	62	8900	194	64	495
	UA-33	Sink	3	134	<10	<30	42	38	28	3.0	<6	14	<10	52	<10	35	64	146
	UA-32+33	Recomb.	9	464	18	31	51	59	30	7.4		23		57	4600	118	64	329
	UA-34	Float	28	780	24	<30	43	46	27	10.5	11	44	45	68	4500	145	60	790
	UA-35	Sink	<2	145	<10	<30	26	23	18	3.0	<6	14	<10	30	<10	26	58	151
	UA-34+35	Recomb.	17	503	19	30	36	36	23	7.2		30		51	2200	93	59	511

ANALYSIS OF TRACE ELEMENTS IN ASHES OF SINK-FLOAT FRACTIONS (PARTS PER MILLION)

TABLE 17

ANALYSIS OF MAJOR AND MINOR ELEMENTS IN RAW COALS

Drill Hole No.	Sample No.	\$10 ₂ %	A1203 %	^{Fe} 2 ⁰ 3 %	Mg0 %	Ca0 %	Na20 %	к ₂ 0 %	TI02 %	Mn0 ppm	Ba0 ppm	Sr0 ppm
2	UA-1	28.0	7.57	1.00	0.64	0.89	1.36	0.55	0.30	116	750	116
	UA-2	27.7	7.32	0.77	0.53	1.24	1.23	0.51	0.29	120	522	100
	UA-3	27.2	9.27	0.97	0.76	0.88	0.91	1.06	0.52	64	600	133
3	UA-4	13.0	8.97	0.61	0.45	1.17	0.23	0.15	0.32	29	510	89
	UA-5	4.6	2.72	0.56	0.39	2.11	0.30	0.10	0.12	27	975	260
	UA-6	14.6	6.32	0.55	0.43	0.68	0.89	0.26	0.26	27	766	74
	UA-7	16.8	5.20	0.56	0.37	1.01	0.83	0.55	0.21	82	740	95
	UA-8	13.1	4.22	0.41	0.31	0.66	0.40	0.26	0.20	51	816	157
3C	UA-9	11.7	5.33	1.89	1.23	1.29	0.22	0.11	0.21	48	358	98
The Alaba trade of	UA-10+11	7.6	5.10	0.47	0.45	0.99	0.29	0.09	0.19	47	587	93
	UA-12+13	11.1	3.52	0.41	0.31	1.48	0.57	0.19	0.14	98	567	102
	UA-14+15	4.3	3.22	0.37	0.34	1.02	0.25	0.05	0.11	25	567	69
5	UA-16	5.0	3.26	0.55	0.56	1.52	0.26	0.08	0.16	23	1232	126
	UA-17	26.6	10.4	3.21	1.28	1.44	0.66	0.50	0.55	240	877	92
6	UA-18	12.9	8.62	0.36	0.38	0.85	0.50	0.20	0.31	19	1870	320
	UA-19	8.5	2.58	1.38	0.56	0.99	0.28	0.14	0.10	114	690	122
	UA-20	10.9	6.20	0.40	0.38	1.17	0.38	0.22	0.29	58	800	260
7C	UA-21+22	4.61	2.78	0.39	0,38	1.90	0.26	0.06	0.09	48	790	120
	UA-23+24	8.8	4.21	0.43	0.34	1.30	0.31	0.32	0.18	91	550	52
	UA-25+26	5.9	3.53	0.40	0.35	0.40	0.15	0.25	0.15	20	430	81
8	UA-27	5.7	4.03	0.48	0.54	1.86	0.44	0.39	0.26	21	930	155
8C	UA-28+29	6.1	3.78	0.52	0.84	1.65	0.40	0.10	0.18	29	800	106
	UA-30+31	4.2	3.06	0.47	0.46	1.27	0.42	0.09	0.16	21	800	107

1
2
1
-
1
1
-
1
- 23
- 3
1
12
1
1

ANALYSIS OF MAJOR AND MINOR ELEMENTS IN RAW COALS

Drill H No.	ble	Sample No.	\$102 %	A1203	Fe203	%%	Ca0 %	Na20 %	K20 %	Ti02 %	Mn0 ppm	Ba() ppm	Sd
100		UA-32+33	5.6	3.14	0.36	0.38	0.82	0.29	0.09	0.14	44	920	
		UA-34+35	8.1	3.38	0.39	0.24	0.69	0.42	0,15	0.11	100	360	
6		UA-36	10.6	7.38	0.60	0.85	1.05	0.67	0.14	0.35	42	1160	-
11		UA-37	8.7	4.53	0.44	0.47	1.16	0.59	0.13	0.23	37	1220	-
		UA-38	6.8	4.27	0.42	0.59	0.82	0.50	0.12	0.19	17	1320	-
12		UA-39	8.4	6.16	0.38	0.52	10.1	0.38	0.26	0.35	13	1240	ŕ
15		UA-40	9.29	5.32	0.41	0.30	0.61	0.39	0.18	0.24	12	1370	1
5		UA-41	11.0	4.44	0.49	0.32	0.55	0.44	0.27	0,26	19	1130	0.
18		UA-42	10.3	5.59	0.69	0.51	0.92	0.45	0.36	0.24	52	1600	101
61		UA-43	3.2	2.22	0.30	0.40	11.1	0.34	0.14	0,095	23	770	2ì
20		UA-44	24.5	12.0	0.97	0.63	0.40	0.42	1.45	0.57	34	680	4
		UA-45	31.2	14.9	1.26	0.84	0.30	0.49	1.79	0.70	36	670	28
27		UA-46	2.7	1.07	0.53	0.45	0.94	0.21	0.056	0.053	35	770	ë
28		UA-47	9.7	5.72	0.42	0.42	0.95	0.33	0.20	0.34	29	1250	1
		UA-48	9.9	5.57	0.48	0.48	0.95	0.55	0.32	0.34	29	1550	1

:

TA	BL	E	1	8

ATTACTOR OF MAJOR ATTO MILLON ELEMENTS IN SUMA LEONT HAGHONS	ANALYSIS OF	MAJOR AND MINOR	ELEMENTS IN SINK-FLOAT FRACTIONS
--	-------------	-----------------	----------------------------------

Drill Hole No.	Sample No.	Product	510 ₂ %	A1203	Fe203 %	Mg0 %	Ca0 %	Na20 %	к ₂ 0 %	ti0 ₂ %	Mn0 ppm	Ba0 ppm	Sr0 ppm
3C	UA-10	Float	3.3	2.27	0.41	0.34	0.50	0.21	0.05	0.09	34	520	70
	UA-11	Sink	19.3	13.2	0.65	0.76	2.40	0.51	0.21	0.48	82	780	157
	UA-10+11	Recomb.	7.6	5.10	0.47	0.45	0.99	0.29	0.09	0.19	47	587	93
	UA-12	Float	6.0	2.41	0.26	0.17	0.49	0.33	0.11	0.11	68	445	55
	UA-13	Sink	28.4	15.0	0.91	0.78	4.85	1.34	0.44	0.23	200	990	260
	UA-12+13	Recomb.	11.1	3.52	0.41	0.31	1.48	0.57	0.19	0.14	98	567	102
	UA-14	Float	1.3	1.33	0.33	0.27	0.71	0.13	0.03	0.07	19	570	56
	UA-15	Sink	30.8	20.0	0.79	0.94	3.84	1.26	0.28	0.46	75	500	180
	UA-14+15	Recomb,	4.3	3.22	0.37	0.34	1.02	0.25	0.05	0.11	25	567	69
7C	UA-21	Float	3.1	2.11	0.32	0.25	1.51	0.19	0.03	0.07	36	590	89
	UA-22	Sink	16.5	7.95	0.92	1.33	4.86	0.77	0.25	0.23	141	2360	360
	UA-21+22	Recomb.	4.6	2.78	0.39	0.38	1.90	0.26	0.06	0.09	48	790	120
	UA-23	Float	6.2	2.80	0.34	0.26	0.53	0.29	0.10	0.14	77	390	35
	UA-24	Sink	21.1	10.8	0.89	0.74	4.92	0.38	0.31	0.37	160	1290	133
	UA-23+24	Recomb.	8.8	4.2	0.43	0.34	1.30	0.31	0.14	0.18	91	550	52
	UA-25	Float	2.6	1.52	0.36	0.32	0.16	0.08	0.04	0.11	17	420	80
	UA-26	Sink	35.9	21.6	0.73	0.36	2.55	0.86	2.10	0.49	41	540	102
	UA-25+26	Recomb.	5.9	3.53	0.40	0.35	0.40	0.15	0.25	0.15	20	430	81
8C	UA-28	Float	3.9	2.37	0.34	0.37	0.39	0.26	0.06	0.16	14	830	62
	UA-29	Sink	13.6	8.62	1.13	2.44	5.96	0.86	0.23	0.23	81	730	260
	UA-28+29	Recomb.	6.1	3.78	0.52	0.84	1.65	0.40	0.10	0.18	29	800	106
	UA-30	Float	2.4	1.92	0.36	0.28	0.58	0.29	0.04	0.10	12	630	60
	UA-31	Sink	17.0	11.5	1.26	1.76	6.34	1.48	0.45	0.56	87	2100	460
	UA-30-31	Recomb.	4.2	3.06	0.47	0.46	1.27	0.43	0.09	0.16	21	800	107

S S

Drill Hole No.	Sample No.	Product	si0 ₂ %	A1203 %	Fe203 %	Mg0 %	Ca0 %	Na20 %	к ₂ 0 %	Ti02 %	Mn0 ppm	BaQ ppm	SrO ppm
10C	UA-32	Float	3.1	2.07	0.28	0.26	0.50	0.18	0.05	0.11	36	860	76
	UA-33	Sink	22.0	9.97	0.86	1.16	2.88	1.02	0.33	0.29	92	1360	167
	UA-32+33	Recomb.	5.6	3.13	0.36	0.38	0.82	0.29	0.09	0.14	44	930	88
	UA-34	Float	5.3	2.14	0.30	0.16	0.43	0.27	0.10	0.08	85	310	24
	UA-35	Sink	26.8	11.5	0.98	0.78	2.40	1.35	0.46	0.27	206	750	136
	UA-34+35	Recomb.	8.1	3.38	0.39	0.24	0.69	0.41	0.15	0.11	100	360	39

ANALYSIS OF MAJOR AND MINOR ELEMENTS IN SINK-FLOAT FRACTIONS

TABLE 18 (CONTINUED)

Drill Hole No.	Sample No.	Ag	B	Co	Cr	Cu A.A.	Ga	Mo A.A.	NI E.S.	РЬ	Sn	۷	Zn	Zr
2	UA-1	<1	45	7.5	< 15	9.2	6.7	2.9	7.5	10	< 5	23	49	84
	UA-2	<1	47	6.0	< 15	9.6	7.6	2.0	7.6	14	< 5	31	51	103
	UA-3	3	69	7.7	41	18.0	8.6	2.1	15	17	< 5	107	48	133
3	UA-4	<1	26	3.8	8	8.1	11.4	1.9	7.3	15	< 5	30	28	168
	UA-5	<1	58	3.9	4	7.4	2.5	0.9	3.5	2.7	< 5	26	10	44
	UA-6	< 1	26	< 3	< 10	8.9	7.4	1.3	4.4	9.4	< 5	13	20	75
	UA-7	1.8	63	< 3	8	8.7	6.3	1.6	7.7	11	< 5	22	23	74
	UA-8	<1	61	11	12	9.6	5.5	1.4	9.6	8.4	< 5	23	28	82
3C	UA-9	<1	26	<3	< 10	6.0	7.4	1.4	6.5	12	< 5	17	17	146
un - anomite e a	UA-10+11	<1	46	2.6	< 5	8.0	6.0	1.3	3.1	41	7.3	12	13	82
ά	UA-12+13	<1	77	3.2	< 5	7.9	4.0	1.3	6.4	13	30	25	55	112
	UA-14+15	<1	81	8.8	< 5	7.8	4.4	1.1	7.1	6.4	87	14	7.6	101
5	UA-16	<1	63	20	21	9.6	5.6	1.2	14	7.4	3.1	33	27	21
	UA-17		92	7.4	53	18	10	2.1	22	< 10	< 5	105	55	115
6	UA-18	<1	56	7.2	<10	7.2	n	1.9	8.8	15	< 5	15	29	202
	UA-19	<1	92	3.4	< 10	3.4	4.5	0.7	7.4	< 5	< 5	9	13	63
	UA-20	<1	45	19	12	9.1	5.4	1.6	16	12	2.6	28	19	253
7C	UA-21+22	<1	46	<2	< 15	5.7	3.1	0.74	2.5	6.0	18	8.1	5.8	49
	UA-23+24	<1	70	<4	< 15	8.8	3.8	1.2	7.5	8.6	<10	20	15	122
	UA-25+26	<1	58	< 13	10	10	4.4	1.1	3.6	5.3	<14	16	17	95
8	UA-27	0.95	42	2.2	9.8	6.6	5.4	0.74	4.0	7.6	2.7	15	9.2	80
8C	UA-28+29	<1	37	< 5	< 10	6.4	2.9	1.1	4.5	7.7	93	16	14	126
	UA-30+31	1.6	57	48	< 5	4.7	3.7	1.0	5.0	6.7	230	15	10	54

d)e

TABLE 19

ANALYSIS OF TRACE ELEMENTS IN RAW COALS (PARTS PER MILLION)

b)

TABLE 19 (CONTINUED)

		10 M		ANAL	ISIS OF T	RACE ELE	MENTS I	N RAW C	CALS (PA	RTS PER	MILLIC	N)			
D	rill Hole No.	Sample No.	Ag	В	Co	Cr	Cu A.A	Ga	Mo A.A.	NI E.S.	Pb	Sn	V	Zn	Zr
	10C	UA-32+33 UA-34+35	1.1 2.5	58 72	<3 <3	< 5 < 15	6.4 5.2	3.8 3.3	0.93 1.0	2.9 4.3	7.1 7.3	570 317	15 13	8 8.5	41 74
	9	UA-36	<1	52	5.6	8.4	11	8.4	1.4	8.8	12	< 5	30	25	97
	11	UA-37 UA-38	<1 <1	58 64	2.0	5.7 4.3	5.9 8.1	5.7	0.9 1.1	5.4 5.5	9.4 7.4	4.1 < 5	22 21	25 17	86 64
	12	UA-39	< 1	100	4.8	4.8	8.1	8.4	0.7	7.1	14	< 5	32	28	112
	15	UA-40 UA-41	< 1 < 1	175 101	3.4 4.9	13 16	8.5 9.6	5.7 5.5	0.4 0.8	7.1 11	8 9.8	< 5 < 5	32 29	16 14	121 126
5	18	UA-42	< 1	119	7.2	11	9.1	9.5	0.7	8.1	16	< 5	36	32	127
1	19	UA-43	< 1	87	4.3	6	4.3	3.1	0.5	5.1	7.5	< 5	14	22	47
	20	UA-44 UA-45	2.1 7.8	102 135	51 4.1	60 79	19 24	15 15	0.8 1.3	16 23	33 20	< 5 < 5	101 133	34 57	142 160
	27	UA-46	< 1	175	3.4	4.0	2.9	1.2	0.3	6,5	< 2	14	7	107	23
Drill Hole No. 10C 9 11 12 15 15 18 19 20 27 28	UA-47 UA-48	<1 1.5	114 181	3.1 3.6	7.4 9.2	9.4 8.6	10 8	0.8 0.6	8.4 8.6	11 13	< 5 < 5	33 31	21 18	175 138	

TABLE 20

ANALYSIS OF TRACE ELEMENTS IN SINK-FLOAT FRACTIONS (PARTS PER MILLION)

Drill Hole No.	Sample No.	Product	Ag	8	Co	Cr	Cu A.A.	Ga	Mo A.A.	NI E.S.	РЬ	Sn	V	Zn	Zr	
3C	UA-10 UA-11 UA-10+11	Float Sink Recomb.	<1 <1 <1	49 38 46	2.2 <5 2.6	2.5 <15 <5	7.1 10.6 8.0	2.5 16 6.0	1.1 1.8 1.3	2.8 2.5 3.1	21 100 41	6.4 10 7.3	9.8 19 12	9.0 24 13	49 178 82	
	UA-12 UA-13 UA-12+13	Float Sink Recomb.	<1 <1 <1	81 63 77	2.9 <5 3.2	<3 <15 <5	6.8 12 7.9	2.8 8.0 4.0	1.1 1.7 1.3	5.7 8.5 6.4	9.8 22 13	37 < 5 30	27 19 25	31 134 55	113 105 112	
	UA-14 UA-15 UA-14+15	Float Sink Recomb.	<1 <1 <1	82 75 81	9.1 <5 8.8	4.7 <15 <5	6.6 19 7.8	2.0; 25 4.4	1.0 1.6 1.1	7.2 <5 7.1	4.7 22 6.4	54 375 87	12 26 14	5.3 28 7.6	103 87 101	
7C ස	UA-21 UA-22 UA-21+22	Float Sink Recomb.	<1 <1 <1	44 59 46	1.1 <5 <2	< 5 < 15 < 15	5.0 11 5.7	2.1 10 3.1	0.73 0.91 0.74	2.2 5.0 2.5	3.7 23 6.0	19 6.8 18.0	6.6 20 8.1	4.7 14 5.8	43 92 49	
	UA-23 UA-24 UA-23+24	Float Sink Recomb.	<1 <1 <1	73 58 70	3.7 <5 <4	< 5 < 15 < 15	6.7 19 8.8	2.7 8.7 3.8	1.1 2.0 1.2	7.3 9.2 7.5	5.4 23 8.6	9.3 <5 <10	21 17 20	9.9 41 15	116 153 122	
	UA-25 UA-26 UA-25+26	Float Sink Recomb.	<1 <1 <1	57 66 58	14 < 5 < 13	9.1 20 10	8.3 27 10	2.2 24 4.4	1.1 1.1 1.1	2.6 13 3.6	3.8 19 5.3	14.6 <5 <14	14.2 36 16	7.4 100 17	96 84 95	
8C	UA-28 UA-29 UA-28+29	Float Sink Recomb.	0.2 <1 <1	38 33 37	2.5 <5 <5	5.0 < 15 < 10	5.2 10.9 6.4	2.2 5.6 2.9	1.0 1.4 1.1	3.9 6.4 4.5	5.7 15 7.7	117 14 93	15 21 16	6.3 42 14	144 62 126	
	UA-30 UA-31 UA-30+31	Float Sink Recomb.	0.7 3.6 1.0	55 73 57	53 < 5 48	2.8 <15 <5	3.4 15 4.7	1.7 18 3.7	0.94 1.8 1.0	4.6 7.3 5.0	4.2 25 6.7	207 5.0 230	13 24 15	8.5 24 10	54 51 54	

TABLE 20 (CONTINUED)

ANALYSIS OF TRACE ELEMENTS IN SINK-FLOAT FRACTIONS (PARTS PER MILLION)

Drill Hole No.	Sample No.	Product	Ag	B	Co	Cr	Cu A.A.	Ga	Mo A.A.	Ni E.S.	۶b	Sn	V	Zn	Zr
10C	UA-32	Float	1.1	58	1.9	2.4	4.6	2.4	0.87	2.4	4.7	676	15	4.9	38
	UA-33	Sink	1.3	59	< 5	< 15	18	12	1.3	6.1	23	< 5	15	28	64
	UA-32+33	Recomb.	1.1	58	< 3	< 5	6.4	3.8	0.93	2.9	7,1	570	15	8	41
	UA-34	Float	2.6	73	2.3	< 3	4.0	2,5	0.99	4.1	6.4	423	14	5.6	74
	UA-35	SInk	<1	68	< 5	< 15	12	8.4	1.4	6.6	14	< 5	12	27	71
	UA-34+35	Recomb.	2.5	72	< 3	< 15	5.2	3,3	1.0	4.3	7,3	317	13	8.5	74

TABLE 21

MEAN ANALYSIS OF WHOLE COALS AND ASHES

		Whole	Coal	Basis	Ash Basis				
Constituent	No. of Samples	Mean	S.D.	c.v.	Mean	S.D.	c.v.		
Si02, %	39	11.0	7.75	70	48.7	10.3	21		
Al203, %	41	5.23	2.89	55	25.0	4.76	19		
Fe203, %	41	0.64	0.52	81	3.27	1.82	56		
Mg0, %	41	0.50	0.23	46	2.70	1.22	45		
Ca0, %	41	1.03	0.41	40	6.29	4.00	64		
Na20, %	41	0.46	0.26	57	2.39	0.96	40		
K20, %	41	0.30	0.36	120	1.25	0.79	63		
Ti02, %	41	0.24	0.14	58	1.14	0.30	26		
Mn0, ppm	41	49	43	88	250	170	68		
Ba0, ppm	41	925	398	43	5900	4500	76		
Sr0, ppm	41	178	178	100	1200	1600	133		
B, ppm	41	74	39	53	465	416	89		
Cu, ppm	41	8.6	4.2	49	45	18	40		
Ga, ppm	41	6.3	3.6	57	31	8.6	28		
Mo, ppm	41	1.2	0.54	45	6.3	2.9			
Ni, ppm	41	8.0	4.7	59	45	25	56		
Pb, ppm	37	11.6	7.2	62	53	15	28		
V, ppm	41	30	29	97	135	59	44		
Zn, ppm	41	22	15	68	106	49	46		
Zr, ppm	41	101	51	50	510	238	47		

S.D. - Standard Deviation C.V. - Coefficient of Variation
MEAN ANALYSIS OF FLOAT AND SINK FRACTION AND THEIR ASHES

is	l Sinks Mean S	47.2 8	24.8 6	1.95 0	2.47 1	8.8 3	2.06 0	0.95 0	0.75 0	250 i30	2500 1500	0.048 0	120 25	<10	< 30	31 6	28 11	3.2 0	15 3	61 68	15 8	43 9	94 76
Ash Bas	Ats S.D.	9.8	2.1	1.45	1.50	5,0	0.70	2.0	0.40	230	3000	0.039	330	240	46	37	6.3	4.4	43	60	2800	59	11
	flc Mean	43.7	25,8	4,34	3.58	7.4	2.69	0.72	1,32	460	7300	0.082	800	140	54	76	29	12.9	65	85	2000	180	111
	ke s.D.	7.1	4.6	0.18	0.58	1.49	0.37	0.57	0.13	57	643	114	14.6			5.3	6.9	0.34	2.5	25		6.7	39
uct Basis	Sin Mean	23,1	13.0	16.0	1.13	4.10	0.98	0.51	0.36	117	1140	221	58	<5	د15	15.5	.13.6	1.5	7.2	29	= 5	21	46
Whole Produ	ats S.D.	1.6	0.43	0.043	0.067	0.36	0.079	0.033	0.029	27	181	20	15.5	16	2.6	1.6	0.33	0.12	J.9	5.3	230	5.7	7.9
	Flo. Mean	3.7	2.09	0.33	0.27	0,58	0.22	0.080	.10	40	557	61	61	9.3	4.4	5.8	2.3	0.99	4.3	6.9	160	15	9.3
	No. of Samples	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	.01	01	10	6	10	10
	ítuent ppm	64	34 2	9 8	œ	ھی	œ٩	3 8	9 87	шdд	udd	യർർ	шdd	шdd	പപ്പ	wdd	ppm	ррт	Ърт	ավգ	uldd	യർപ്പ	urdd
	Const.	si02	A1 ₂ 03	re203	NgO	CaO	Na ₂ 0	K ₂ 0	TiO_2	Oum	BaO	SrO	9	Co	Сr	Cu	Ga	MO	NÍ	Чł	Sn	>	UZ

S.D. - Standard Deviation

la de la

REFERENCES

- Barnes, F.F., 1967a, Coal resources of Alaska: U.S. Geol. Survey Bull. 1232-B, 89 p.
- Barnes, F.F., 1967b, Coal resources of the Cape Lisburne -Colville River region, Alaska: U.S. Geol. Survey Bull. 1242-E, 37 p.
- Benedict, L.G., and Thompson, R.R., 1973, Coal and coke petrography and coke reactivity (preprint): Geological Society of America, Northeast Section, Allentown, PA, p. 1-13.
- Benedict, L.G., Thompson, R.R., Shigo, J.J., III, and Aikman, R.P., 1968, Pseudovitrinite in Appalachian coking coals: Fuels, v. 47, p. 125-143.
- Blatt, H., Middleton, G., Murray, R., 1972, Origin of sedimentary rocks: Prentice-Hall, Inc. 6348.
- Callahan, J.E., 1971, Geology and coal resources of T. 6 S., R. 51 W, unsurveyed, Umiat principal meridian, in the Cape Beaufort coal field, northwestern Alaska: U.S. Geol. Survey Open-File Report, 18 p., 5 sheets, 3 tables.
- Callahan, J.E., Wanek, A.A., Schell, E.M., Zeller, H.D., and Rohrer, W.L., 1969, Geology of T. 1 S., R. 44 W., unsurveyed, Umiat principal meridian, in the Kukpowruk coal field, Alaska: U.S. Geol. Survey Open-File Report, 19 p., 1 pl., 1 fig., 2 tables.
- Callahan, J.E., Sloan, E.A., 1978, Preliminary report on analyses of Cretaceous coals from northwestern Alaska: U.S. Geol. Survey Open-File Report 78-319, 29 p.
- Chapman, R.M., and Sable, E.G., 1960, Geology of the Utukok-Corwin region, northwestern Alaska--exploration of Naval Petroleum Reserve No. 4 and adjacent areas, northern Alaska, 1944-53, Pt. 3. Areal geology: U.S. Geol. Survey Prof. Paper 303-C, p. 47-167.
- Goldschmidt, V.M., 1954, Geochemistry, Oxford University Press, Oxford, England.
- Horton, L., and Aubrey, K.V., 1950, Distribution of minor elements in three vitrains from Barnsley seam, Soc. Chemistry Industry Journal (London), v. 23, Sup. no. 1, p. 541-548.

Ingamells, E.O., 1970, Lithium metaborate flux in silicate analysis, Analytica Chimica Acta, 52, p. 323-344.

- Lowry, H.H., 1963, Chemistry of coal utilization, John Wiley and Sons, Inc., p. 225-231.
- Martin, G.C., and Callahan, J.E., 1978, Preliminary report on the coal resources of the National Petroleum Reserve in Alaska: U.S. Geol. Survey Open-File Report 78-1033, 23 p.
- McGee, D.L., 1976, Gasification prospects and application in Cook Inlet, Alaska, in Focus on Alaska's Coal '75: University of Alaska, Mineral Industry Research Laboratory, p. 219-226.
- Medlin, J.M., Suhr, N.H., and Bodkin, J.B., 1969, Atomic Absorption Newsletter, 8 (2) p. 25.
- O'Gorman, J.V., and Walker, Jr., P.L., 1972, Mineral matter and trace elements in U.S. coals, Office of Coal Research, R. & D. Report No. 61, Interim Report No. 2.
- O'Neil, R.L., and Suhr, N.H., 1960, Determination of trace elements in lignite ashes, Applied Spectroscopy, v. 14, no. 2, pp. 45-50.
- Rao, C.P., and Gluskoter, H.J., 1973, Occurrence and distribution of minerals in Illinois coals, Illinois Geol. Survey Circ. 476.
- Rao, P.D., 1968, Distribution of certain minor elements in Alaskan coals, Mineral Industry Research Laboratory, Report No. 15, University of Alaska.

, 1971, Determination of molybdenum in geological material, Atomic Absorption Newsletter, v. 10, no. 2.

, 1972, Determination of titanium in titaniferous magnetite ores by atomic absorption spectrophotometry, Atomic Absorption Newsletter, v. 11, no. 2.

, 1974, Distribution and significance of major, minor and trace elements in Arctic Alaskan coals, Final Report submitted to U.S. Bureau of Mines, U.S. Department of the Interior, Contract no. GD 133 125, 38 p.

, 1976, Characterization of Alaska's coals, in Rao, P.D., and Wolff, E.N., eds., Focus on Alaska's coal '75 (Conference, Fairbanks, Oct. 1975): University of Alaska Mineral Industry Research Laboratory Report 37, p. 150-157.

Ruch, R.R., Gluskoter, H.J., and Shimp, W.F., 1974, Occurrence and distribution of potentially volatile trace elements in coal, Illinois Geol. Survey, Environmental Geology Notes, no. 72.

- Smiley, C.J., 1969, Floral zones and correlations of Cretaceous Kukpowruk and Corwin formations, northwestern Alaska: Am. Assoc. Petroleum Geologists Bull., v. 53, no. 10, pt. 1, p. 2079-2093.
- Stach, E., Mackowsky, M.Th., Teichmuller, M., Taylor, A.H., Chandra, D., Teichmuller, K., 1975, Stach's textbook of coal petrology, Gebruder Borntraegeo, Berlin, 428 p.
- Tailleur, I.L., Brosge, W.P., 1976, Coal resources of northern Alaska may be nation's largest, in Focus on Alaska's Coal '75: University of Alaska, Mineral Industry Research Laboratory, p. 219-226.
- Warfield, R.S., and Boley, C.C., 1969, Sampling and coking studies of several coal beds on the Kokolik river, Kukpowruk river and Cape Beaufort areas of Arctic northwestern Alaska: U.S. Bur. of Mines Report Inv. 7321, 58 p.
- Zubovic, P., Stadnichenko, T., and Sheffey, N.B., 1960, Comparative abundance of the minor elements in coals from different parts of the United States, in short papers in the Geological Sciences, U.S. Geol. Survey Prof. Paper 400-B, p. B87-B88.
- Zubovic, P., 1961a, Geochemistry of minor elements in coals of the northern Great Plains coal province, U.S. Geol. Survey Bull., 117-A, p. 58.

., 1961b, Chemical basis of minor element associations in coal and other carbonaceous sediments, in short papers in the Geologic and Hydrologic Sciences, U.S. Geol. Survey Prof. Paper, 424-D, p. D345-D348.

., 1964, Distribution of minor elements in coal beds of the eastern interior region. U.S. Geol. Survey Bull. 1117-B, p. 41.

., 1966, Distribution of minor elements in coals of the Appalachian region." U.S. Geol. Survey Bull. 117-C, p. 37.

., 1967, Distribution of minor elements in some coals in the western and southwestern regions of the interior coal province. U.S. Geol. Survey Bull. 1117-D, p. 33.