\$ th., 1/2-1 -

Published by

Mineral Industry Research Laboratory PO Box 757240 University of Alaska Fairbanks Fairbanks, Alaska 99775-7240

MIRL Report No. 93

April 1992

ISBN 0-911043-16-0

TABLE OF CONTENTS

		Page
Previo	ous Investigations	1
Preser	nt Investigations	1
Geolo	gic Setting	2
Coal I	Beds	3
Coal I	Reserves	4
Petrol	ogy and Palynology	5
Coal (Quality	6
Refere	ences	11
	LIST OF FIGURES	
Figure		Page
1	1991 Exploratory Drilling Area:	
	Deadfall Syncline Area	13
2	Topography and Coal Outcrops 1991	
	Exploratory Drilling Project Area	14
3	Working Diagram for Calculation of	
	Mining Ratios along Sec. C-C'	16
4	Geological Section, A-A'	18
5	Geological Section, B-B'	18
6	Geological Section, C-C'	19
7	Geological Section, D-D'	19
8	Density Logs for Drill Holes 91-1, 2,	
	3, 4, 9, 10, and 83-10	20
9	Density Logs for Drill Holes 91-3, 6,	
	7, and 12	21
10	Coals D1, D3 and D4 Overburden Isopachs	22
11	K3-K4 Interburden Isopach	23
12	K1 Coal Thickness Isopachs	24
13	K1 Generalized Structure Map	25
14	K1 Ratios and Limits	26
15	K3 Coal Thickness Isopachs	27
16	K3 Generalized Structure Map	28
17	K3 Ratios and Limits	29
18	K4 Coal Thickness Isopachs	30

LIST OF FIGURES (cont'd)

Figure		Page
19	K4 Generalized Structure Map	31
20	K4 Ratios and Limits	32
21	Distribution of maceral groups as a function	
	of depth, Drill hole 83-8C, K3 seam	33
22	Major polynomorph types versus sample	
	depth for drill hole 83-8c, K3 seam	34
23	Calorific value versus sample depth for	
	DFS group coal	3 5
24	Oxygen content versus sample depth for	
	DFS group coal	36
25	Carbon content versus sample depth for	
	DFS group coal	37
26	Equilibrium bed moisture versus sample	
	depth for DFS group coal	38
27	Calorific value versus sample depth	
•	for K group coal	39
28	Oxygen content versus sample depth	
	for K group coal	40
29	Carbon content versus sample depth for	
	K group coal	4 1
30	Equilibrium bed moisture versus sample	
	depth for K group coal	42
31	Calorific value versus sample depth for	
	uncorrelated coal	43
32	Oxygen content versus sample depth	
	for uncorrelated coal	44
33	Carbon content versus sample depth	
	for uncorrelated coal	45
34	Equilibrium bed moisture versus sample	
	depth for uncorrelated coal	46

LIST OF TABLES

Table		Page
1	Measured Reserves in Coal Beds K1, K3	
	and K4 Under Combined Mining Scenario	15
2	Worksheet for the Determination of Combined	
	Mining Ratios along Cross Section C-C'	17
3	Reflectance Rank Distribution of Vitrinites	
	in Drill Holes 83-8C, K3 Seam	47
4	Distribution of Maceral Groups in K3	
	Seam, Drill Hole No. 83-8C	48
5	Summary of Samples and Coal Analyses	
	from the Deadfall Syncline	49
6	Average Proximate Analyses, DFS-1 Seam	52
7	Average Ash Composition, DFS-1 Seam	52
8	Average Proximate Analyses, DFS-2 Seam	53
9	Average Ash Composition, DFS-2 Seam	53
10	Average Proximate Analyses, DFS-3 Seam	54
11	Average Ash Composition, DFS-3 Seam	54
12	Average Proximate Analyses, DFS-4 Seam	55
13	Average Ash Composition, DFS-4 Seam	55
14	Average Proximate Analyses, K1 Seam	56
15	Average Proximate Analyses, K2 Seam	56
16	Average Proximate Analyses, K3 Seam	57
17	Average Ash Composition, K3 Seam	57
18	Average Proximate Analyses, K4 Seam	58
19	Average Ash Composition, K4 Seam	58
20	Average Proximate Analyses, K5 Seam	59
21	Weight Distribution of Float and Sink	
	Products from 1983 Drill Samples	60
22	Proximate and Ultimate Analyses of	
	DFS-1 Seam, Deadfall Syncline	64
23	Proximate and Ultimate Analyses of	
	DFS-2 Seam, Deadfall Syncline	68
24	Proximate and Ultimate Analyses of	
	DFS-3 Seam, Deadfall Syncline	74

LIST OF TABLES (cont'd)

<u>Table</u>		Page
25	Proximate and Ultimate Analyses of	
	DFS-4 Seam, Deadfall Syncline	77
26	Proximate and Ultimate Analyses of	
	K1 Seam, Deadfall Syncline	81
27	Proximate and Ultimate Analyses of	
	K2 Seam, Deadfall Syncline	83
28	Proximate and Ultimate Analyses of	
	K3 Seam, Deadfall Syncline	84
29	Proximate and Ultimate Analyses of	
	4 Seam, Deadfall Syncline	106
30	Proximate Analyses of K5 Seam,	
	Deadfall Syncline	108
31	Proximate and Ultimate Analyses of 20, 21	
	and Uncorrelated Seams, Deadfall Syncline	109
32	Concentration of Major and Minor Elements	
	as a Percent of High Temperature Ash and	
	Ash Fusibility Data for Deadfall Syncline	
	Coal Samples	116

PREVIOUS INVESTIGATIONS

The earliest systematic geologic investigations in the western Arctic were those of the U.S. Geological Survey (USGS) in 1901 and 1904. More detailed exploration was undertaken by the USGS after the establishment of Naval Petroleum Reserve No. 4 in 1923. Post-World War II work by the USGS for the Navy (1947-1953) resulted in the publication of USGS Professional Paper 303-C, by R.M. Chapman and E.G. Sable, which remains the primary reference for Cretaceous stratigraphy and structural character of the northern foothills of the western Arctic. Chapman and Sable sampled a number of coal beds along the Kukpowruk, Kokolik and Utukok Rivers, which provided an indication of the quality of coals in the inland parts of the region.

Toenges and Jolley (1947) of the U.S. Bureau of Mines (USBM) made a reconnaissance survey of coals along the Kukpowruk River in 1946, including a 20 foot bed on the south limb of the Howard Syncline. This coal was sampled extensively in 1954 by J.S. Robbins for the Morgan Coal Co., and later in 1962 and 1963 by the Union Carbide Co. In 1962 and 1963 the USBM sampled the 20 foot bed by trenching and from the adit originally driven by Robbins, and conducted coking tests on these samples. In 1966, they cored the bed on the Kukpowruk at various depths, and also cored one bed at Cape Beaufort, and again conducted extensive carbonization tests on these samples. In 1966, the USGS began investigations specifically oriented towards assessment of coal resources and quality in the area, beginning with the Howard Syncline. Between 1969 and 1972, field investigations in the Cape Beaufort, Pitmegea River and Corwin Bluff area were conducted. In 1972, the USGS and USBM drilled and cored a number of beds in the north half of the basin at Cape Beaufort. In 1973, surface work and shallow auger drilling were done in the western extension of the Deadfall Syncline. In 1982, a program funded by the State of Alaska for the assessment of coals for local use in northwest Alaska was initiated, and the Deadfall Syncline (Figure 1) selected as the most promising site for the western Arctic Slope. Field reconnaissance work was conducted during the 1982 season, followed by drilling and coring in 1983.

In 1984, additional exploratory drilling and some geophysical investigations were undertaken by Howard Grey and Associates for the Western Arctic Coal Development Project. A total of 47 drill holes and auger borings were completed in the northeastern part of the Deadfall Syncline.

PRESENT INVESTIGATION

The purpose of the 1991 drilling program was twofold:

- 1. To evaluate the coal reserves in a previously identified thick coal in an area of low structural dips and dip-slope topography near the axial plunge of the west extension of the Deadfall Syncline, primarily for surface mining, and to determine the feasibility of mining additional beds in conjunction with the thick coal. (For the purposes of this investigation, this coal is designated K3 as explained below).
- 2. To examine a continuous and unbroken stratigraphic interval of the Corwin formation in the northeastern part of the Deadfall Syncline as an initial step toward evaluation of the whole basin. This was accomplished by drilling overlapping holes aligned generally parallel to the dip direction, and spaced in accordance with the magnitude of dip and depth capacity of the drill. About 720 feet of stratigraphic section were covered in this way.

A total of fourteen exploratory holes were drilled, ranging from 116 to 426 feet in depth (Figure 2). The drill was a Mobil B-60 mounted on a Nodwell tracked vehicle. Circulation was provided by a large compressor mounted on another Nodwell. Most of the footage was drilled with an air hammer, which provided a significant improvement in drilling rates over conventional rotary drilling. Lithology of cuttings from all holes was logged continuously, and composite grab samples from each 5 or 10 foot interval were taken. Coal cuttings were collected on a (relatively) clean plastic sheet, and promptly double bagged in plastic to minimize loss of bed moisture. Cores were taken from the K3 coal at 3 drill hole locations, and the underlying K4 coal was also cored at one of these 3 holes. A comparison of core length to geophysical logs indicates essentially 100% recovery for all cores. All samples, including rock cuttings, were shipped to the Mineral Industry Research Laboratory (MIRL), University of Alaska Fairbanks, for analyses and/or storage.

All holes were logged with a Gearhart-Owen GeoLogger using natural gamma and gamma-gamma density tools. The log response with these tools for coals is distinct and unambiguous, particularly that of the density log, and the resolution is sufficient to estimate bed thickness to within 3 to 4 inches (Figures 8 and 9).

GEOLOGIC SETTING

Identified coal resources on the North Slope of Alaska occur primarily in the Corwin formation of the Nanushuk Group of Middle to Late Cretaceous age. The Corwin is a non-marine, predominantly fine grained clastic sequence which probably represents deposition of materials from the rising Brooks Range by relatively low-gradient streams flowing across a broad, slowly subsiding coastal lowland marginal to the Colville geosyncline. Coals are present throughout the Corwin formation, but are thin and discontinuous in its lower two to three thousand feet in the western Arctic. The Corwin formation is about 11,000 feet thick at Corwin Bluff and thins to a

zero edge southwest of Barrow. In the northern foothills of the Brooks Range, the Nanushuk group rocks have been subject to extensive structural deformation, uplift and erosion subsequent to deposition. As a result, the occurrence of the Corwin formation is generally limited to the core areas of numerous broad, relatively simple, east-west trending synclines or structural basins separated by complexly faulted anticlines. In the western Arctic, west of the NPRA, the significant coal bearing sections of the Corwin formation are present in the western extension of the Deadfall Syncline, the Howard Syncline, and the "Liz-A" Syncline at Cape Beaufort. Of these, the Deadfall Syncline coals appear to offer the best near term potential for development because of the occurrence of thick coals in areas of low structural dips and with reasonable proximity to tidewater.

COAL BEDS

In an effort to avoid confusion, it is proposed that the temporary field designations (K1-K5, "K" for Kuchiak) given to the coal beds east of Kuchiak Creek, be retained pending further exploration and a better understanding of the relationships between these coals and the DFS-1-4 coals to the west. While it does appear that the thick coal K3 splits and thins to the west to become DFS-1, the relationship of coals K4 and K5 to the lower "DFS" beds is still unclear.

A total of eight coal beds were identified within the 720 feet of stratigraphic section covered by the 1991 drilling program (Figures 2-7). Of these, five beds are more than four feet thick wherever they were intercepted by a drill hole, (including 1983 and 1984 drill holes). However, two of the beds, the uppermost (unnamed) and lowermost (K5) were intercepted by only one hole each, so that there is no information available about their continuity or thickness trends. For the remaining three coals, K1, K3 and K4, there is sufficient drillhole information to calculate a measured reserve base, and surface mineable tonnages at various stripping ratios. A bony appearing coal about 4.5 feet thick, which was intercepted by DH91-2 was initially designated "K2", but it appears to be shaling out to the east in DH91-11 and cannot be identified in DH91-3. A thin but well defined coal appears at a different position in this interval further east.

Coal K1 ranges in thickness from about 4.4 feet in DH91-4 to about 6.8 feet in DH91-11 (Figure 12). The geophysical logs indicate a possible parting or high ash interval in the lower half of the bed in all of the logged holes (Figures 8 and 9). Analyses of cutting samples from this bed indicate ash contents ranging from about 15% to over 26%. The weighted average ash content for K1 from the core of DH84-106 was 17.54%.

Coal K3 is about 210 to 230 feet stratigraphically below coal K1 (Figures 4-7). It thickens from about 10.5 feet in DH91-2 to 18.3 feet in DH83-10 (Figure 15). West of Kuchiak Creek, the coal splits into an upper 6 foot seam and lower 3.5 foot seam. The geophysical logs indicate a

parting or high ash zone 3 to 5 feet below the top of the bed in all of the logged holes (Figures 8 and 9). Analyses of core samples from DH91-5 and DH91-7 show ash contents of 14.7% and 14.3% respectively for the interval from 2 to 6 feet below the top of the bed in both cores. The weighted average ash content for the remaining intervals of the K3 bed in both cores is less than 4%.

Coal K4 occurs from 40 to 65 feet stratigraphically below coal K3 (Figures 4-7). It ranges in thickness from 4 feet in DH91-2 to about 6 feet in DH91-4, DH91-6 and DH91-7 (Figure 12). The geophysical logs do not indicate significant partings (Figures 8 and 9), but do suggest a shaly or bony bottom, which appears to be the case in the core from DH91-7.

COAL RESERVES

Procedure

The USGS-Bureau of Mines definition of measured reserves was used as a guideline to establish the limits of the measured reserve base for the 3 coals discussed above. This standard requires points of measurement no more than 1/2 mile apart.

The volume of coal is based on acreage between thickness isopachs multiplied by the average thickness, as shown in Table 1. For the determination of mining ratios, a generalized structure contour map on the top of each of the 3 coals (Fig. 13, 16 and 19) was constructed based on cross sections aligned generally parallel to the dip direction (Sections A-A' through D-D').

It was assumed that the three coals could be mined together under certain conditions. Coal K1 becomes part of the overburden for K3 and would begin to be taken as a matter of course when the mining ratio for coal K3 exceeds 5:1. Its thickness would be added to that of K3 to decrease the ratio and increase the mineable area to various mining ratio limits. It was assumed that coal K4 could be mined wherever the ratio of the interburden or parting between K3 and K4 to the thickness of K4 is less than or equal to the ratio of overburden thickness to combined coal thicknesses of K3 and K1. A protocol based on these assumptions was developed by Steve Denton of Denton Civil and Mineral for determining mining ratios along the cross section lines. The procedure was used in somewhat modified form to determine appropriate ratio limits for the areal calculation of surface mineable reserves. Areas (square feet) along the cross sections (Figs. 4-7) representing coal and overburden material were converted to tons/linear foot along strike and cubic yards/linear foot along strike respectively. Figure 3 is an example of a working diagram along Sec. C-C' for this procedure. For the coal, a factor of 25 cubic feet per ton (1742 tons/acre foot) was used. A recovery factor of 0.9 was used for coals K3 and K4, and 0.75 for K1. Incremental and cumulative mining ratios at various points along the section were first determined for coal K3 and K1 (where present). Separate interburden to coal ratios for coal K4 were

determined at the same horizontal locations. At a point where the incremental ratio of overburden to coal for K1 and K3 approximates the incremental ratio of K3-K4 interburden (parting) to coal K4, it is assumed feasible to take coal K4, and cumulative ratios of all 3 beds are used to establish ratio limits beyond this point. Table 2 is a sample worksheet used for this analysis corresponding to the diagram along Sec. C-C'. Based on analyses of the four cross sections (A-A' to D-D') included here, and spot calculations elsewhere, it appears that the conditions for taking coal K4 prevail in the southern half of the area. In the northern part of the area, along cross sections A-A' and B-B', the incremental K3-K4 interburden ratio is greater than the incremental K3 overburden ratio beyond the point where the cumulative K3 overburden ratio reaches 10:1, due to thinning of coal K4 and thickening of the interburden. For the southern part of the area, the incremental K3-K4 interburden to coal ratio approximates the incremental K3 overburden to coal ratio where the cumulative ratio for all 3 coals is between 5:1 and 6:1. For the calculation of reserves for the area, combined ratio limits of 5:1, 7:1 and 10:1 were interpolated from points along the sections and posted to a map for each coal, along with intermediate points based on overburden and coal thickness maps (Fig. 12, 15 and 18, ratios and limits). For coals K1 and K3, cumulative reserves were calculated from their respective outcrops to the 5:1, 7:1 and 10:1 combined ratio limits. For coal K4, reserves were calculated from the outcrop of coal K3 to the same ratio limits, but that portion from the outcrop to the 5:1 limit was added to cumulative figure for the 7:1 ratio limit, since it is assumed under the scenario described above that K4 would not be taken unless K3 is taken beyond its 5:1 limit. Additional reserves for coal K4 were calculated between the K4 outcrop and K3 outcrop or downdip edge of burn, down to a stand-alone limit of 10:1 for coal K4.

Summary of Coal Reserves

The results of the above procedure are shown in Table 1. About 32 million tons of coal meeting the requirements for the measured coal category have been identified, occurring in 3 coals in a 300 foot interval. Of this total, 23 million would be surface mineable down to a mining ratio limit of 10:1 if the coals are mined together. About 10 million tons, almost all from the K3 coal, would be recovered down to a 5:1 mining ratio.

PETROLOGY AND PALYNOLOGY

Petrological and palynological investigations were undertaken by Youtcheff, Rao and Smith on K3 seam (Drill hole 83-8C). The samples were divided to one foot intervals. The vitrinite reflectance values for the 8C samples ranged from 0.61% to 0.75% (Table 3). The average for the seam was 0.69%.

The petrographic composition of these coals was examined. Table 4 and Figure 21 show the maceral distribution of the samples is divided into three major maceral groups: vitrinites, exinites, and inertinites. The concentration of inertinite is quite variable, though it tends to increase towards the top of the seam. As in most coals, vitrinite is the predominant maceral at all depths. Exinite is not present in appreciable quantities.

The unusually wide range of petrographic compositions within these seams is indicative of drastic changes taking place in the environment during peat formation. These changes were most likely due to fluctuations in the water table which resulted in the generation of high concentrations of semifusinite and macrinite. The conditions which gave rise to globular macrinite formation are still obscure. The seam is roughly divisible into three zones. These are partitioned by a major break around the 9-foot level and a minor break at the 12-foot level.

The distribution of major palynomorph types are plotted as a function of depth in Figure 22. The palynological profile indicates that the seam is dominated by bisaccate (coniferous) pollen and gleichenious (fern) spore types. The relative abundance of ferns versus confiers was used to differentiate periods of dry environment from those periods of a wet environment. The implication of relative dryness at or in the vicinity of the site does not preclude the presence of standing water, but does suggest potential variations in water depth, extent, pH and Eh.

The seam K3 appears to consist basically of three palynomorphic zones: a dry zone in the bottom 6 feet of the coal bed, a wet zone for coal found in the 7-9 foot interval, and a dry zone for the top 5 feet of the bed. The presence of these dry zones correlates with enhanced inertinite concentrations. It should be noted that a rapidly fluctuating water table may not be reflected palynologically.

COAL QUALITY

Coal quality data included in this report is a compilation of analytical information obtained for samples from 1973 auger hole drilling by the U.S. Geological Survey and U.S. Bureau of Mines, 1983 drilling by the State of Alaska, Division of Geological and Geophysical Surveys, 1984 Drilling by Arctic Slope Consulting Engineering, 1986 and 1987 sampling from pits excavated for bulk sampling and the 1991 drilling program. Mr. James Callahan has designed and supervised much of the drilling and exploration activities that have spanned nearly two decades. With the exception of the 1973 Auger hole samples, all other samples were analyzed by the Mineral Industry Research Laboratory, University of Alaska Fairbanks. Table 4 lists complete details of drill hole numbers and the analyses presented in the report. Prefix numbers for the drill holes indicate the year of sampling.

Moisture basis for presentation of analytical data is determined by the available data. Samples from the 1973 and 83 drilling programs have lost moisture either during sampling or processing. The samples were brought to theoretical bed moisture level by subjecting coal samples to 97% relative humidity. Analyses reported on an equilibrium moisture basis are what would be expected for freshly mined coal. The 1984 drill samples were received in well sealed boxes. Since no prior processing was done, these analyses were reported on an as received basis and could be considered nearly equal to bed moisture, since moisture loss or gain was minimal. The 1992 drill samples lost moisture and are therefore expressed on an as analyzed basis. The moisture values are therefore lower than bed moisture. Equilibrium moisture values are not available for these samples.

Average proximate analyses and ash analyses, where available, are presented for DFS and K group coals in Tables 5-19. Densimetric partition data for the 1983 samples are summarized in Table 20. Analytical data for all individual samples, defined by Table 4, are presented in Table 21-31. Some mention of individual data and averages need to be made.

1983 drill cuttings were split in the laboratory. One raw coal split received proximate analysis. Another split was subjected to a 1.6 specific gravity (S.G.) float-sink separation. Sinks weights were recorded and floats received proximate and ultimate analyses. 1983 drill cores were crushed to minus 2.4mm in the laboratory, then subjected to a 1.5 S.G. separation. Sinks received proximate analyses and floats received both proximate and ultimate analyses. Analyses for reconstituted raw coal were calculated from recoveries of floats and sinks and are presented throughout Tables 21-31. An average analysis for a seam was calculated using samples thickness as a weighting factor. Moisture values for 1983 samples are equilibrium moistures.

1984 drill samples were all core samples, and were analyzed without any densimetric separations. Their moisture values are given on an as received basis. The cores were well preserved on site and their as received moisture levels should represent the bed moisture for these coal samples. Average analyses for the seams were weighted by the mass of core, rather than thickness. Averages calculated this way will more accurately represent the average analysis of a seam.

For 1991 drill cores equilibrium moisture was determined. Moisture values of the remaining samples are on as analyzed basis.

Of the four Mormon block seams, DFS-4 has the most drill data and is also of high quality. The seam is 9-10 ft. thick. 1987 and 1991 pit channel samples probably best represent the quality of the seam, and the ash contents were 3.08 and 3.58 respectively. Other samples were drill cuttings and could not be relied on represent the true quality of the seam.

Seam K1 is about 5-6 ft. thick. Drill hole 84-106 gave 17.62% average ash for the seam. The coal however, could be cleaned to give a lower ash product. Samples from Drill hole 83-9 gave a 1.6 SG float product containing 7.23% ash.

Seam K3 has the largest amount of analytical data available. Six drill holes located about 0.5-0.6 miles apart are discussed. These project a true image of the change in quality of K3 seam in the north-south direction and are listed below starting from the southern most drill hole to the northern most drill hole.

Drill Hole No.	Thickness, ft.	Ash. %
91-2	6	15.2
91-10C	12.5	9.49
83-8C	14	8.07
91-7	17.5	6.62
91-5	17.3	6.13
83-10	15	8.71

K3 Seam coal is of highest quality and the seam is thickest at Drill holes 91-7 and 91-5. Both seams have high ash partings located in the same position of the seam; a 2' parting located 3' below the top of the seam and a 6" parting located 1' from the bottom of the seam. It is reasonable to assume the quality between these two drill holes, located 0.6 miles apart, will not differ significantly. Coal quality as well as seam thickness deteriorate to the north and south of these two drill holes. Drill hole 83-10 located 0.5 miles to the south, shows slight deterioration of quality to 8.71% ash. Again quality and thickness are affected as we go north to Drill holes 83-81 and 91-10C. The 91-10C coal is not only thinner, but also the high ash partings are thicker and responsible for an increase in ash content to 9.49%. Drill hole 91-2, to the northwest of 91-10C, shows further thinning to 6 ft. as well as an increase in ash content to 15.2%.

Effect of Weathering on Coal Quality

Exposure of outcrops of coal to oxygen deteriorates the quality of coal. Equilibrium moisture and oxygen levels increase whereas heating value and carbon content decrease. Influence of sample depth on these parameters is presented in Figures 17-24. Figure 17 shows that calorific value reaches maximum for Monnon block DFS samples at a depth of 40 ft. Figure 18, 19, and 20 confirm that the lowest oxygen, and equilibrium moisture levels and highest carbon levels are reached at this depth. Figures 21, 22, 23, and 24 show that K group coal samples at depths as low as 20 ft. show no weathering. The only exceptions are the samples from drill hole 84-117. This

seam, at this drill site, was probably closer to the surface at some time past and weathered before burial to its present depth.

ASTM rank calculations of K3 seam core samples show that the Deadfall Syncline coals are of high volatile A bituminous rank, bordering on high volatile B bituminous. An average vitrinite reflectance value of 0.74% also confirms this conclusion.

The coal is of coking quality. Free swelling indices (FSI) range from 1 to 5 for core samples. FSI is a function of ash content and percent inert macerals in the coal. Some portions of Deadfall Syncline coals have a high inertinite macerals content, which can cause low FSI values. Hardgrove grindability values ranged from 47-61 and fall within the expected range for coal of this rank, i.e., bordering high volatile A and B bituminous. As noted previously, tables 5-19 show average proximate and ash analyses for each seam. Although weathered surface samples tend to be higher in moisture content, unweathered drill samples show fairly low moistures, 3 to 5 percent. DFS-1 averaged 11.92% ash. Float-sink analysis for drill hole 83-6, show that its ash content could be reduced to 5.57 by separating at 1.6 S.G. DFS-2 has an average ash content of 12.13. Float-sink analyses or drill holes 5 and 5c show that its ash content could be reduced to about 5% by washing. DFS-3 has an average ash content of 7.90%. DFS 83-4C analyses show that the top 2 feet and the bottom 2 feet of DFS-3 have higher ash contents. The middle section (8 feet) averages 5.44% ash. Washing the entire seam at 1.5 S.G. can reduce the ash content to 3.69%. The average ash content of DFS-4 seam was 8.78% over all of the analyses listed. However, pit channel samples obtained in 1987 and 1991 show uniformly low ash over the entire 10 ft section of the coal seam. The average for the above referenced two pit channel samples gave 3.33% ash.

The seams K1 and K2 averaged fairly high ash, 20.66% and 16.59% respectively. Separation of sample from drill hole 83-9, at 1.6 S.G., reduced its ash content to 7.23%. K3 is the most important seam in the Kuchiak block. The seam has higher ash partings, but the average ash content of the seam was 9.06%. The 1991 core samples showed lower ash levels. Drill holes 91-5, 91-7 and 91-10c gave average ash values of 6.13%, 6.02% and 9.49% respectively. Float-sink separation of samples from drill holes 83-8c, 83-10, 83-11, and 83-11c showed that the ash content can be reduced to 4.01%, 4.32%, 3.76% and 3.28% respectively.

Seam K4 is somewhat higher in ash, averaging 15.18%. Float-sink separation of sample from drill hole 83-10 showed that its ash content can be reduced to 2.90%. Core samples from drill hole 91-7 showed an average ash content of 4.21. Other samples obtained from drill cuttings showed a fairly high ash content. Only one sample is available for seam K5 and it analyzed 36.23% ash. Only auger hole samples were available for seam no. 20 and their ash content was quite variable. Seam No. 21 had analyses available from drill core. Raw coal from drill hole 13c averaged 21.38% ash, but washing at 1.5 S.G. reduced its ash to 8.53%.

Coal ash composition was determined after ashing coal sample at 750°C. All ash analyses were conducted using a spectraspan V ICP spectrophotometer.

Deadfall Syncline coals have less than 0.02% chlorine, which will not contribute to boiler fowling. However, the high sodium content of the ash would cause the deposit forming propensity of these coal to be significant. Table 32 gives a compilation of all available ash composition and ash fusibility data.

REFERENCES

- Arctic Slope Consulting Engineers, 1984, Western Arctic Coal Development project, 1984 predevelopment site investigation: 1984 Report and Preliminary Economic Evaluation Report, prepared for Alaska Native Foundation, 2 vols.
- Arctic Slope Consulting Engineers, 1986, Western Arctic Coal Development Project Phase II Final Report, prepared for Alaska Native Foundation, 2 vols., 620 p.
- Barnes, F.F., 1967a, Coal Resources of Alaska: U.S. Geological Survey Bulletin 1242-B, p. B1-B36.
- Barnes, F.F., 1967b, Coal Resources of the Cape Lisburne Colville River Region, Alaska: U.S. Geological Survey Bulletin 1242-E, 37 p.
- Callahan, J.E., 1976, Coal Investigations in Western Arctic Alaska: in Rao, P.D., ed., Focus on Alaska's Coal '75: University of Alaska Mineral Industry Research Laboratory Report No. 37, p. 164-167.
- Callahan, J.E., and Eakins, G.R., 1986, Coal Investigations in the Deadfall Syncline, Western Arctic Alaska: in Rao, P.D., ed., Focus on Alaska's Coal '86: University of Alaska Fairbanks Mineral Industry Research Laboratory Report No. 72, p. 1-5.
- Callahan, J.E., and Martin, G.C., 1980, Coal Occurrences of the Nanushuk Group, Western Arctic, Alaska (an update): in Rao, P.D., ed., Focus on Alaska's Coal '80, University of Alaska Fairbanks Mineral Industry Research Laboratory Report No. 47, p. 32-59.
- Callahan, J.E. and Sloan, E.G., 1978, Preliminary report on analysis of Cretaceous Coals from Northwestern Alaska: U.S. Geological Survey Open-file Report 78-319, 2 p., map.
- Chapman, R.M. and Sable, E.G., 1960, Geology of the Utukok-Corwin Region, Northwest Alaska: U.S. Geological Survey Professional Paper 303-C, 167 p.
- Clough, J.G. and Roe, J.T., Coal Resources of Northwest Alaska, Final Report, Alaska Division of Geological and Geophysical Surveys, Fairbanks, Alaska (unpublished report).
- Collier, A.J., 1906. Geology and Coal Resources of the Cape Lisburne Region, Alaska: U.S. Geological Survey Bulletin 278, 54 p.
- Denton, S., Grey, H., and Hanson, W.D., 1986, Geologic, Environmental and Engineering Factors Influencing Development of the Deadfall Syncline Coals: in Rao, P.D., ed., Focus on Alaska's Coal '86: University of Alaska Fairbanks Mineral Industry Research Laboratory Report No. 72, p. 6-26.
- Eakins, G.R., 1986, Investigations of Coal Resources in Northwest Alaska, 1980-1985: in Rao, P.D., ed., Focus on Alaska's Coal '86: University of Alaska Fairbanks Mineral Industry Research Laboratory Report No. 72, p. 250-265.

- Grinage, K., and Gillen, P., 1986, Western Arctic Coal Development Project Village End Use Assessment: in Rao, P.D., eds., Focus on Alaska's Coal '86: University of Alaska Fairbanks Mineral Industry Research Laboratory Report No. 72, p. 27-43.
- Martin, G.C., and Callahan, J.E., 1978, Prelmininary Report of the Coal Resources of the National Petroleum Reserve in Alaska: U.S. Geological Survey Open-file Report 78-1033, 29 p.
- Rao, P.D., 1980, Petrographic, Mineralogical, and Chemical Characterization of Certain Arctic Alaskan Coals from the Cape Beaufort Region: University of Alaska Mineral Industry Research Laboratory Report No. 44, 66 p.
- Rao, P.D., and Smith, J.E., 1983, Petrology of Cretaceous Coals from Northern Alaska: Fairbanks, University of Alaska, Mineral Industry Research Laboratory Report 64, 141 p.
- Rao, P.D., Youtcheff, J.S., and Smith, J.E., 1985, Evaluation of Coal Depositional Environments in Northwest Alaska, Proceedings of 1985 International Conference on Coal Science, October 28-31, Sydney, Australia, p. 581-584.
- Youtcheff, J., Rao, P.D. and Smith, J.E., 1987, Variability in Two Northwest Alaska Coal Deposits, in Alaskan North Slope Geology, Irv Tailleur and Paul Weimer, Editors, Published by the Pacific Section, Society of SEPM, p. 225-232.
- Rao, P.D., 1986, Characterization and Evaluation of Washability of Alaskan Coals, Fifty Selected Seams from Various Coal Fields, Final Technical Report, Sept. 30, 1986-Feb. 28, 1986, U.S. Dept. of Energy, DOE/PC/62695-T5 (DE 87014189), 184 pp.
- Warfield, R.S., and Boley, C.C., 1969, Sampling and Coking Studies of Several Coal Beds in the Kokolik River, Kukpowruk River, and Cape Beaufort areas of Arctic Northwest Alaska: U.S. Bureau of Mines Report of Investigations No. 7321, 51 p.

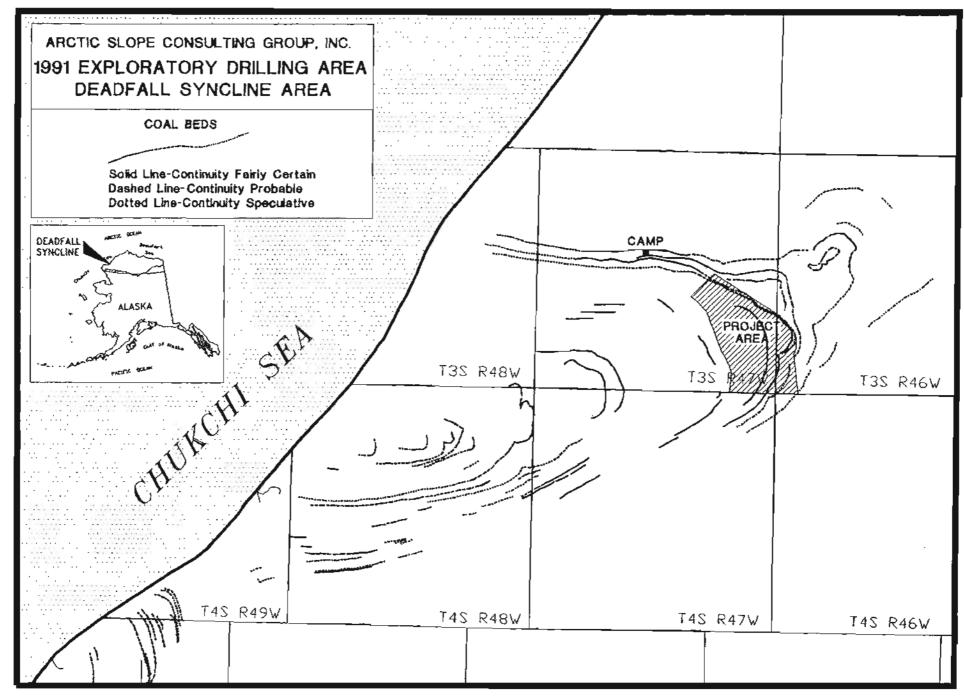


Figure 1. 1991 Exploratory Drilling Area: Deadfall Syncline Area

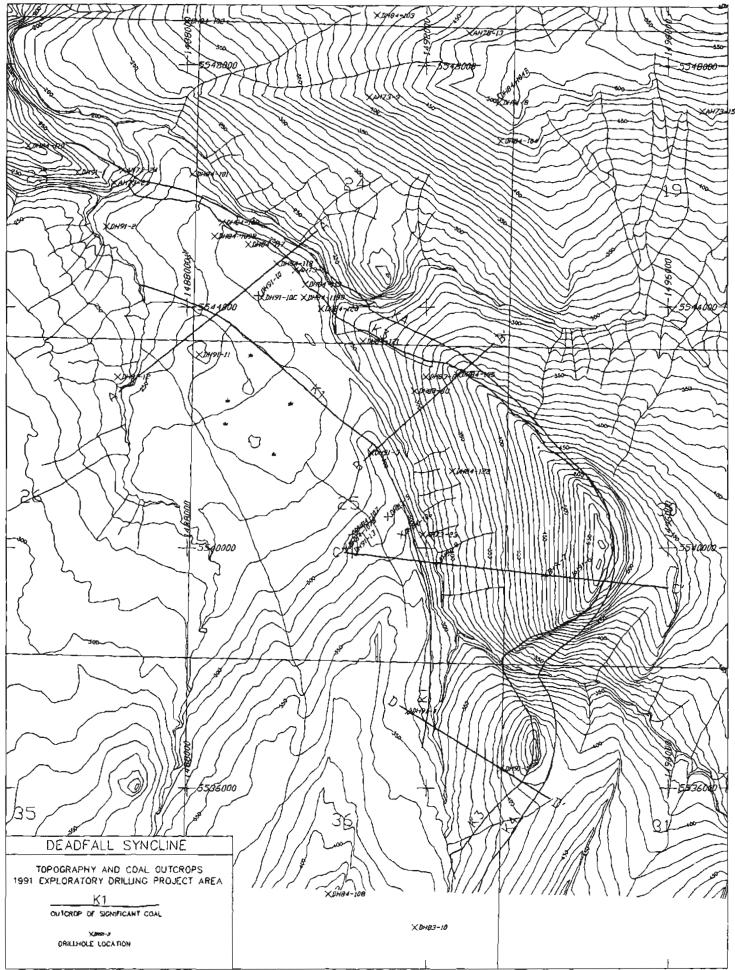


Figure 2. Topography and Coal Outcrops 1991 Exploratory Drilling Project Area

TABLE 1

MEASURED RESERVES IN COAL BEDS K1, K3 AND K4 UNDER COMBINED MINING SCENARIO

COAL K1

	AV.THICKNESS		INCREMEN	ITAL AREA (ACRES)	INCREME	INCREMENTAL VOLUMES (ACRE FEET)			CUMULATIVE VOLUMES (ACRE FEET)				CUMULATIVE TONS*			
		< 5:1	5:1-7:1	7:1-10:1	>10:1	<5:1	5:1-7:1	7:1-10:1	>10:1	5:1	7:1	10:1	>18:1	5:1	7:1	10:1	>10:1
	6.50		1,3	13.55	69.62	0	8	88	453	0	8	97	549	ខ	11040	126110	717340
	6.25		11,46	14,44	54.16	0	72	90	339	D	72	162	500	0	93578	211490	653740
	5,75		3.72	19.33	56.14	8	21	111	380	8	21	133	513	6	27946	173160	670029
	5.25		6.65	29,63	72.02	0	35	156	378	٥	35	190	569	8	45613	248849	742843
	4.75		3.62	19.5	41.2	o	17	93	196	0	17	110	306	0	22465	143480	399162
	4.50		9.86	26.38	29.13	O	44	119	131	0	44	163	294	0	57969	213064	384327
	TOTALS FOR KI														258612	1116153	3567441
									COAL K3					_			
	AV.THICKNESS		MOREMEN	ITAL AREA (ACDES!	MCREME	NTAL WORL	JMES (ACRE		CHAMBAT	IVE VOLUM	S (ACRES	FETY			CUMULATIVE 1	TONS**
	A4.11#OMILEGO	<5;1		7:1-10:1		<5:1		7:1-10:1	>10:1	5:1	7:1	10:1	>10:1	5:1	7:1	10:1	>10:1
	18.00	3.76	0.1-7.1	141-10.1	×10.1	68	3.17.1	0	3	68	68	68	58	106109	196109	106109	106109
	17.88	44.11				768	G	8	ō	788	788	788	788	1236157	1236157	1236157	1236157
	17.63	55.23	0.48			973	В	0	0	973	982	982	982	1526142	1539405	1539405	1539465
	17.25	58.27	26.7	5.38		1005	461	93	0	1005	1466	1659	1559	1575886	2297975	2443475	2443475
	16.75	28.92	13.31	27.72		484	223	464	ō	484	707	1172	1172	759458	1108987	1836932	1836932
	16.25	23.07	6.24	20.44	7.81	375	101	332	127	375	476	808	935	587749	746724	1267458	1466442
	15.75	23.19	6.94	18,24	16.67	365	109	287	263	365	475	762	1024	572627	743996	1194393	1606023
_	15.25	34.83	8.54	20.69	28.62	531	130	316	436	531	681	977	1413	832749	1036931	1531607	2215881
15	14,50	36.5	14.68	22.99	37.6	529	213	333	545	529	742	1075	1621	829758	1163480	1686114	2540879
	13.50	31.12	10.9	15.16	42.28	420	147	205	571	420	567	772	1343	658664	889366	1210232	2105101
	12.50	26.93	9.9	12 21	49.28	337	124	153	616	337	460	613	1229	527761	721776	961061	1926826
	11.75	14.41	\$.85	8.27	42.31	169	69	97	497	169	238	335	832	265456	373223	525570	1304990
	11.25	14.69	5.05	7.7	40.14	165	57	87	452	165	222	309	760	259099	348169	483980	1191959
	10.50	29.08	9.96	15.35	49.34	305	105	†61	518	305	410	57 t	1069	478712	642673	895363	1707593
	TOTALS FOR K3												. [10216326	12954970	16917867	23227772
									COAL K4								
	AV. THICKNESS		INCREMEN	ITAL AREA (ACRES)	INCREME	NTAL VOLU	IMES (ACRE		CUMULAT	IVE VOLUM	ES (ACRE P	EET)			CUMULATIVE 1	TONS**
		<5:1	5:1-7:1	7:1-10:1	>10:1	<5:1	5:1-7:1	7:1-10:1	>10:1	5:1	7:1	10:1	>10:1	5:1	7:1	10:1	>10:1
	6.00	23.16	100.98	14.73	0	139	606	88	0	139	745	833	833	217861	1167760	1306322	1306322
	5.75	24.82	172.35	54.37	8,43	143	991	313	48	143	1134	1446	1495	223749	1777458	2267595	2343591
	6.25	15.25	80.1	34.54	23.1	80	421	181	121	80	501	682	803	125522	784821	1069118	1259253
	4.75	5.48	50.6	29,69	2.02	26	240	141	10-	26	266	407	417	40810	417631	638733	653777
	4.25	3 5.12	7.45	Q	0	149	32	0	0	149	181	181	181	234016	283650	283650	283650
	TOTALS FOR K4													607942	4147670	5281769	5562942
	TOTALS FOR THE A	AEA												10824268	17361252	23315789	32358155

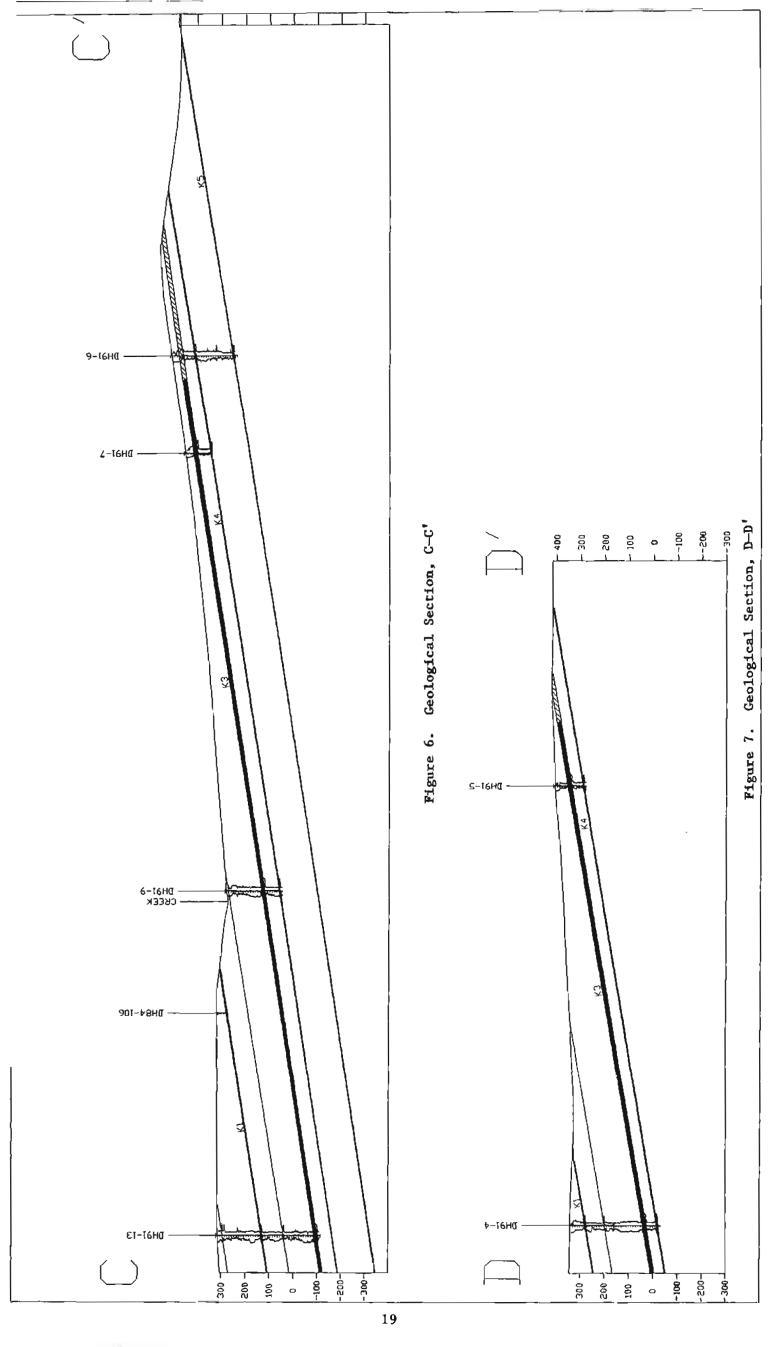
^{* @1742} TONS/ACRE FOOT, 0.75 RECOVERY FACTOR (K1)

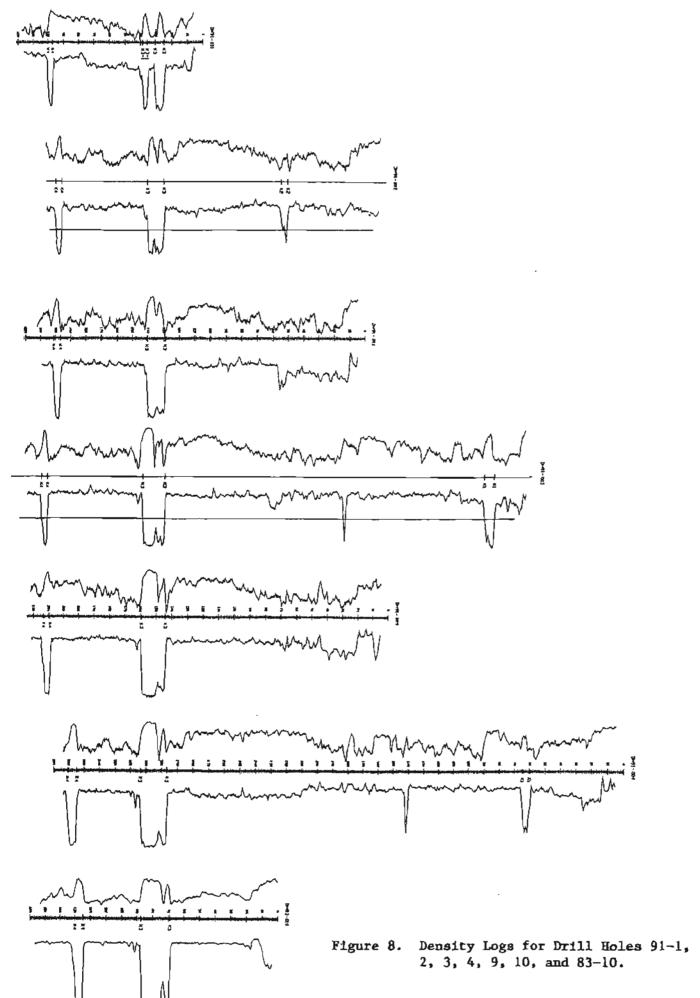
^{** @1742} TONS/ACRE FOOT, 0.9 RECOVERY FACTOR (K3 & K4)

Cu yds overburden per linear fiz along strike for segnent 6 p—fons of Coal per linear fiz along strike for coal K3 in segnent - Cumulative ratio, total overburden to total of coals KJ, KJ 4 K4 9-7631 アターピオンペリ イグマートイ 10-8682 - IS \$35#}+K3 + K4 * 8 g

FIGURE 3 WORKING DIAGRAM FOR CALCULATION OF MINING RATIOS ALONG SEC, C-C'

TABLE 2
WORKSHEET FOR THE DETERMINATION OF COMBINED MINING RATIOS ALONG CROSS SECTION C-C'


CROSS SECTION C-C'										
coal k3	318	308	295	282	83	190	274	275	277	277
coal k1						12	90	82	74	70
coals k1+k3	318	308	295	282	83	202	364	357	351	347
incr.overburden	606	923	1464	2175	795	2515	5151	6547	7631	8682
cum. coal k1+k3	318	626	921	1203	1286	1488	1852	2209	2560	2907
cum, overburden	606	1529	2993	5168	5963	8478	13630	20176	27807	36489
incr.ratio	1.90	3.00	4.97	7.72	9,58	12.45	14.15	18.34	21.71	25.01
cum. ratio k1 +k3	1.90	2.44	3.25	4.30	4.64	5.70	7.36	9.14	10.86	12.55
coal k4	111	107	104	101	30	67	92	87	81	76
k3-k4 interburden	951	992	1023	1056	306	763	1092	1091	1077	1137
k3-k4 interburden cum. coal k4	951 111	9 9 2 218	1023 322	1056 423	30 6 453	763 520	1092 612	1091 699	1077 780	1137 856
cum. coal k4	111	218	322	423	453	520	612	699	780	856
cum. coal k4 cum.interburden	111 951	218 1943	322 2966	423 4022	453 4328	520 5091	612 6183	699 7274	780 8351	856 9488
cum. coal k4 cum.interburden incr. ratio	111 951 8.57	218 1943 9.27	322 2966 9.84	423 4022 10.46	453 4328 10.20	520 5091 11.39	612 6183 11.87	699 7274 12.54	780 8351 13.30	856 9488 14.96
cum. coal k4 cum.interburden incr. ratio	111 951 8.57	218 1943 9.27	322 2966 9.84	423 4022 10.46	453 4328 10.20	520 5091 11.39	612 6183 11.87	699 7274 12.54	780 8351 13.30	856 9488 14.96
cum. coal k4 cum.interburden incr. ratio cum. ratio	111 951 8.57 8.57	218 1943 9.27 8.91	322 2966 9.84 9.21	423 4022 10.46 9.51	453 4328 10.20 9.55	520 5091 11.39 9.79	612 6183 11.87 10.10	699 7274 12.54 10.41	780 8351 13.30 10.71	856 9488 14.96 11.08


Coal: Tons per lin. foot along strike @25 cu.ft./ton, 0.9 rec. factor for k3 and k4, 0.75 rec. factor for k1

Overburden: Cubic yards per linear foot along strike

Figure 5. Geological Section B-B'

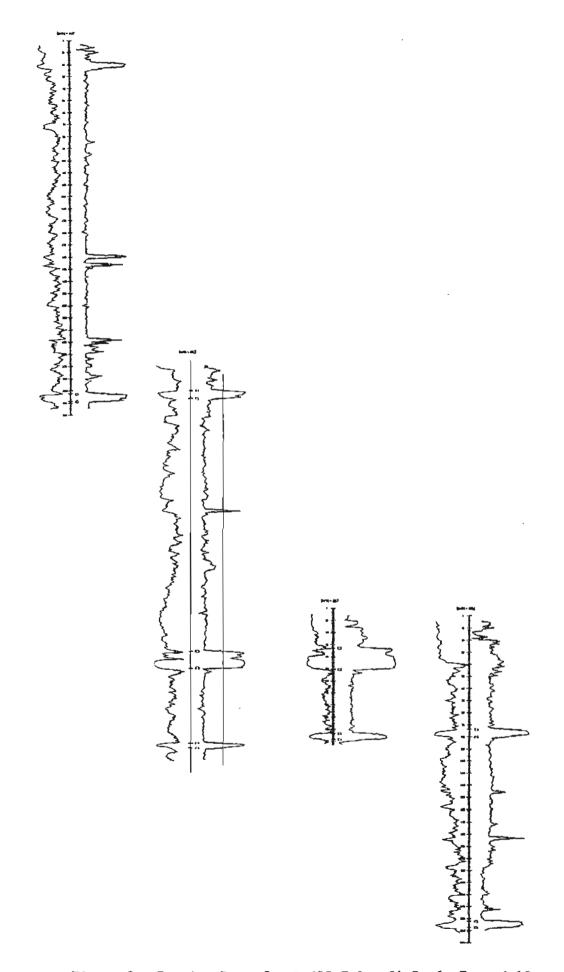


Figure 9. Density Logs for Drill Holes 91-3, 6, 7, and 12.

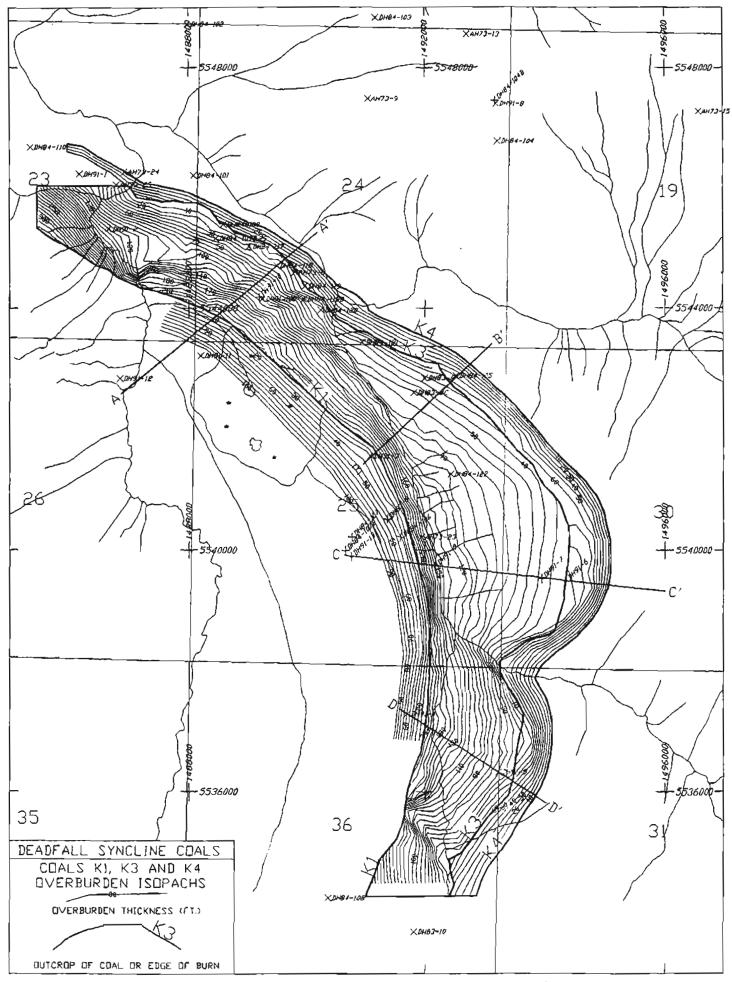
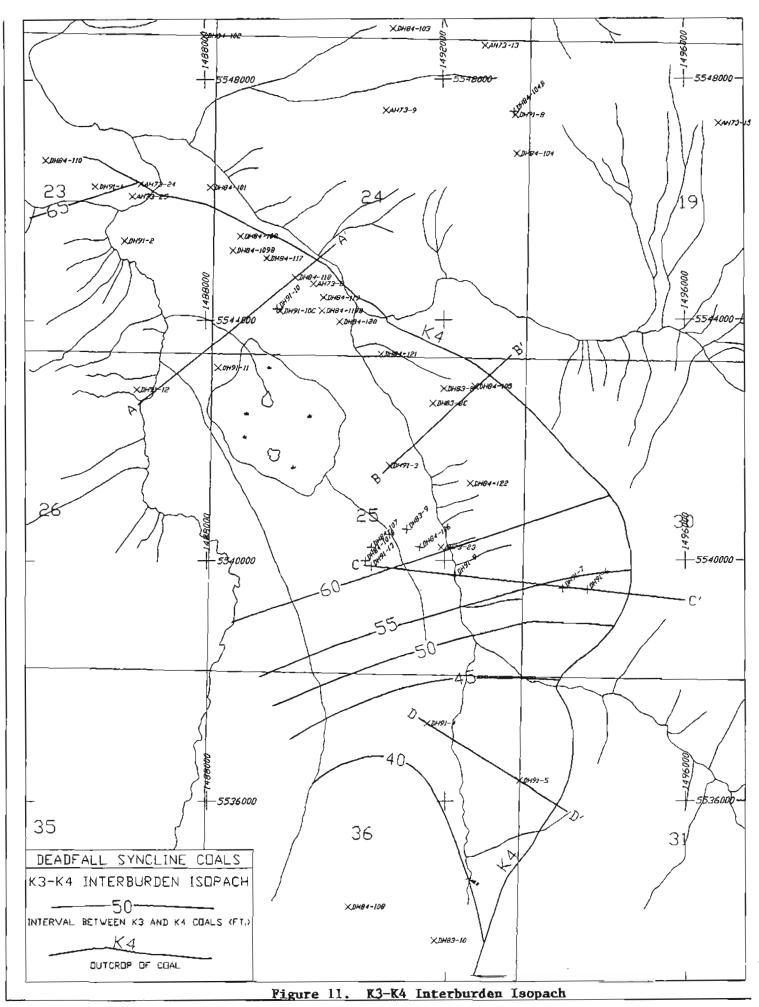
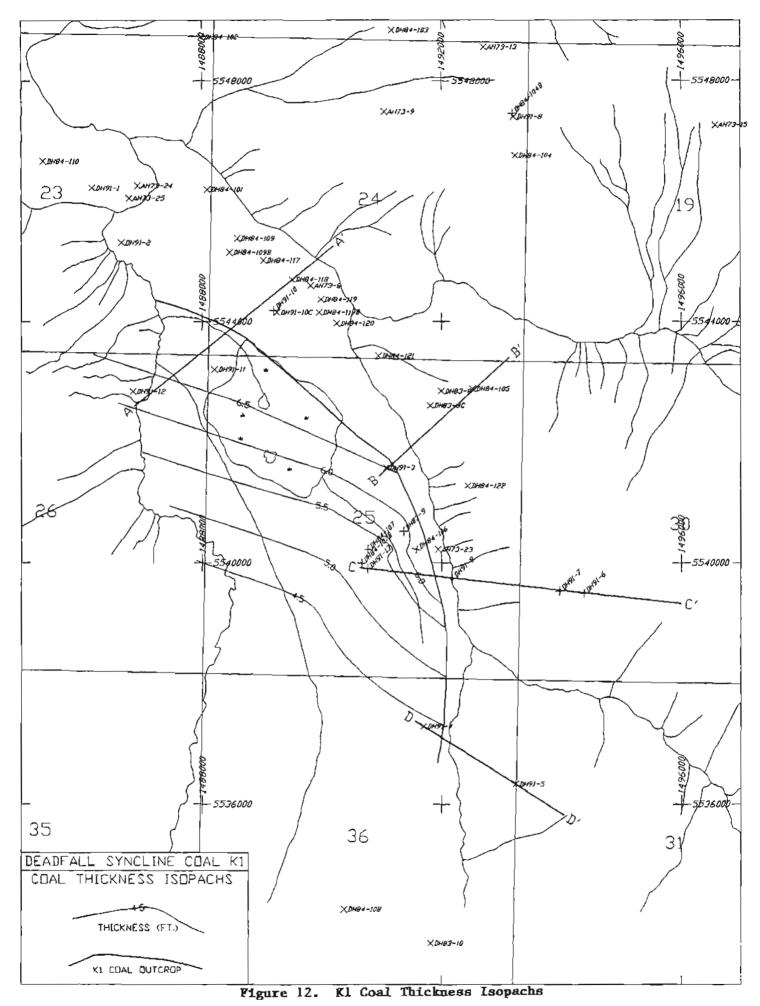




Figure 10. Coals K1, K3 and K4 Overburden Isopachs

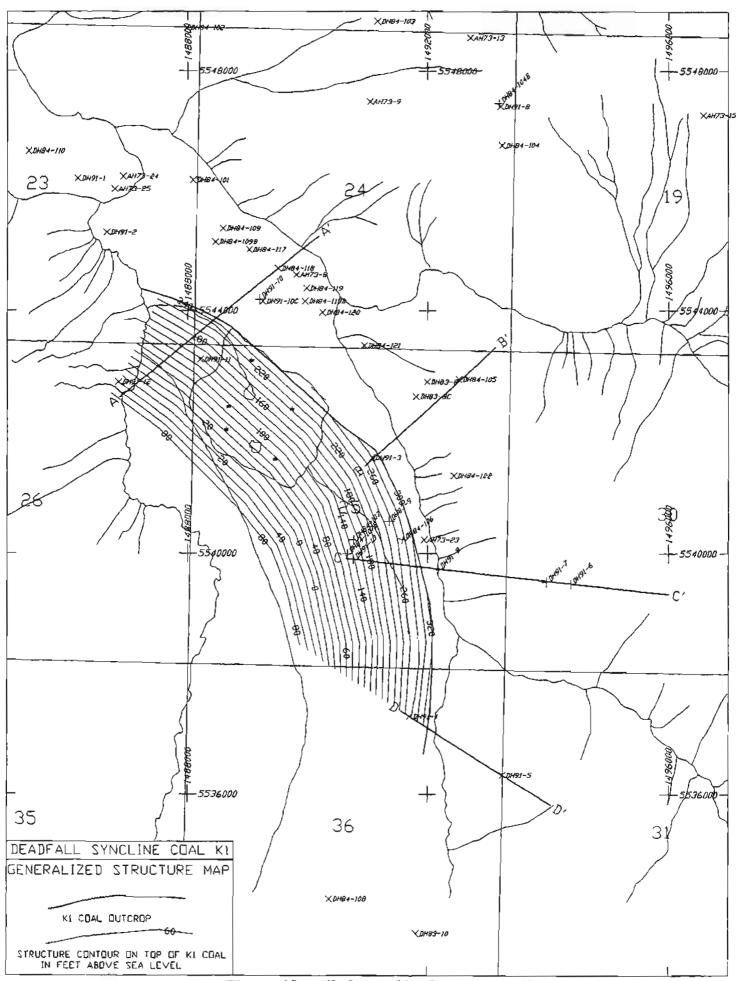


Figure 13. Kl Generalized Structure Map

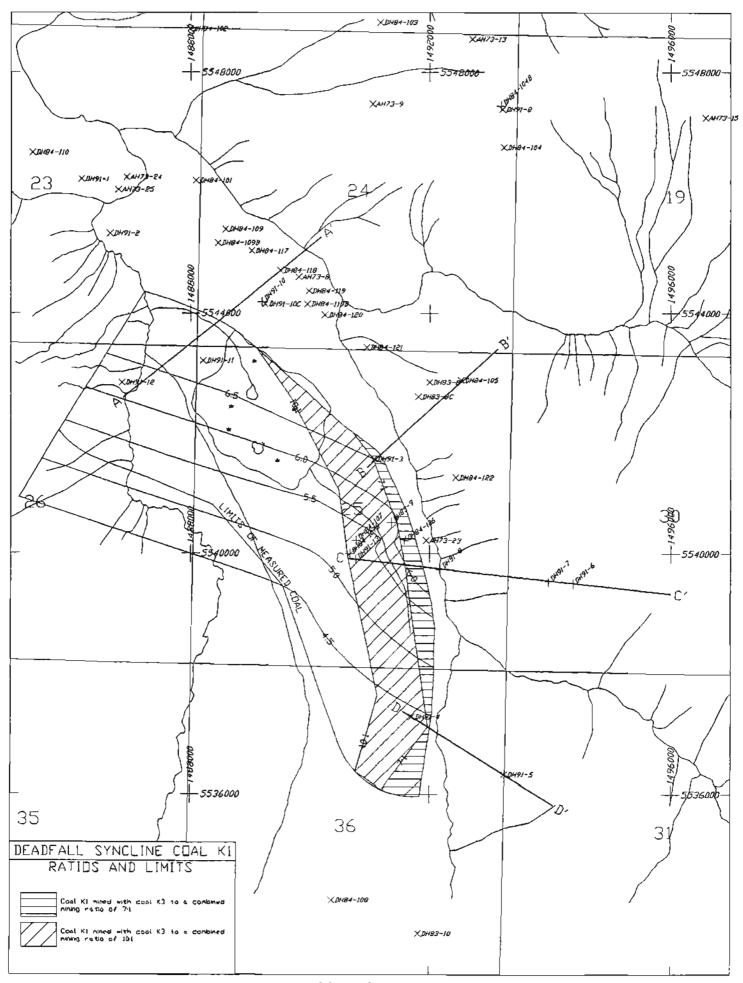


Figure 14. Kl Ratios and Limits

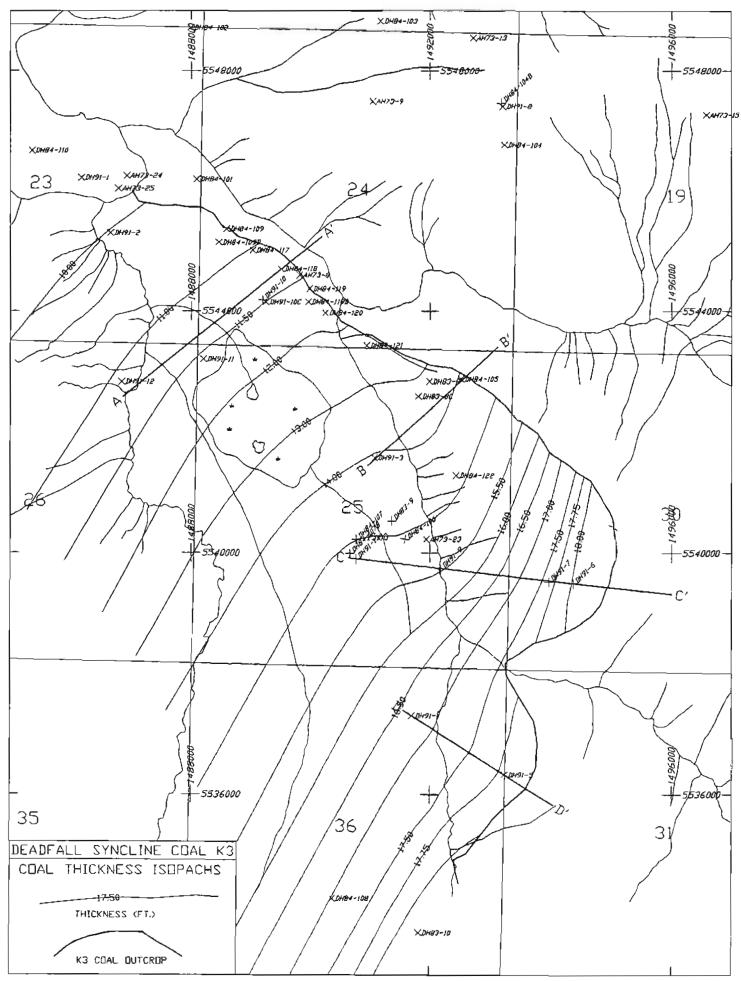
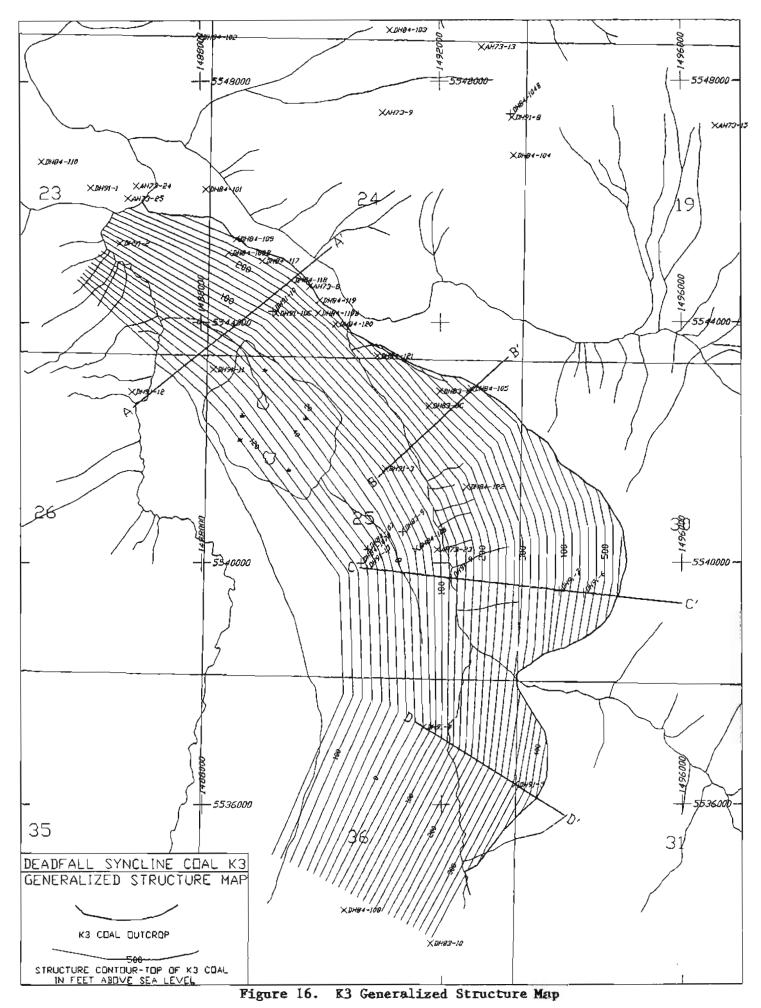



Figure 15. K3 Coal Thickness Isopachs

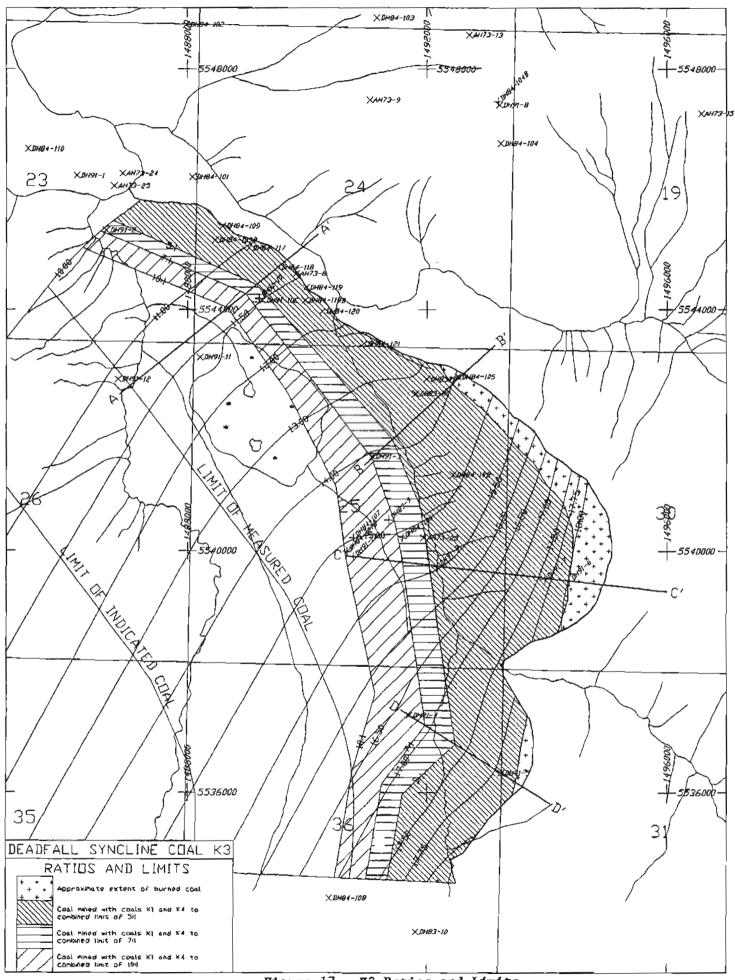


Figure 17. K3 Ratios and Limits

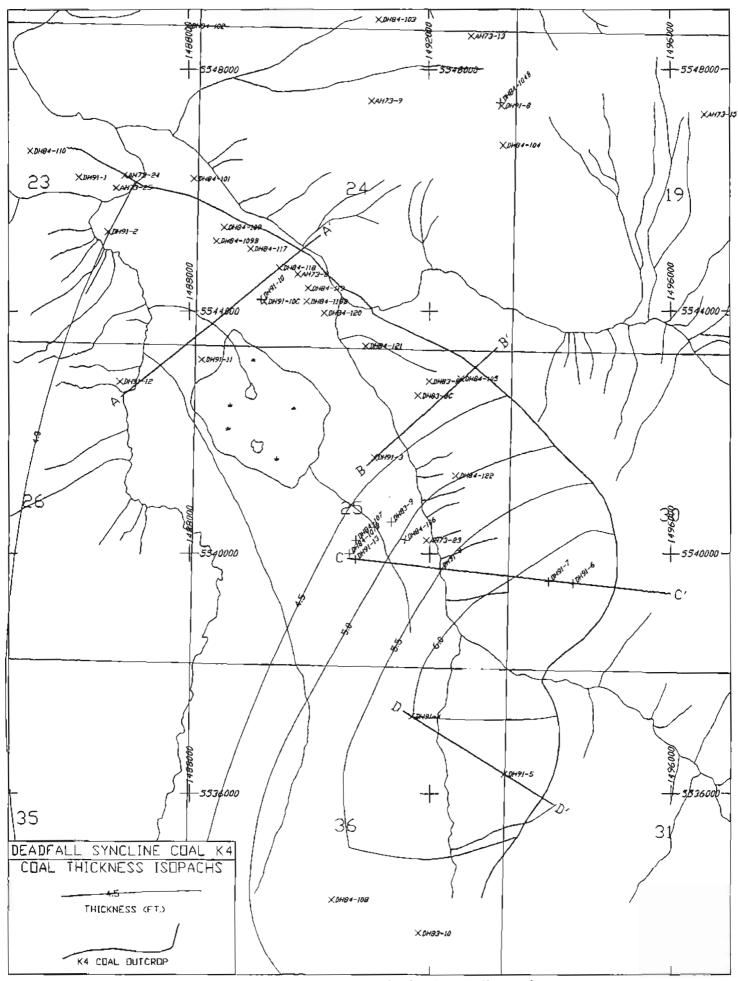


Figure 18. K4 Coal Thickness Isopachs

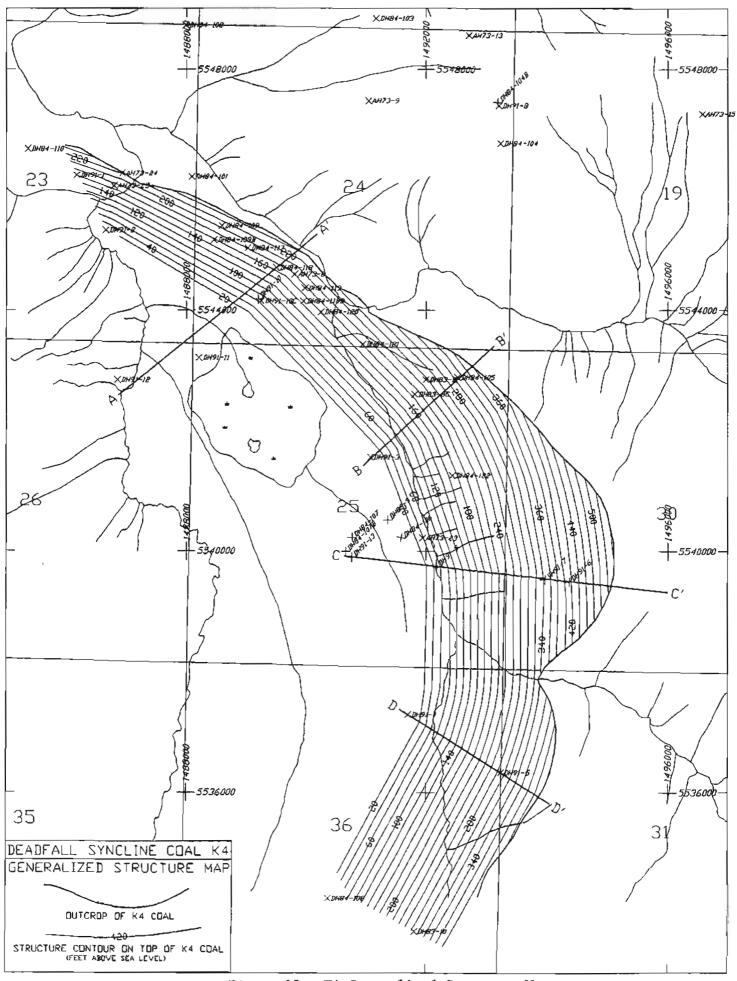


Figure 19. K4 Generalized Structure Map

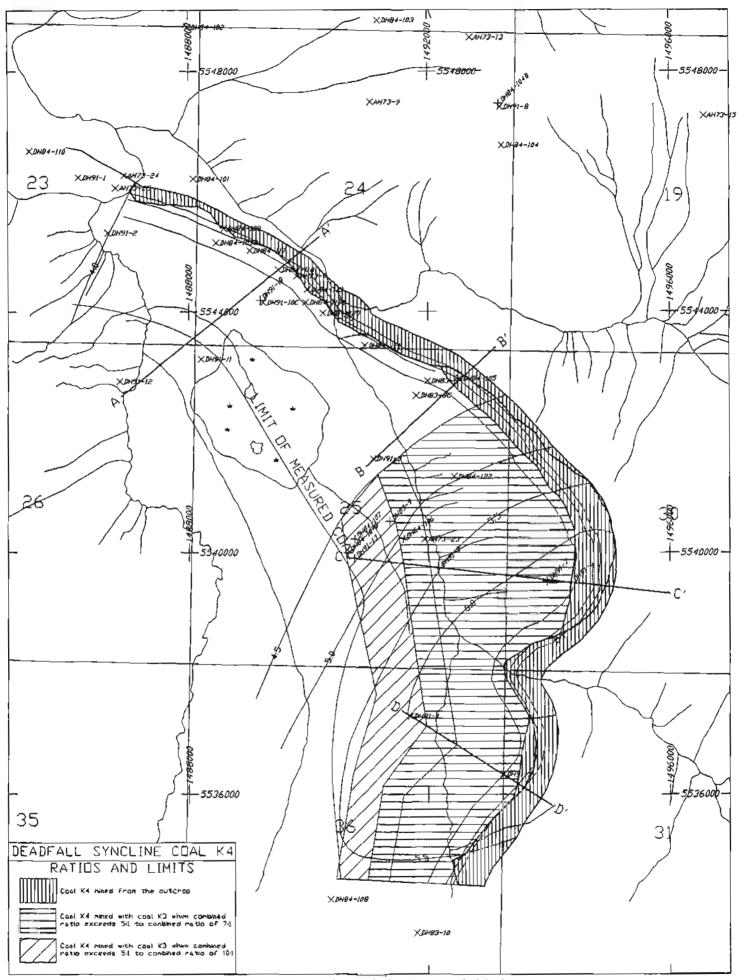


Figure 20. K4 Ratios and Limits

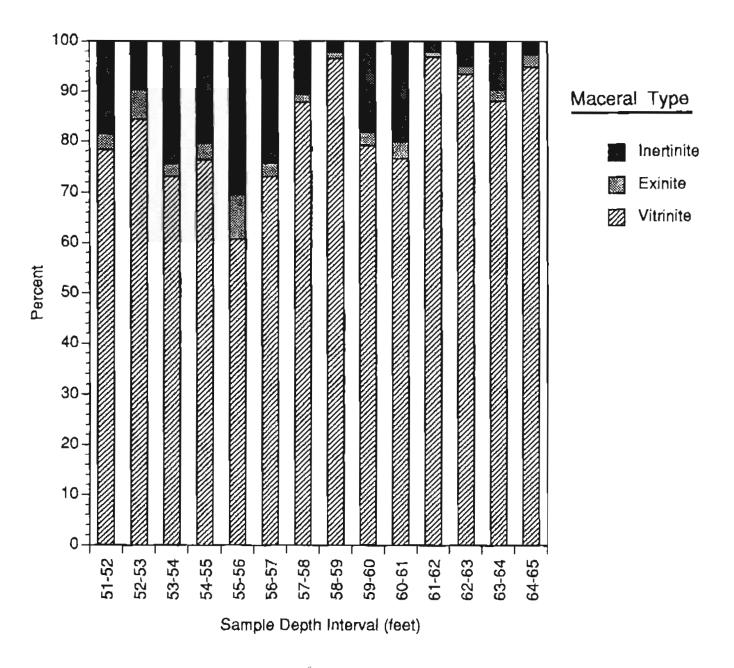


Figure 21 Distribution of maceral groups as a function of depth, Drill hole 83-8C, K3 seam.

hole 83-8c, K3 seam

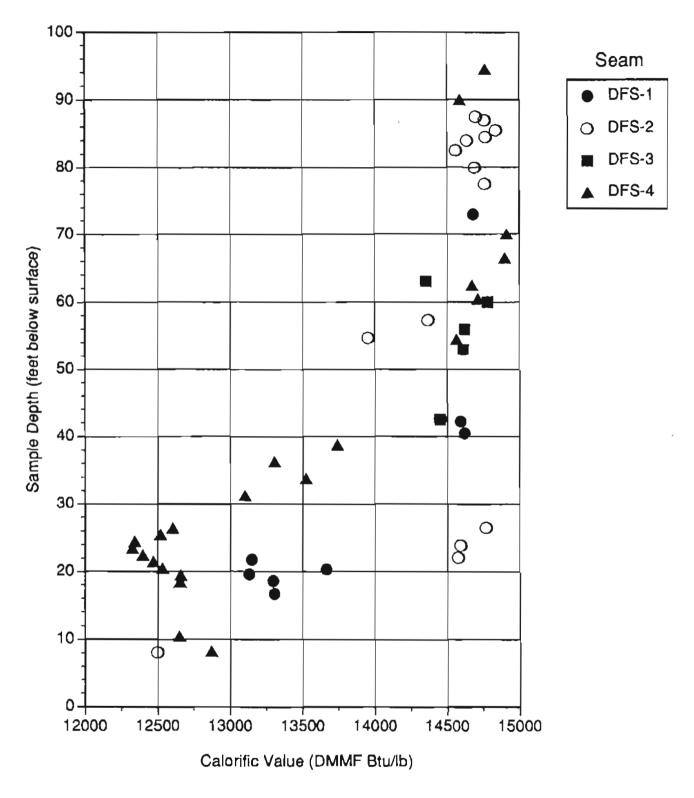


Figure 23 Calorific value versus sample depth for DFS group coal.

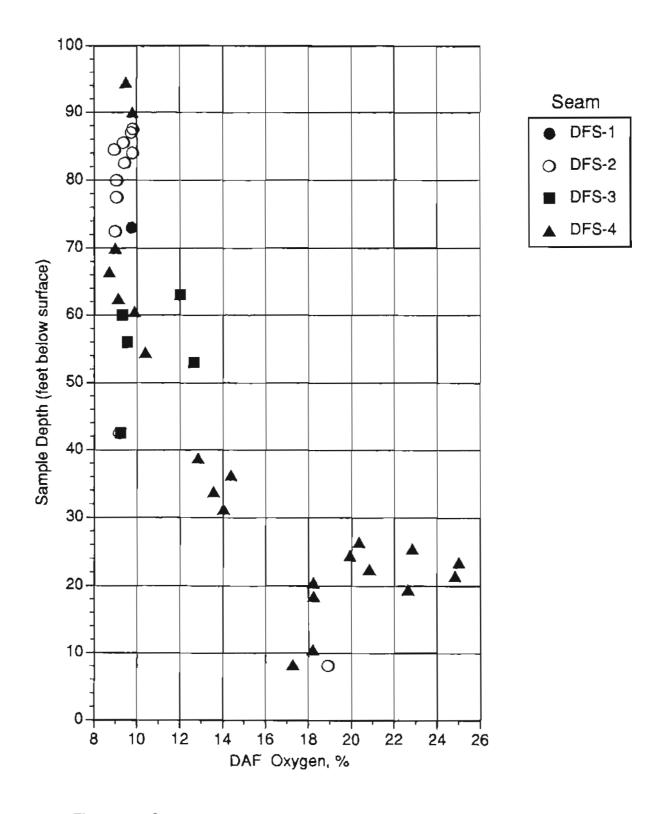


Figure 24 Oxygen content versus sample depth for DFS group coal.

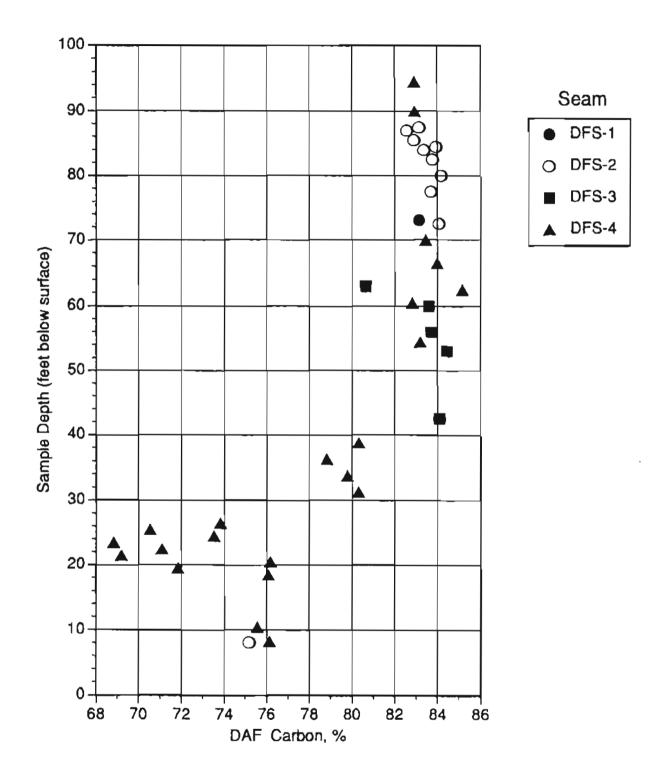


Figure 25 Carbon content versus sample depth for DFS group coal.

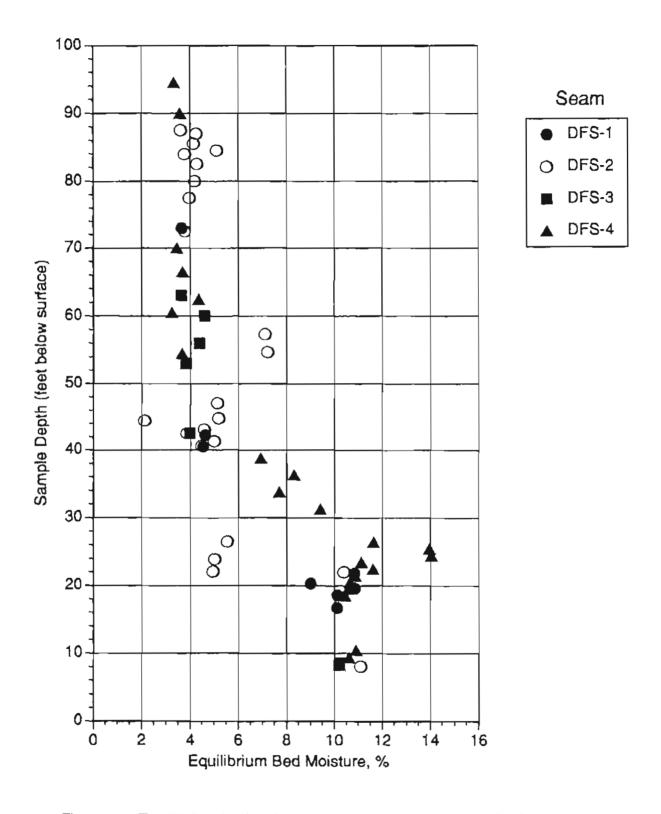


Figure 26 Equilibrium bed moisture versus sample depth for DFS group coal.

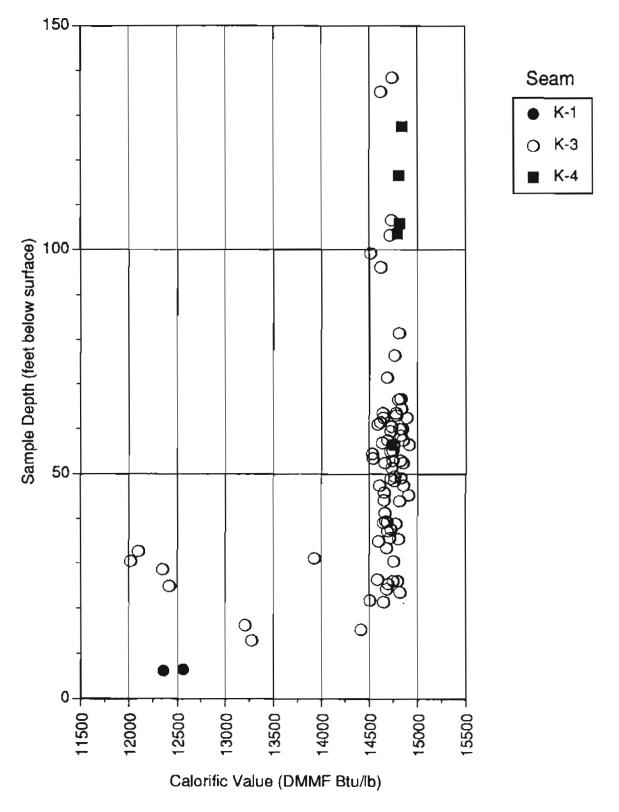


Figure 27 Calorific value versus sample depth for K group coal.

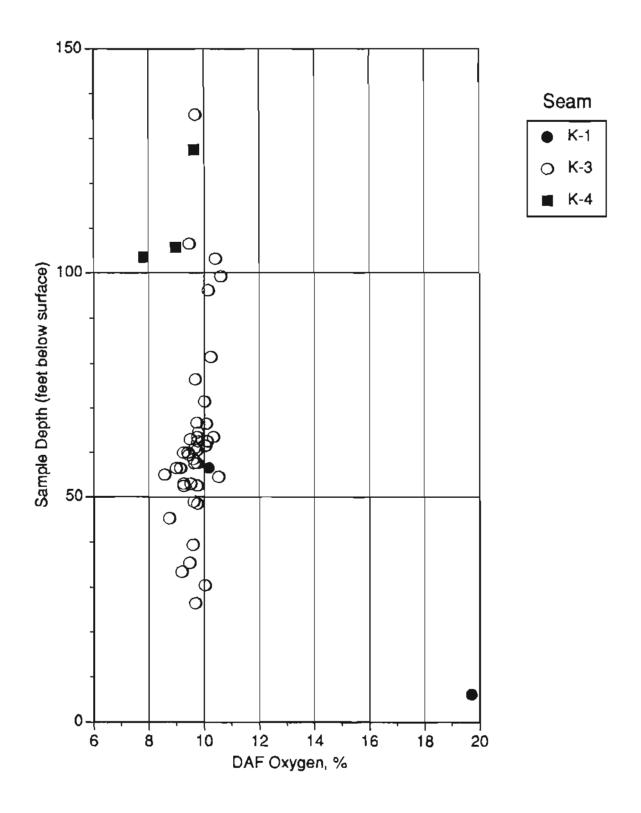


Figure 28 Oxygen content versus sample depth for K group coal.

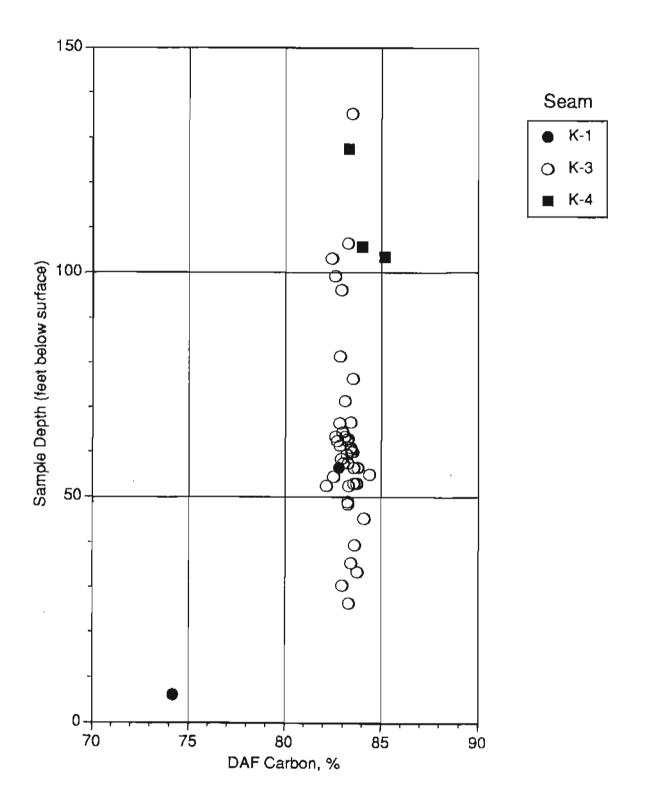


Figure 29 Carbon content versus sample depth for K group coal.

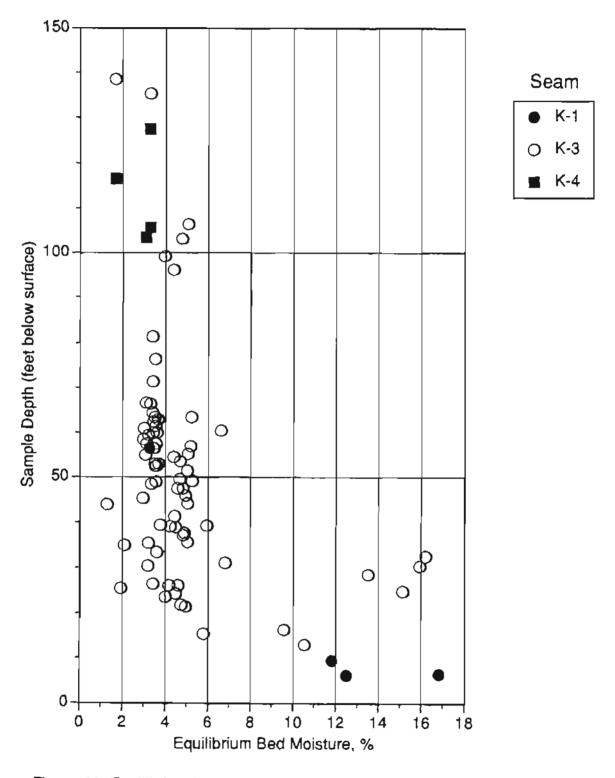


Figure 30 Equilibrium bed moisture versus sample depth for K group coal.

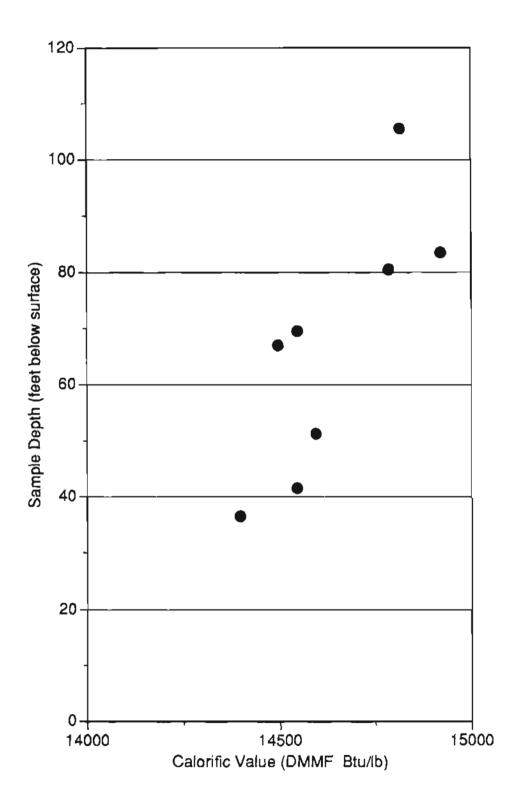


Figure 31 Calorific value versus sample depth for uncorrelated coal.

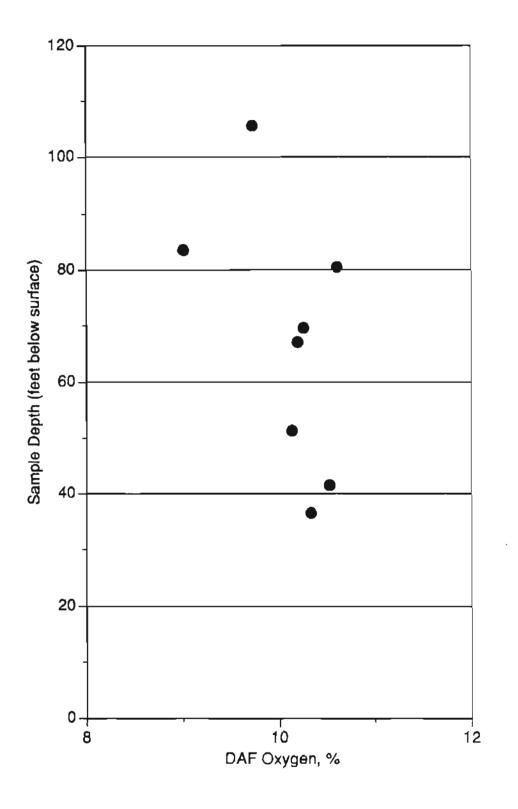


Figure 32 Oxygen content versus sample depth for uncorrelated coal.

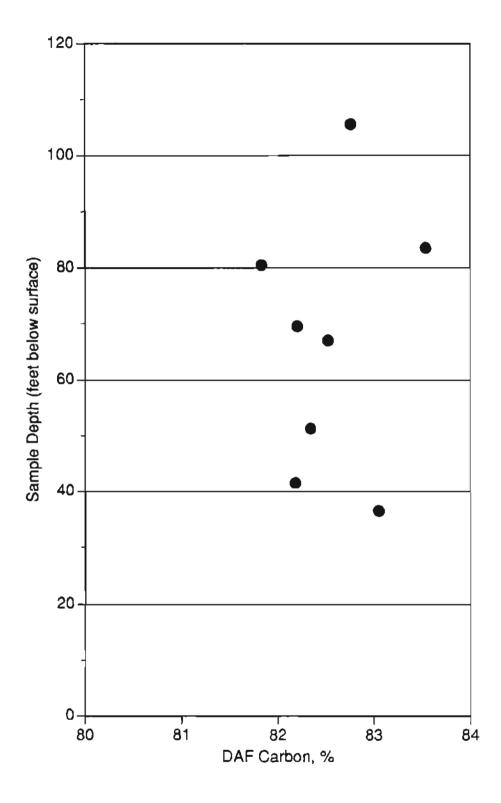


Figure 33 Carbon content versus sample depth for uncorrelated coal.

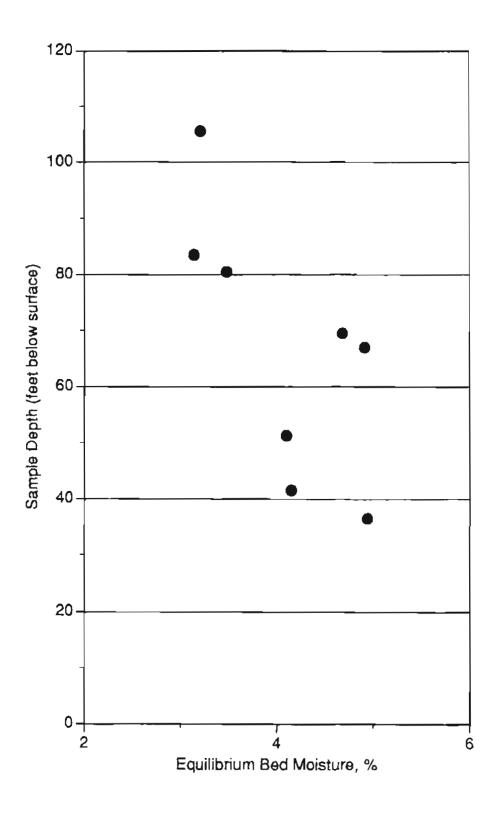


Figure 34 Equilibrium bed moisture versus sample depth for uncorrelated coal.

Table 3. Reflectance Rank Distribution of Vitrinites in Drill Hole 83-8C, K3 Seam

Depth Interval/Feet	V4	V ₅	V6	V ₇	V8	V9	Mean Maximum Reflectance in oil R _{max} , %
51-52		9	75	16			.65
52-53		7	61	32			.68
53-54		5	58	35	2		.68
54-55		32	67	1			.61
55-56		9	56	35			.67
56-57			7	93			.73
57-58			62	38			.69
58-59			85	15			.67
59-60			54	46			.69
60-61			59	41			.69
61-62			56	44			.69
62-63			50	39	11		.70
63-64			7	75	18		.75
64-65			43	57			.71

Table 4. Distribution of Maceral Groups in K3 Seam, Drill Hole no. 83-8C.

Depth Interval (feet)	Vitrinite	Exinite	Inertinite
51-52	78.3	3.0	18.7
52-53	84.3	5.9	9.8
53-54	73.1	2.5	24.4
54-55	76.3	3.2	20.5
55-56	60.7	8.8	30.0
56-57	73.0	2.6	24.4
57-58	87.8	1.5	10.7
58-59	96.5	1.3	2.2
59-60	79.1	2.6	18.3
60-61	76.5	3.3	20.2
61-62	96.9	1.0	2.1
62-63	93.4	1.7	4.9
63-64	88.0	2.3	9.7
64-65	94.9	2.5	2.6

Seam Average

Table 5. Summary of Samples and Coal Analyses from the Deadfall Syncline

			Ra	w Coa	l Anal	ysis								ဥ
					jon			1.5 S	.G.	1.6	S.G.			Cta
		~			Sit	Lity .	F	oats	Sinks	Fl	oats) Š
Seam No.	Drill Hole	Sample Type	Proximate	Ultimate	Ash Composition	Ash Fusibility	Proximate	Ulúmate	Proximate	Proximate	Ultimate	HGI	FSI	Vitrinite Reflectance
DFS-1 DFS-1 DFS-1 DFS-1 DFS-1 DFS-1 DFS-1 DFS-2 DFS-2 DFS-2 DFS-2 DFS-2 DFS-2 DFS-2	83-6 84-110c 84-112 84-112c 84-112f 84-116 84-116b 86 PIT #3 73-6 83-1 83-5 83-5c 84-113b 84-113c	T C C C C C C SS A T T C C C	X X X X X X X X X X X X	x x	х	x	x x	xx	X	x	x			
DFS-2 DFS-2 DFS-2 DFS-3 DFS-3 DFS-3 DFS-3 DFS-3 DFS-4 DFS-4	84-114 84-115 91-2 86 PTT #2 AH73-5 83-4 83-4c 91-1 AH73-4 AH73-10	C C C SS A T C C C T	X X X X X X X	X X X	x x	x x	X	x	x	х	x	x		
DFS-4 DFS-4 DFS-4 DFS-4 DFS-4	AH73-27 83-2 83-3 87-PIT 91-PIT	T T SS SS	X X X X	X	x	x				X X	XX			•
K1 K1 K1 K1 K1 K1 K1 K2 K2 K2 K3 K3	AH73-23 83-9 84-106 84-107 DH91-3 DH91-4 DH91-11 DH91-12 DH91-13 DH91-3 DH91-4 DH91-9 AH73-8 AH73-25 83-8	C T C SS T T T T T T T T T T T T T T T T	X X X X X X X X X X X X X X X X X X X	X						x	x			
	-		~							43	^			

A: Auger Sample
T: Drill Cuttings
C; BW Core
SS: Surface Sample

Table 5. Summary of Samples and Coal Analyses from the Deadfall Syncline (continued)

Seam No. Drill Hole Seam No. Seam No. Seam No. Drill Hole Seam No. Seam N	3
K3 8c C X	ctar
K3 8c C X	5
K3 83-10 T X <th>Vitrinite Reflectance</th>	Vitrinite Reflectance
K3 83-11 T X <td></td>	
K3 83-11c C X </td <td></td>	
K3 83-8c C X X K3 84-108 C X X K3 84-109b C X X K3 84-117 C X X K3 84-119b C X X X K3 84-120 C X X X X K3 84-121 C X X X X K3 B4-122 C X X X X K3 DH91-1 T X X X X X K3 DH91-2 T X <t< td=""><td></td></t<>	
K3 84-108 C X K3 84-109b C X K3 84-117 C X K3 84-118b C X K3 84-119b C X K3 84-120 C X K3 84-121 C X K3 9H91-1 T X K3 DH91-2 T X K3 DH91-3 T X K3 DH91-4 T X K3 DH91-5 C X X X K3 DH91-7 T X X X X K3 DH91-9 T X X X X X K3 DH91-10 T X X X X X X K3 DH91-10c C X X X X X X K3 DH91-13 T X X X X X X K4 D	
K3 84-109b C X K3 84-117 C X K3 84-118 C X K3 84-12b C X K3 84-121 C X K3 84-122 C X X K3 DH91-1 T X K3 DH91-2 T X K3 DH91-3 T X K3 DH91-4 T X K3 DH91-5 C X X X K3 DH91-7 T X X X X K3 DH91-7 T X X X X X X K3 DH91-10 T X <td< td=""><td>X</td></td<>	X
K3 84-117 C X K3 84-118 C X K3 84-120 C X K3 84-121 C X K3 84-122 C X X K3 DH91-1 T X K3 DH91-2 T X K3 DH91-3 T X K3 DH91-4 T X K3 DH91-5 C X X X K3 DH91-7 T X X X X K3 DH91-7 T X X X X X X K3 DH91-9 T X	
K3 84-118 C X K3 84-119b C X K3 84-120 C X K3 84-121 C X X K3 DH91-1 T X X K3 DH91-2 T X X X K3 DH91-3 T X X X X K3 DH91-5 C X <	
K3 84-119b C X K3 84-120 C X K3 84-121 C X K3 84-122 C X X K3 DH91-1 T X K3 DH91-2 T X K3 DH91-3 T X K3 DH91-5 C X X X K3 DH91-7 C X X X X K3 DH91-7 T X X X X X X K3 DH91-9 T X	
K3 84-120 C X K3 84-121 C X X X K3 84-122 C X X X X K3 DH91-1 T X X X X X K3 DH91-2 T X <td></td>	
K3 84-121 C X </td <td></td>	
K3 84-122 C X X X X K3 DH91-1 T X X X X K3 DH91-3 T X X X X K3 DH91-4 T X X X X X X K3 DH91-7 C X <td></td>	
K3 DH91-1 T X K3 DH91-2 T X K3 DH91-3 T X K3 DH91-4 T X K3 DH91-5 C X X K3 DH91-7 T X X K3 DH91-9 T X K3 DH91-10 T X K3 DH91-10 T X K3 DH91-11 T X K3 DH91-13 T X K4 AH73-24 C X X K4 DH91-1 T X K4 DH91-2 T X K4 DH91-3 T X K4 DH91-5 T X K4 DH91-5 T X K4 DH91-6 T X	
K3 DH91-2 T X K3 DH91-3 T X K3 DH91-4 T X K3 DH91-5 C X X X K3 DH91-7 T X X X X K3 DH91-9 T X X X X X X K3 DH91-10c C X X X X X X X K3 DH91-11 T X	
K3 DH91-3 T X K3 DH91-4 T X K3 DH91-5 C X X X K3 DH91-7 T X X X X K3 DH91-9 T X X X X X X K3 DH91-10 T X	
K3 DH91-4 T X </td <td></td>	
K3 DH91-5 C X </td <td></td>	
K3 DH91-7 C X </td <td></td>	
K3 DH91-7 T X K3 DH91-9 T X K3 DH91-10 T X K3 DH91-10c C X X K3 DH91-11 T X K3 DH91-13 T X K4 AH73-24 C X X K4 BH91-1 T X K4 DH91-1 T X K4 DH91-2 T X K4 DH91-3 T X K4 DH91-4 T X K4 DH91-5 T X K4 DH91-6 T X	
K3 DH91-9 T X K3 DH91-10c C X X X K3 DH91-10c C X X X K3 DH91-11 T X K3 DH91-13 T X K4 AH73-24 C X X K4 BH91-1 T X K4 DH91-1 T X K4 DH91-2 T X K4 DH91-3 T X K4 DH91-4 T X K4 DH91-5 T X K4 DH91-6 T X	
K3 DH91-10 T X <	
K3 DH91-10c C X X X X K3 DH91-11 T X X X K3 DH91-13 T X X K4 AH73-24 C X X K4 B3-10 T X K4 DH91-1 T X K4 DH91-2 T X K4 DH91-3 T X K4 DH91-4 T X K4 DH91-5 T X K4 DH91-6 T X	
K3 DH91-11 T X K3 DH91-13 T X K4 AH73-24 C X X K4 B3-10 T X X K4 DH91-1 T X K4 DH91-2 T X K4 DH91-3 T X K4 DH91-4 T X K4 DH91-5 T X K4 DH91-6 T X	x
K3 DH91-13 T X K4 AH73-24 C X X K4 83-10 T X X K4 DH91-1 T X K4 DH91-2 T X K4 DH91-3 T X K4 DH91-4 T X K4 DH91-5 T X K4 DH91-6 T X	\ ^
K4 AH73-24 C X X K4 83-10 T X K4 DH91-1 T X K4 DH91-2 T X K4 DH91-3 T X K4 DH91-4 T X K4 DH91-5 T X K4 DH91-6 T X	}
K4 83-10 T X K4 DH91-1 T X K4 DH91-2 T X K4 DH91-3 T X K4 DH91-4 T X K4 DH91-5 T X K4 DH91-6 T X	
K4 DH91-1 T X K4 DH91-2 T X K4 DH91-3 T X K4 DH91-4 T X K4 DH91-5 T X K4 DH91-6 T X	
K4 DH91-2 T X K4 DH91-3 T X K4 DH91-4 T X K4 DH91-5 T X K4 DH91-6 T X	,
K4 DH91-3 T X K4 DH91-4 T X K4 DH91-5 T X K4 DH91-6 T X	ļ
K4 DH91-5 T X K4 DH91-6 T X	
K4 DH91-6 T X	
K4 DH91-7 C X X X X X X	
K4 DH91-9 T X	
K4 DH91-10 T X	
K5 DH91-6 T X	
20 AH73-2 A X	
20 AH73-3 A X	
21 AH73-1 C X X	
21 83-12 T X X X	
21 83-13c C X X X X X	
U.C. 83-16 T X	

A: Auger Sample
T: Drill Cuttings
C: BW Core
SS: Surface Sample

Table 5. Summary of Samples and Coal Analyses from the Deadfall Syncline (continued)

			Ra	w Coa	l Analy	ysis			1					
				ition	<u>خ</u>	777	1.5 S.	G. Sinks	1.6	S.G.			lectan	
			ate	<u> </u>	soduuc	sibili		ets e						te Ref
Seam No.	Drill Hole	Sample Type	Proximate	Ultimate	Ash Composition	Ash Fusibility	Proximate	Ultimate	Proximate	Proximate	Ultimate	HGI	FSI	Vitrinite Reflectance
U.C. U.C. U.C. U.C. U.C. U.C. U.C. U.C.	83-17 83-17C 83-19 83-20 83-21 83-22 DH91-8 DH91-12 DH91-13	TCTTTTT	X X X X X X X X X X X X X X X X X X X				X	X	X	X X X X	X X X X			

A: Auger Sample
T: Drill Cuttings

C: BW Core

Table 6 Average Proximate Analyses, DFS-1 Seam

		Weathered Co	al	U	nweathered C	oal
	n	range	mean	n_	range	mean
Equilibrium moisture, %	5	9.85-20.21	12.32	2	3.65-4.75	4.20
Ash, %	5	6.88-16.29	10.19	2	9.50-15.13	11.92
Volatile Matter, %	5	23.39-29.12	27.42	2	30.94-31.24	31.09
Fixed Carbon, %	5	40.42-54.77	50.04	2	49,98-54.81	52.79
Heating Value, Btu/lb	5	7835-11074	10029	2	11736-12393	12122
Total Sulfur, %	5	0.14-0.29	0.25	2	0.28-0.31	0.30
				l		

Table 7
Average Ash Composition, DFS-1 Seam

Constituent	Wt. Percent
Silicon dioxide	52.6
Aluminum oxide	33.4
Iron oxide	3.36
Magnesium oxide	1.62
Calcium oxide	3.92
Sodium oxide	1.64
Potassium oxide	1.46
Titanium oxide	1.37
Manganese oxide	0.03
Phosphorous oxide	N.A.
Barium Oxide	N.A.
Strontium Oxide	N.A.
Sulfur trioxide	0.85

N.A. - Not Analyzed.

Table 8
Average Proximate Analyses, DFS-2 Seam

	*	Weathered Co	al	l U	nweathered C	oal
	n	range	mean	n	range	mean
Equilibrium moisture, %	2	10.64-11.10	10.87	6	3.71-5.24	4.68
Ash, %	2	8.67-9.90	9.31	6	7.81-18-65	12.13
Volatile Matter, %	2	29.50-29.63	29.56	6	29.21-52.93	31.15
Fixed Carbon, %	2	49.50-51.05	50.25	6	48.33-57.10	52.44
Heating Value, Btu/lb	2	9776-10451	10098	6	10361-12679	11845
Total Sulfur, %	2	0.20-0.27	0.23	5	0.22-0.28	0.23
Hardgrove Grindability Index						53

Table 9 Average Ash Composition, DFS-2 Seam

Constituent	Wt. Percent
Silicon dioxide	29.6
Aluminum oxide	23.7
Iron oxide	12.1
Magnesium oxide	6.88
Calcium oxide	14.1
Sodium oxide	4.16
Potassium oxide	1.14
Titanium oxide	1.18
Manganese oxide	0.08
Phosphorous oxide	1.76
Barium Oxide	1.41
Strontium Oxide	0.28
Sulfur trioxide	4.51

Table 10 Average Proximate Analysis, DFS-3 Seam

	<u>y</u>	Veathered C	oal	U	nweathered C	oal
	n	range	<u>mean</u>	n	range	mean
Equilibrium moisture, %	1		10.20	2	3.99-4.25	4.12
Ash, %			13.4	2	7.67-8.12	7.90
Volatile Matter, %			26.70	2	31.39-32.44	31.59
Fixed Carbon, %			49.70	2	30.22-56.50	56.40
Heating Value, Btu/lb			9651	2	12665-12606	12635
Total Sulfur, %			0.20	1		0.17
Hardgrove Grindability Index						47

Table 11 Average Ash Composition, DFS-3 Seam

Constituent	Wt. Percent
Silicon dioxide	31.0
Aluminum oxide	22.9
Iron oxide	16.2
Magnesium oxide	6.72
Calcium oxide	10.3
Sodium oxide	1.54
Potassium oxide	1.17
Titanium oxide	0.79
Manganese oxide	0.14
Phosphorous oxide	1.59
Barium Oxide	0.82
Strontium Oxide	0.22
Sulfur trioxide	4.23

Table 12 Average Proximate Analyses, DFS-4 Seam

		Weathered Co	al	U	nweathered C	oal
		range	mean	n	range	mean
Equilibrium moisture, %	5	8.09-11.64	10.26	2	3.51-3.84	3.68
Ash, %	5	3.08-7.75	4.85	2	8.07-9.43	8.78
Volatile Matter, %	5	27.94-31.00	30.43	2	30.51-32,56	31.48
Fixed Carbon, %	5	53.20-57.67	58.03	2	55.88-56.22	56.06
Heating Value, Btu/lb	5	10669-11814	10948	2	12629-12884	12750
Total Sulfur, %	4	0.11-0.21	0.18	2	0.28-0.32	0.30
				l		

Table 13
Average Ash Composition, DFS-4 Seam

Constituent	Wt. Percent
Silicon dioxide	25.0
Aluminum oxide	31.6
Iron oxide	4.83
Magnesium oxide	5.94
Calcium oxide	11.1
Sodium oxide	4.06
Potassium oxide	0.52
Titanium oxide	0.97
Manganese oxide	0.01
Phosphorous oxide	2.45
Barium Oxide	1.76
Strontium Oxide	0.55
Sulfur trioxide	8.90

Table 14 Average Proximate Analyses, K1 Seam

	Weathered Coal		Unweathered Coal		oal	
		range	mean	_ n	range ¹	mean
Equilibrium moisture, %	1		12.50	1		3.25
Ash, %	1		10.40	7	17.46-31.14	20.66
Volatile Matter, %	1		30.20	7	26.78-32.08	29.37
Fixed Carbon, %	1		46.90	7	44.26-51.60	46.71
Heating Value, Btu/lb	1		9424	7	7919-11824	10679
Total Sulfur, %	1		0.20	7	0.22-0.33	0.24

¹ Moisture free basis

Table 15 Average Proximate Analyses, K2 Seam

	Weathered Coal		Unweathered Coa		oal	
	n	range	mean	ກ	range ¹	mean
Equilibrium moisture, %						3.25^{2}
Ash. %				3	13.68-17.49	16.59
Volatile Matter, %				3	27.30-33.08	30.77
Fixed Carbon, %				3	46.65-53.23	49.39
Heating Value, Btu/lb				3	10629-12628	11684
Total Sulfur, %				3	0.29-0.45	0.33

¹ Moisture free basis ² Estimated

Table 16 Average Proximate Analyses, K3 Seam

	Weathered Coal		U	Unweathered Coal		
	n	range	mean	_n_	range ¹	mean
Equilibrium moisture, %	2	11.20-14.84	13.02	16	3.01-5.12	4.19
Ash, %	2	7.21-10.50	8.86	24	6.23-15.43	9.06
Volatile Matter, %	2	29.12-29.30	29.21	24	31.00-35.93	32.81
Fixed Carbon, %	2	48.83-49.00	4891	24	51.26-58.49	53.85
Heating Value, Btu/lb	2	9548-9643	9596	24	12227-13777	12602
Total Sulfur, %	1	0.20	0.20	22	0.19-0.32	0.19
Pree Swelling Index				11	1-5	2.4
Hardgrove Grindability Inex				11	52-61	58
ASTM Rank				High '	Volatile A Bitur	ninous
Vitrinite Reflectance						0.74

¹ Moisture free basis

Table 17 Average Ash Composition, K3 Seam

Constituent	Wt. Percent
Silicon dioxide	29.8
Aluminum oxide	31.4
Iron oxide	4.15
Magnesium oxide	6.14
Calcium oxide	11.5
Sodium oxide	6.81
Potassium oxide	0.61
Titanium oxide .	0.56
Manganese oxide	0.01
Phosphorous oxide	0.83
Barium Oxide	1.39
Strontium Oxide	0.26
Sulfur trioxide	4.93

Table 18 Average Proximate Analyses, K4 Seam

	Weathered Coal		Unweathered Coal		oal	
	n	range	mean	n	range ¹	mean
Equilibrium moistare, %	1		12.10	2		3.24
Ash, %	1		10.50	2	4.35-28.76	15.18
Volatile Matter, %	1		29.60	2	28.47-35.98	31.49
Fixed Carbon, %	1		47.80	2	42.77-59.91	49.99
Heating Value, Btu/lb	1		9480	2	10265-14114	11967
Total Sulfur, %	1		0.20	2	0.21-0.30	0.25
Free Swelling Index				2	2.5-3.0	2.75
Hard Grove Grindability Index				2	53-55	54

¹ Moisture free basis

Table 19 Average Ash Composition, K4 Seam

Constituent	Wt. Percent
Silicon dioxide	24.3
Iron oxide	5.23
Magnesium oxide	7.79
Calcium oxide	12.9
Sodium oxide	7.55
Potassium oxide	0.53
Titanium oxíde	0.92
Manganese oxide	0.01
Phosphorous oxide	0.94
Barium Oxide	1.58
Strontium Oxide	0.30
Sulfur trioxide	7.41

Table 20 Average Proximate Analyses, K5 Seam

	<u></u>	Weathered Coal		Unweathered Coal		Coal
	n_	range	mean	n	range	mean1
Equilibrium moisture, %						
Ash, %						36.86
Volatile Matter, %						25.86
Fixed Carbon, %						37.28
Heating Value, Btu/lb						8993
Total Sulfur, %						0.24

¹ Moisture free basis

Table 21 Weight Distribution of Float and Sink Products from 1983 Drill Samples

Drill Hole Number	Seam No.	Depth Interval (feet)	Weight, % Floats	Weight, % Sinks
83-6 1.6 S.G.	DFS-1	71-75	83.48	16.52
Seam Average		71-75	83.48	16.52
5C 1.5 S.G.	DFS-2	77-78 79-81 81-84 84-85	86.68 90.37 90.02 91.94	13.32 9.63 9.98 8.06
Seam Average		77-85	89.92	10.08
83-1 1.6 S.G.	DFS-2	70-75	80.00	20.00
83-5 1.6 S .G.	DFS-2	82-86 86-89	85.03 78.41	14.97 21.59
Seam Average		82-89	82.19	17.81
4C 1.5 S.G.	DFS-3	52-54 56-58 58-62 62-64	88.35 94.10 89.31 73.75	11.65 5.90 10.69 26.25
Seam Average		52-64	86.96	13.04
83-4 1.6 S.G.	DFS-3	51-58 58-63	84.04 76.61	15.96 23.39
Seam Average		51-63	80.94	19.06
83-2 1.6 S.G.	DFS-4	61-64 64-69 69-71	86.49 93.83 84.12	13.51 6.17 15.88
Seam Average		61-71	89.69	10.31

Table 21
Weight Distribution of Float and Sink Products from 1983 Drill Samples (continued)

Drill Hole Number	Seam No.	Depth Interval (fect)	Weight, % Floats	Weight, % Sinks
83-3 1.6 S.G.	DFS-4	87-93 93-96	90.56 89.46	9.44 10.54
Seam Average		87-96	90.19	9.81
83-9 1.6 S.G.	K 1	55-58	77.68	22.32
8c 1.5 S.G.	К3	51-55 55-58 58-62 62-65	85.71 79.69 97.49 92.64	14.29 20.31 2.51 7.36
Seam Average		51-62	89.27	10.73
11c 1.5 S.G.	K 3	47-51 51-55 55-58 58-62 62-64	85.52 73.51 95.98 98.28 95.55	4.48 6.49 4.02 1.72 4.45
Seam Average		51-64	88.72	11.28
83-8 1.6 S.G.	K 3	25-28 28-33 33-38	83.46 89.76 91.72	16.54 10.24 8.28
Seam Average		25-38	89.06	10.94
83-10 1.6 S.G.	К3	69-74 74-79 79-84	80.90 94.06 94.31	19.10 5.94 5.69
Seam Average		69-84	89.76	10.24

Table 21
Weight Distribution of Float and Sink Products from 1983 Drill Samples (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Weight, % Floats	Weight, % Sinks
83-11 1.6 S.G.	К3	47-50 50-55 55-60 60-65 65-68	73.29 79.50 82.47 89.72 83.70	26.71 20.50 17.53 10.28 16.30
Seam Average		47-68	82.35	17.65
83-10 1.6 S.G.	K4	125-130	85.41	14.59
13c 1.5 S.G.	21	32-35 35-38 38-41 41-42	57.82 67.28 29.11 88.35	42.18 32.72 70.89 11.65
Seam Average		32-42	55.10	44.90
83-12 1.6 S.G.	21	33-40	48.10	51.90
17c 1.5 S.G.	Un- correlated	66-68 68-71	91.03 92.26	8.97 7.74
Seam Average		66-71	91.77	8.23
83-16 1.6 S.G.	Un- correlated	96-99 100-102 102-104	72.37 70.77 82.94	37.63 29.23 17.06
Seam Average		96-104	74.93	25.07
83-17 1.6 S.G.	Un- correlated	62-67 67-72	77.83 75.36	22.17 24.64
Seam Average		62-72	76.60	23.41

Table 21
Weight Distribution of Float and Sink Products from 1983 Drill Samples (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Weight, % Floats	Weight, % Sinks
83-20 1.6 S.G.	Un- correlated	4-6.3	43.82	56.18
83-21 1.6 S.G.	Un- correlated	78-83 83-84	91.77 93.08	8.23 6.92
Seam Average		78-84	91.99	8.01
83-22 1.6 S.G.	Un- correlated	50-52.5	68.97	31.03

Table 22
Proximate and Ultimate Analyses of DFS-1 Seam, Deadfall Syncline

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture,	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur. %	С,%	н,%	N,%	0,%	FSI	HGI
83-6 Drill Cuttings	DFS-1	71-75	4 2 3	3.65	15.13 15.71	31.24 32.42 38.46	49.98 51.88 61.54	11736 12181 14450	0.28 0.30 0.35						
83-6 1.6 SG Float	DFS-1	71-75	4 2 3	3.65	5.57 5.78	34.53 35.84 38.04	56.25 58.38 61.96	13263 13765 14610	0.30 0.32 0.34	75.47 78.32 83.13	5.21 4.98 5.29	1.36 1.42 1.50	12.09 9.18 9.74	1.5	
84-110c Core	DFS-1	10.9-12.7	1 2 3	10.59	13.50 15.10	27.38 30.63 36.07	48.53 54.28 63.93	9768 10925 12868	0.32 0.35 0.42						
		12.7-15.2	1 2 3	10.55	4.38 4.90	30.22 33.78 35.52	54.85 61.32 64.48	11183 12502 13146	0.19 0.21 0.22						
		15.2-17.4	1 2 3	9.59	8.83 9.76	29.33 32.44 35.95	52.25 57.80 64.05	10679 11811 13089	0.19 0.21 0.23						
Seam Average		10.9-17.4	1 2 3	10.22	8.47 9.43	29.12 32.43 35.81	52.19 58.13 64.19	10617 11826 13057	0.23 0.26 0.28						
84-110c Core	Un- correlated	25.5-26.6	1 2 3	4.60	8.00 8.38	34.22 35.87 39.15	53.18 55.75 60.85	12796 13413 14640	0.25 0.26 0.29						
		26.6-27.6	1 2 3	7.20	41.20 44.40	19.49 21.00 37.77	32.11 34.60 62.23	7095 7646 13751	0.27 0.30 0.53						
84-112 Core	DFS-1	17.1-18.9	1 2 3	10.46	11.67 13.03	27.28 30.47 35.04	50.59 56.50 64.96	9991 11158 12830	0.36 0.40 0.46						

^{*1 -} As Received Moisture 2 - Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 22 Proximate and Ultimate Analyses of DFS-1 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	O,%	FSI	HGI
		18.9-20.9	1	10.85	5.03	30.34	53.78	10993	0.26						
			2		5.64	34.03	60.32	12331	0.29						
			3			36.07	63.93	13068	0.31						
		20.9-22.6		10.84	7.82	28.42	52.92	10612	0.25						
			2		8.77	31.88	59.35	11902	0.28						
			3			34.94	65.06	13046	0.31						
Seam Average		17.1-22.6		10.70	8.33	28.53	52.34	10507	0.29						
			2		9.33	31.95	58.72	11766	0.32						
			3			35.24	64.76	12976	0.36						
84-112c	DFS-1	1.0-3.0	1	15.22	22.17	21.53	41.07	7624	0.14						
	?		2		26.15	25.40	48.45	8993	0.16						
			3			34.39	65.61	12178	0.22						
		3.0-5.0	1	24.35	10.94	24.84	39.86	8010	0.14						
			2		14.47	32.84	52.69	10588	0.19						
			3			38.40	61.60	12379	0.22						
Seam Average		1-5	1	20.21	16.03	23.34	40.42	7835	0.14						
•			2		20.09	29.25	50.66	9820	0.18						
			3		20.09	29.25	50.66	9820	0.18						
84-112F	DFS-1	4.0-5.0	ì	18.52	43.82	14.46	23.19	4026	0.10						
Core	?		2		53.79	17.75	28.46	4941	0.12						
			3			38.41	61.59	10691	0.26						
		5.0-5.5	1	18.16	17.26	22.17	42.41	7954	0.14						
			2		21.10	27.09	51.82	9719	0.17						
			3			34.33	65.67	12317	0.22						
Seam Average		4-5.5	1	18.33	29.58	18.59	33.50	6132	0.12						
-			2		36.22	22.76	41.02	7508	0.15						
			3			35.69	64.31	11772	0.23						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free

^{4 -} Equilibrium Moisture 5 - As Analyzed

Table 22
Proximate and Ultimate Analyses of DFS-1 Seam, Deadfail Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, But/lb	Sulfur, %	C,%	H,%	N,%	0,%	FSI	HGI
•		9.0-9.5	1	17.26	41.71	18.54	22.49	4502	0.15						
			2		50.42	22.41	27.18	5441	0.18						
			3			45.19	54.81	10974	0.37						
84-116	DFS-1	15.8-17.6		10.11	8.65	28.04	53.20	10716	0.32						
Core			2		9.62	31.19	59.19	11922	0.35						
			3			34.51	65.49	13191	0.39						
		17.6-19.6		10.11	6.63	28.65	54.62	10999	0.22						
			2		7.37	31.87	60.76	12236	0.24						
			3			34.40	65.60	13210	0.26						
		19.6-20.9		9.00	4.46	29.00	57.54	11776	0.29						
			2		4.90	31.87	63.23	12941	0.32						
			3			33.51	66.49	13608	0.34						
Seam Average		15.8-20.9		9.85	6.88	28.5	54.77	11074	0.27						
			2		7.63	31.61	60.75	12284	0.30						
			3			34.23	65.77	13299	0.32						
84-116b	DFS-1	37.8-39.6		5.05	13.95	28.12	52.87	11603	0.37						
Core			2		14.70	29.62	55.69	12220	0.39						
			3			34.72	65.28	14325	0.45						
		39.6-41.3	1	4.54	4.48	33.58	57.40	13250	0.26						
			2		4.69	35.18	60.13	13880	0.27						
			3			36.91	63.09	14564	0.29						
		41.3-43.1	1	4.63	9.81	31.28	54.28	12371	0.31						
			2		10.29	32.80	56.92	12972	0.32						
			3			36.56	63.44	14459	0.36						
Seam Average		37.8-43.1	1	4.75	9.50	30.94	54.81	12393	0.31						
			2		9.97	32.48	57.54	13011	0.33						
			3			36.08	63.92	14452	0.36						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 22 Proximate and Ultimate Analyses of DFS-1 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	O,%	FSI	HGI
86 Test Pit #3	DFS-I	4-6	4	10.72	16.29	25.73	47.26	9255	0.24	55.53	4.37	0.99	22.58		

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free

^{4 -} Equilibrium Moisture 5 - As Analyzed

Table 23
Proximate and Ultimate Analyses of DFS-2 Seam, Deadfall Syncline

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Bm/lb	Sulfur, %	C,%	H,%	N,%	0,%	FSI	HGI
AH 73-6	DFS-2	4.2-12.0	4 2 3	11.10	9.90 11.14	29.50 33.18 37.34	49.50 55.68 62.66	9776 10997 12375	0.20 0.22 0.25	59.40 66.82 75.19	4.60 3.78 4.25	1.10 1.24 1.39	24.80 16.81 18.92		
83-1 Drill Cuttings	DFS-2	70-75	4 2 3	3.80	18.65 19.39	29.21 30.37 37.67	48.33 50.24 62.33	11082 11520 14291	0.23 0.24 0.30						
83-1 1.6 SG Float	DFS-2	70-75	4 2 3	3.80	4.69 4.88	31.40 32.64 34.31	60.11 62.48 65.69	11168 11609 12205	0.23 0.24 0.26	76.94 79.98 84.08	5.22 4.98 5.23	1.32 1.37 1.44	11.60 8.55 8.99		
83-5 Drill Cuttings	DFS-2	82-86	4 2 3	3.78	11.87 12.33	30.41 31.60 36.04	53.95 56.07 63.96	12021 12493 14250	0.28 0.29 0.33						
		86-89	4 2 3	3.62	17.37 18.02	30.67 31.82 38.82	48.34 50.15 61.18	11346 11772 1 43 60	0.25 0.25 0.31						
Seam Average Raw Coal		82-89	4 2 3	3.71	14.22 14.77	30.51 31.69 37.18	51.54 53.53 62.82	11732 12184 14295	0.26 0.27 0.32						
83-5 1.6 SG Float	DFS-2	82-86	4 2 3	3.78	5.98 6.21	31.21 32.44 34.59	59.03 61.35 65.41	13144 13661 14566	0.29 0.31 0.33	75.25 78.20 83.38	5.01 4.76 5.08	1.27 1.32 1.41	12.20 9.19 9.80	1.5	
		86-89	4 2 3	3.62	3.73 3.87	33.66 34.93 36.33	58.99 61.20 63.67	13580 140 9 0 14657	0.27 0.29 0.30	77.04 79.93 83.15	5.27 5.05 5.25	1.37 1.43 1.48	12.31 9.44 9.82	1.5	
Seam Average 1.6 SG Float		82-89	4 2 3	3.71	5.02 5.21	32.27 33.51 35.35	59.02 61.29 64.65	13331 13845 14606	0.29 0.30 0.32	76.01 78.94 83.28	5.11 4.88 5.15	1.32 1.37 1.45	12.25 9.30 9.81	1.5	

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moîsture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 23
Proximate and Ultimate Analyses of DFS-2 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Mauer, %	Fixed Carbon, %	Heating Value, Btu/ib	Sulfur, %	C,%	н.%	N,%	0,%	FSI	HGI
83-5c Core Raw Coal Calculated		77-78	4 2 3	3.98	11.70 12.18	31.47 32.77 37.31	52.86 55.05 62.69	12257 12765 14535							
		79-81	4 2 3	4.20	8.25 8.61	28.74 30.00 32.83	58.81 61.39 67.17	12702 13259 14508							
		81-84	4 2 3	4.30	7.50 7.84	31.24 32.64 35.42	56.96 59.52 64.58	12625 13192 14314							
		84-85	4 2 3	5.12	3.97 4.18	32.64 34.40 35.90	58.28 61.43 64.10	13206 13919 14526							
Raw Coal Seam Average		77-85	4 2 3	4.34	7.81 8.16	30.76 32.16 35.02	57.10 59.69 64.98	12679 13254 14432							
83-5 Core 1.5 SG Float	DFS-2	77-78	4 2 3	3.98	4.14 4.31	33.54 34.93 36.50	58.35 60.76 63.50	13516 14076 14709	0.56 0.58 0.61	76.91 80.10 83.70	5.26 5.01 5.24	1.28 1.34 1.40	11.85 8.66 9.05	1.5	
		79-81	4 2 3	4.20	5.72 5.97	29.29 30.57 32.51	60.79 63.46 67.49	13171 13748 14621	0.33 0.35 0.37	75.83 79.16 84.18	4.94 4.67 4.96	1.29 1.35 1.43	11.88 8.51 9.05	1.5	
		81-84	4 2 3	4.30	4.72 4.93	31.27 32.68 34.37	59.71 62.39 65.63	13196 13789 14504	0.28 0.30 0.31	76.22 79.65 83.78	5.08 4.81 5.06	1.31 1.37 1.44	12.38 8.95 9.42	2.0	
		84-85	4 2 3	5.12	2.29 2.42	32.86 34.63 35.49	59.73 62.96 64.51	13650 14387 14743	0.30 0.32 0.32	77.72 81.91 83.94	5.49 5.18 5.31	1.36 1.44 1.47	12.83 8.73 8.95	2.0	

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free

^{4 -} Equilibrium Moisture 5 - As Analyzed

Table 23
Proximate and Ultimate Analyses of DFS-2 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	0,%	FSI	HGI
Seam Average 1.5 SG Float		77-85	4 2 3	4.34	4.57 4.78	31.25 32.67 34.31	59.84 62.56 65.69	13301 13904 14602	0.33 0.35 0.37	76.43 79.90 83.91	5.13 4.85 5.09	1.31 1.37 1.44	12.22 8.75 9.19	2.0	
83-5c 1.5 SG Sink	DFS-2	77-78	2 3		63.45	18.72 51.22	17.83 48.78	4219 11543	0.18 0.50						
		79-81	2 3		33.52	24.59 36.99	41.89 63.01	8659 13025	0.26 0.40						
		81-84	2 3		34.04	32.30 48.97	33.66 51.03	7819 11854	0.18 0.28						
		84-85	2		24.17	31.75 41.87	44.08 58.13	8615 11360	0.12 0.16						
Seam Average		77-85	2		38.31	27.58 44.71	34.11 55.29	7461 12094							
84-113b Core	DFS-2	21.5-22.7	1 2 3	4.96	6.61 6.95	30.59 32.19 34.59	57.84 60.86 65.41	12814 13483 14491	0.29 0.31 0.33					1.5	
		22.7-25.0	1 2 3	5.03	7.66 8.06	31.59 33.27 36.18	55.72 58.67 63.82	12654 13325 14493	0.22 0.23 0.25					1.5	
		25.6-27.5	1 2 3	5.54	3.09 3.27	32.57 34.48 35.65	58.80 62.24 64.35	13457 14246 14728	0.23 0.24 0.25					1.5	

^{*1 -} As Received Moisture 2 - Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 23
Proximate and Ultimate Analyses of DFS-2 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture,	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	н,%	N,%	0,%	FSI	HGI
		27.5-28.5	1 2 3	5.48	32.86 34.76	26.25 27.77 42.57	35.41 37.46 57.43	8768 9277 14220	0.27 0.28 0.44					0	
Seam Average		21.5-28.5		5.24	10.18 10.74	30.84 32.55 36.46	53.74 56.71 63.54	12294 12974 14535	0.24 0.25 0.28						
84-113c Core	DFS-2	52.2-53.7	1 2 3	7.10	10.20 10.98	29.97 32.26 36.24	52.73 56.76 63.76	11751 12649 14209	0.29 0.32 0.35					0	
		53.7-55.7	1 2 3	7.22	7.94 8.56	28.97 31.22 34.14	55.87 60.22 65.86	11769 12685 13873	0.22 0.24 0.26					0	
		55.7-56.3	1 2 3	1.92	51.18 52.18	37.92 38.66 80.85	8.98 9.16 19.15	2468 2517 5262	0.06 0.06 0.13					0	
		56.3-58.2	1 2 3	7.12	2.94 3.16	31.62 34.05 35.16	58.32 62.79 64.84	12892 13880 14334	0.26 0.28 0.28					0	
		58.2-59.0	1 2 3	5.37	42.51 44.93	22.87 24.17 43.89	29.24 30.90 56.11	7254 7665 13918	0.24 0.25 0.46					0	
		59.0-60.2	l 2 3	5.27	66.23 69.91	14.01 14.79 49.16	14.49 15.30 50.84	2981 3147 10461	0.14 0.15 0.51					0	
		60.2-60.4	1 2 3	4.97	21.83 22.98	28.31 29.79 38.68	44.89 47.23 61.32	10654 11211 14556	0.32 0.34 0.44					0	

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 23
Proximate and Ultimate Analyses of DFS-2 Seam, Deadfall Syncline (continued)

Dritt Hote Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	O,%	FSI	HGI
Seam Average		52.2-58.2	1 2 3	6.21	15.01 16.00	31.51 33.60 40.00	47.27 50.40 60.00	10361 11047 13152	0.22 0.23 0.28					0	
84-114	DFS-2	19.0-25.0	1 2 3	10.40	11.44 12.77	25.30 28.24 32.37	52.86 59.00 67.63	10940 12210 13997	0.22 0.24 0.28						
84-115 Core	DFS-2	40.4-40.7	1 2 3	4.48	5.47 5.73	34.01 35.60 37.77	56.04 58.67 62.23	13256 13878 14721	0.35 0.37 0.39					1.0	
		40.7-41.8	1 2 3	5.01	79.53 83.73	9.22 9.71 59.65	6.24 6.57 40.35	1655 1742 10704	0.10 0.10 0.62					0	
		41.8-44.3	1 2 3	4.60	12.57 13.18	29.80 31.23 35.98	53.03 55.58 64.02	11900 12474 14367	0.25 0.26 0.30					0	
		44.3-44.5	1 2 3	2.13	37.79 38.61	46.82 47.84 77.92	13.27 13.55 22.08	5611 5734 9339	0.11 0.11 0.18					0	
		44.5-46.0	1 2 3	5.18	6.17 6.51	32.63 34.41 36.81	56.02 59.08 63.19	12811 13511 14452	0.22 0.23 0.25					1.5	
		46.0-48.1	1 2 3	5.15	3.47 3.65	33.58 35.40 36.75	57.80 60.94 63.25	13315 14038 14570	0.23 0.24 0.25					1.5	
Seam Average		41.8-48.1	1 2 3	4.77	9.52 10.00	32.58 34.21 38.01	52.93 55.58 61.99	12189 12800 14221	0.23 0.24 0.27						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 23
Proximate and Ultimate Analyses of DFS-2 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Mauer, %	Fixed Carbon, %	Heating Value, But/lb	Sulfur, %	С,%	Н,%	N,%	0,%	FSI	- HGI
91-2	DFS-2	39-46	4 2 3	3.88	8.75 9.10	31.00 32.25 35.48	56.37 58.65 64.52	12525 13031 14335	0.21 0.22 0.25	73.48 76.44 84.09	4.76 4.50 4.95	1.31 1.37 1.50	11.46 8.34 9.18		53
86 Test Pit #2 Bulk Sample	DFS-2	11.5-18.6	4 2 3	10.64	8.67 9.70	29.63 33.16 36.72	51.06 57.14 63.28	10451 11695 12952	0.27 0.30 0.33	64.09 71.72 79.43	4.57 3.78 4.19	1.15 1.29 1.43	21.25 13.21 14.63		

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 24
Proximate and Ultimate Analyses of DFS-3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	0,%	FSI	HGI
АН 73-5	DFS-3	4.3-12.8	4 2 3	10.20	13.40 14.92	26.70 29.73 34.95	49.70 55.35 65.05	9651 10747 12632	0.20 0.22 0.26	58.50 65.14 76.57	4.30 3.52 4.13	1.10 1.22 1.44	22.50 14.97 17.60		
83-4 Drill Cuttings	DFS-3	51-58	4 2 3	3.68	14.75 15.31	29.02 30.13 35.58	52.55 54.56 64.42	11589 12032 14207	0.22 0.22 0.26						
		58-63	4 2 3	3.26	18.30 18.92	31.02 32.07 39.55	47.41 49.01 60.45	11199 11576 14277	0.29 0.30 0.36						
Seam Average Raw Coal		51-63	1 2 3	3.51	16.23 16.82	29.93 31.02 37.29	50.41 52.24 62.71	11427 11843 14237	0.25 0.26 0.31						
83-4 1.6 SPG Float	DFS-3	51-58	4 2 3	3.68	4.80 4.98	31.57 32.78 34.50	59.95 62.24 65.50	13275 13782 14505	0.22 0.22 0.24	76.13 79.04 83.19	5.03 4.79 5.04	1.37 1.42 1.50	12.45 9.54 10.04	1.5	
		58-63	4 2 3	3.26	5.50 5.69	34.23 35.38 37.52	57.01 58.93 62.48	13359 13809 14642	0.33 0.35 0.37	75.56 78.11 82.82	5.25 5.05 5.36	1.43 1.48 1.57	11.91 9.32 9.88	1.5	
Seam Average 1.6 SG Float		51-63	1 2 3	3.51	5.09 5.28	32.68 33.87 35.75	58.73 60.87 64.25	13310 13794 14562	0.27 0.28 0.30	75.89 78.65 83.03	5.12 4.90 5.17	1.40 1.45 1.53	12.23 9.44 9.97		
83-4C Core Raw Coal Calculated	DFS-3	52-54	4 2 3	3.84	10.65 11.08	27.33 28.42 31.96	58.18 60.50 68.04	12320 12812 14408							
		54-58	4 2 3	4.40	5.11 5.34	31.52 32.97 34.83	58.98 61.69 65.17	13056 13657 14427							

^{*1 -} As Received Moisture 2 - Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 24
Proximate and Ultimate Analyses of DFS-3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	0,%	FSI	HGI
		58-62	4 2 3	4.61	5.78 6.06	33.90 35.54 31.96	55.71 58.40 68.04	12958 13584							
		62-64	4 2 3	3.64	13.69 14.21	33.90 33.67 39.25	55.71 52.12 60.75	11627 12066 14065							
Raw Coal Seam Average		52-64	4 2 3	4.25	7.67 8.01	32.44 33.19 37.83	50.22 58.80 62.17	12665 13227 14379							
83-4C Core 1.5 SG Float	DFS-3	52-54	4 2 3	3.84	5.18 5.39	28.36 29.49 31.17	62.62 65.12 68.83	13233 13761 14545	0.21 0.21 0.23	76.81 79.88 84.43	1.55 1.16 1.23	1.33 1.39 1.47	14.92 11.97 12.65	1.5	
		54-58	4 2 3	4.40	3.68 3.85	31.46 32.91 34.23	60.45 63.24 65.77	13397 14013 14575	0.19 0.19 0.20	76.93 80.47 83.70	5.12 4.84 5.04	1.40 1.47 1.53	12.68 9.17 9.54	2.0	
		58-62	4 2 3	4.61	3.23 3.38	33.77 35.40 36.64	58.40 61.22 63.36	13583 14240 14738	0.26 0.28 0.29	77.05 80.77 83.60	5.35 5.07 5.25	1.42 1.49 1.54	12.69 9.01 9.32	2.0	
		62-64	4 2 3	3.64	3.06 3.17	35.39 36.73 37.93	57.91 60.10 62.07	13357 13861 14315	0.49 0.51 0.53	75.24 78.08 80.64	5.37 5.15 5.32	1.41 1.46 1.51	14.43 11.62 12.01	2.5	
Seam Average 1.5 SG Float		52-64	4 2 3	4.25	3.69 3.85	32.28 33.71 35.06	59.78 62.43 64.94	13430 14026 14588	0.26 0.27 0.28	76.73 80.14 83.35	4.64 4.35 4.52	1.40 1.46 1.52	13.28 9.93 10.33	2.0	
83-4c 1.5 SG Sink		52-54	2 3		54.44	20.27 44.48	25.29 55.52	5581 12249	0.12 0.27						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 24
Proximate and Ultimate Analyses of DFS-3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Bru/lb	Sulfur, %	C,%	Н,%	N,%	0,%	FSI	HGI
		54-58	2		29.09	33.93 47.85	36.98 52.15	7985 11261	0.10 0.14						
		58-62	2		28.44	36.74 51.34	34.82 48.66	8110 11333	0.12 0.17						
		62-64	2		45.29	25.05 45.79	29.66 54.21	7009 12810	0.24 0.45						
Seam Average 1.5 SG Sinks		52-64	2		39.01	29.27 47.99	31.72 52.01	7270 11920							
91-1	DFS-3	36-48	4 2 3	3.99	8.12 8.46	31.39 32.70 35.72	56.50 58.84 64.28	12605 13129 14343	0.17 0.18 0.20	73.91 76.98 84.10	4.76 4.49 4.90	1.36 1.42 1.55	11.66 8.45 9.23	-	47

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free

^{4 -} Equilibrium Moisture 5 - As Analyzed

Table 25
Proximate and Ultimate Analyses of DFS-4 Seam, Deadfall Syncline

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	H,%	N,%	0,%	FSI	HGI
АН 73-4	DFS-4	3.0-13.5	4 2 3	10.20	5.60 6.24	31.00 34.52 36.82	53.20 59.24 63.18	10778 12002 12800	0.20 0.22 0.24	64.10 71.38 76.13	5.10 4.41 4.70	1.40 1.56 1.66	23.60 16.19 17.27		
AH 73-10	DFS-4	5.2-7.5	4 2 3	10.20	8.40 9.35	26.40 29.40 32.43	55.00 61.25 67.57								
		7.5-11.2	4 2 3	10.60	5.70 6.38	30.00 33.56 35.85	53.70 60.00 64.01								
		11.2-14.2	4 2 3	10.50	4.80 5.36	30.90 34.51 36.46	53.80 60.11 64.97								
Seam Average	DFS-4	5.2-14.2	4 2 3	10.46	7.75 8.65	29.74 33.21 36.35	54.46 60.82 63.65								
AH 73-27	DFS-4	4.2-17.0	4 2 3	10.90	4.40 4.94	30.80 34.57 36.36	53.90 60.49 63.64	10669 11974 12596	0.20 0.22 0.24	64.00 71.83 75.56	5.00 4.24 4.46	1.30 1.46 1.53	25.10 17.31 18.20		
83-2 Drill Cuttings	DFS-4	61-64	4 2 3	4.35	11.46 11.98	26.81 28.02 31.84	57.39 60.00 68.16	12100 12651 14372	0.41 0.43 0.48						
		64-69	4 2 3	3.69	5.28 5.49	32.68 33.93 35.90	58.35 60.59 64.10	13354 13865 14670	0.28 0.29 0.31						
		69-71	4 2 3	3.46	16.77 17.37	30.68 31.78 38.46	49.09 50.85 61.54	11610 12026 14554	0.27 0.28 0.34						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 25 Proximate and Ultimate Analyses of DFS-4 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н.%	N,%	0,%	FSI	HOI
Seam Average Raw Coal		61-71	4 2 3	3.84	9.43 9.81	30.51 31.73 35.18	56.22 58.47 64.82	12629 13133 14561	0.32 0.33 0.37						
83-2 1.6 SG Float	DFS-4	61-64	4 2 3	4.35	3.86 4.04	27.48 28.73 29.94	64.30 67.23 70.06	13422 14033 14623	0.37 0.39 0.40	77.24 80.75 84.15	4.85 4.56 4.76	1.44 1.51 1.57	12.23 8.75 9.12	1.5	
		64-69	4 2 3	3.69	2.44 2.53	33.56 34.84 35.75	60.31 62.62 64.25	13956 14491 14867	0.28 0.29 0.30	78.84 81.86 83.98	5.42 5.20 5.34	1.58 1.64 1.68	11.44 8.48 8.70	3.0	
		69 -71	4 2 3	3.46	4.33 4.48	34.85 36.10 37.79	57.36 59.42 62.21	13700 14191 14857	0.28 0.29 0.31	76.95 79.71 83.45	5.48 5.28 5.52	1.61 1.66 1.74	11.35 8.57 8.98	4.0	
Seam Average 1.6 SG Float		61-71	4 2 3	3.84	3.24 3.37	31.98 33.26 34.42	60.93 63.36 65.58	12687 13194 13654	0.31 0.32 0.33	77.99 81.10 83.93	5.26 5.02 5.20	1.55 1.61 1.67	11.66 8.58 8.88	2.8	
83-3 Drill Cuttings	DFS-4	87-93	4 2 3	3.60	6.71 6.96	32.52 33.73 36.25	57.18 59.31 63.75	13048 13535 14548	0.26 0.27 0.29						
		93-96	4 2 3	3.34	10.78 11.15	32.62 33.75 37.98	53.26 55.10 62.02	12556 12990 14621	0.30 0.32 0.36						
Seam Average Drill Cuttings		87-96	4 2 3	3.51	8.07 8.36	32.56 33.74 36.82	55.88 57.91 63.18	12884 13353 14571	0.28 0.29 0.32						
83-3 1.6 SG Float	DFS-4	87-93	4 2 3	3.60	2.61 2.70	33.84 35.10 36.07	59.96 62.20 63.93	13654 14164 14557	0.28 0.29 0.30	77.79 80.69 82.93	5.28 5.06 5.20	1.67 1.73 1.78	12.38 9.52 9.79	2.0	

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free

^{4 -} Equilibrium Moisture 5 - As Analyzed

Table 25
Proximate and Ultimate Analyses of DFS-4 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Mauer, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	H,%	N,%	0,%	FSI	HGI
		93-96	4 2 3	3.34	3.64 3.76	36.13 37.38 38.84	56.89 58.86 61.16	13692 14165 14719	0.31 0.33 0.34	77.14 79.80 82.92	5.45 5.25 5.46	1.67 1.73 1.80	11.79 9.13 9.48	2.5	
Seam Average 1.6 SG Float		87-96	4 2 3	3.51	2.94 3.05	34.60 35.86 36.99	58.95 61.09 63.01	13667 14164 14610	0.29 0.30 0.31	77.57 80.39 82.92	5.33 5.12 5.28	1.67 1.73 1.78	12.20 9.41 9.71		
'87-Pit Channei Sample	DFS-4	18-19	4 2 3	10.44	4.13 4.61	21.44 23.94 25.10	63.99 71.45 74.90	10769 12025 12606	0.10 0.12 0.12	65.00 72.57 76.08	4.73 3.98 4.17	1.19 1.33 1.39	24.85 17.40 18.24		
		19-20	4 2 3	10.54	5.22 5.84	24.62 27.52 29.23	59.62 66.64 70.77	10612 11862 12597	0.10 0.11 0.12	60.51 67.64 71.83	4.58 3.81 4.04	1.15 1.28 1.36	28.43 21.32 22.64		
		20-21	4 2 3	10.63	2.20 2.47	26.14 29.25 29.99	61.03 68.28 70.01	10903 12199 12508	0.11 0.12 0.13	66.39 74.29 76.17	4.75 3.98 4.09	1.21 1.36 1.39	25.33 17.81 18.23		
		21-22	4 2 3	10.87	1.67 1.87	31.13 34.93 35.60	56.33 63.20 64.40	10889 12217 12451	0.09 0.10 0.10	60.50 67.88 69.18	5.20 4.46 4.55	1.17 1.31 1.34	31.37 24.36 24.83		
		22-23	4 2 3	11.60	1.51 1.70	32.57 36.84 37.48	54.33 61.46 62.52	10757 12168 12379	0.09 0.10 0.10	63.50 71.84 71.08	5.14 4.35 4.42	1.35 1.53 1.55	28.41 20.48 20.84		
		23-34	4 2 3	11.12	6.06 6.82	31.94 35.93 38.56	50.88 57.25 61.44	10149 11419 12255	0.10 0.11 0.12	56.99 64.12 68.82	5.07 4.31 4.62	1.20 1.35 1.45	30.58 23.29 25.00		
		24-25	4 2 3	14.03	1.63 1.90	33.23 38.66 39.41	51.10 59.44 60.59	10393 12089 12323	0.14 0.17 0.17	61.99 72.11 73.51	5.54 4.62 4.71	1.43 1.66 1.69	29.26 19.54 19.92		

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 25 Proximate and Ultimate Analyses of DFS-4 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture,	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	0,%	FSI	HGI
		25-26	4 2 3	13.95	1.63 1.89	33.27 38.67 39.41	51.15 59.44 60.59	10552 12262 12498	0.12 0.14 0.15	59.54 69.20 70.53	5.52 4.60 4.69	1.53 1.78 1.81	31.66 22.40 22.83		
		26-27	4 2 3	11.62	3.82 4.33	32.10 36.32 37.96	52.46 59.36 62.04	10619 12015 12558	0.14 0.16 0.17	62.42 70.63 73.82	5.13 4.33 4.52	0.95 1.07 1.12	27.54 19.48 20.36		
Seam Average		18-27	4 2 3	11.64	3.08 3.49	29.65 33.56 34.77	55.62 62.95 65.23	10628 12028 12463	0.11 0.13 0.13	61.88 70.03 72.56	5.08 4.27 4.42	1.25 1.41 1.46	28.60 20.67 21.42		
'91-Pit Channel Sample	DFS-4	30-32.5	4 2 3	9.41	3.57 3.94	26.32 29.05 30.24	60.7 67.01 69.76	11363 12543 13057	0.20 0.22 0.23	69.89 77.15 80.31	11.44 3.74 3.90	1.31 1.45 1.51	20.56 13.48 14.03	0	56
		32.5-35	4 2 3	7.70	3.01 3.26	31.39 34.01 35.16	57.90 62.73 64.84	12043 13048 13488	0.20 0.22 0.22	71.25 77.19 79.79	5.00 4.50 4.65	1.55 1.68 1.74	18.97 13.13 13.58	0	57
		35-37.5	4 2 3	8.31	3.71 4.04	32.85 35.82 37.33	55.13 60.13 62.67	11666 12724 13260	0.19 0.21 0.22	69.35 75.64 78.83	5.08 4.53 4.72	1.61 1.76 1.83	20.04 13.80 14.38	0	65
		37.5-40	4 2 3	6.93	4.01 4.31	32.17 34.56 36.12	56.89 61.12 63.88	12194 13102 13692	0.26 0.28 0.29	71.54 76.86 80.33	5.08 4.63 4.84	1.49 1.60 1.68	17.60 12.30 12.84	0	58
Seam Average		30-40	4 2 3	8.09	3.58 3.89	30.66 33.36 34.71	57.67 62.75 65.29	11814 12854 13374	0.21 0.23 0.24	70.50 76.71 79.81	4.90 4.35 4.53	1.49 1.62 1.69	19.32 13.20 13.73		

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture

^{5 -} As Analyzed

Table 26 Proximate and Ultimate Analyses of K1 Seam, Deadfall Syncline

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	0,%	FSI	HGI
AH 73-23	K1	4.5-7.9	4 2 3	12.50	10.40 11.89	30.20 34.51 39.17	46.90 53.60 60.83	9424 10770 12223	0.20 0.23 0.26	57.20 65.37 74.19	4.80 3.89 4.41	1.10 1.26 1.43	26.30 17.37 19.71		
		7.9-10.9	4 2 3	11.80	15.10 17.12	29.60 33.56 40.49	43.50 49.32 59.51					ı			
Seam Average		4.5-10.9	4 2 3	12.17	12.59 14.34	29.91 34.06 39.76	45.31 51.59 60.24								
83-9 Drill Cuttings	K 1	55-58	4 2 3	3.25	30.13 31.14	25.91 26.78 38.90	40.70 42.07 61.10	9403 9719 14115	0.26 0.27 0.40						
83-9 1.6 SG Float	K1	55-58	4 2 3	3.25	7.23 7.47	32.42 33.51 36.22	57.10 59.02 63.78	13100 13540 14633	0.35 0.36 0.39	74.12 76.61 82.79	5.00 4.79 5.18	1.32 1.37 1.48	11.99 9.41 10.17	1.5	
84-106 Core	K1	39.1-41.3	1 2 3	3.12	76.34 78.80	9.83 10.15 47.86	10.71 11.05 52.14	1597 1648 7774	0.15 0.15 0.71						
		41.3-43.4	1 2 3	5.08	14.71 15.50	29.50 31.08 36.78	50.70 53.42 63.22	11565 12184 14418	0.29 0.31 0.36						
		43.4-45.0	1 2 3	4.93	21.30 22.40	29.64 31.17 40.17	44.14 46.43 59.83	10716 11272 14526	0.23 0.24 0.31						
		45.0-46.8	1 2 3	4.79	17.49 18.37	32.13 33.74 41.34	45.59 47.89 58.66	11297 11865 14536	0.38 0.40 0.49						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free

^{4 -} Equilibrium Moisture 5 - As Analyzed

Table 26
Proximate and Ultimate Analyses of K1 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture,	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	H,%	N,%	0,%	FSI	HGI
Seam Average		41.3-46.8	1 2 3	4.93	17.62 18.53	30.50 32.08 39.38	46.95 49.38 60.62	11223 11805 14491	0.31 0.33 0.40						
84-107 Surface Sample	Un- correlated	6.0-7.0	1 2 3	16.81	6.62 7.95	28.78 34.59 37.58	47.79 57.45 62.42	9550 11480 12472	0.23 0.28 0.30						
DH91-3	K 1	26.5-30.5	5 2 3	2.20	19.77 20.21	27.57 28.19 35.33	50.46 51.60 64.67	11090 11339 14212	0.22 0.22 0.28						
DH91-4	Ki	62.5-67	5 2 3	1.77	26.35 26.82	28.40 28.91 39.51	43.48 44.26 60.49	10220 10404 14218	0.25 0.25 0.35						
DH91-11	Кl	127-131	5 2 3	1.54	14.60 14.83	32.72 33.23 39.02	51.14 51.94 60.98	12050 12238 14369	0.21 0.21 0.25						
		131-132	5 2 3	1.37	27.58 27.96	28.49 28.89 40.10	42.56 43.15 59.90	10030 10169 14117	0.26 0.26 0.37						
Seam Average	Кl	127-132	5 2 3	1.51	17.20 17.46	31.89 32.38 39.23	49.42 50.18 60.77	11645 11824 14325	0.22 0.22 0.27						
DH91-12	Ki	293-299.5	5 2 3	1.51	19.92 20.23	31.29 31.77 39.82	47.28 48.00 60.18	11100 11270 14128	0.22 0.22 0.28						
DH91-13	K1	181.5-184.5	5 5 2 3	1.79	18.63 18.97	28.94 29.47 36.37	50.64 51.56 63.63	11280 11486 14174	0.27 0.27 0.34						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 27
Proximate and Ultimate Analyses of K2 Seam, Deadfall Syncline

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	O,%	FSI	HGI
D H 91-3	K2	124.5-126	1 2 3	1.79	17.18 17.49	32.28 32.87 39.84	48.75 49.64 60.16	11840 12056 14612	0.44 0.45 0.54						
DH91-4	К2	141.5-143	1 2 3	1.68	25.61 26.05	26.84 27.30 36.91	45.87 46.65 63.09	10450 10629 14372	0.29 0.29 0.40						
DH91-9	K2	7-11	1 2 3	1.49	13.48 13.68	32.59 33.08 38.33	52.44 53.23 61.67	12440 12628 14630	0.32 0.32 0.38						

^{*1 -} As Received Moisture 2 - Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 28
Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	O,%	FSI	HGI
АН 73-8	К3	4.5-19.2	4 2 3	11.20	10.50 11.82	29.30 33.00 37.42	49.00 55.18 62.58	9643 10859 12315	0.20 0.23 0.26	58.40 65.77 74.58	4.60 3.77 4.27	1.10 1.24 1.40	25.20 17.18 19.48		
AH 73-25	К3	4.0-8.0	4 2 3	13.10	11.80 13.58	28.10 32.34 37.42	47.00 54.09 62.58								
		8.0-12.0	4 2 3	11.40	31.70 35.78	21.80 24.60 38.31	35.10 39.62 61.69								
		12.0-17.3	4 2 3	9.70	9.00 9.97	29.60 32.78 36.41	51.70 57.25 63.59								
Seam Average		4-17.3	4 2 3	11.23	16.71 18.82	26.80 30.19 37.19	45.27 51.00 62.81								
83-8 Drill Cuttings	К3	25-28	4 2 3	3.44	15.91 16.48	30.25 31.33 37.51	50.40 52.19 62.49	11607 12021 14392	0.27 0.28 0.33						
		28-33	4 2 3	3.19	12.46 12.87	32.83 33.91 38.92	51.52 53.22 61.08	12210 12612 14475	0.22 0.22 0.26						
		33-38	4 2 3	3.22	8.66 8.95	33.80 34.93 38.36	54.32 56.13 61.64	12869 13297 14604	0.23 0.23 0.26						
Seam Average		25-38	4 2 3	3.26	11.80 12.20	32.61 33.71 38.39	52.34 54.10 61.61	12322 12737 14507	0.23 0.24 0.27						

^{*1 -} As Received Moisture 2 - Moisture Free 3 - Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 28
Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	O,% 	FSI	HGI
83-8 1.6 SG Float	К3	25-28	4 2 3	3.44	6.65 6.89	33.26 34.45 37.00	56.64 58.66 63.00	13039 13504 14503	0.32 0.34 0.36	74.90 77.57 83.31	5.08 4.86 5.22	1.29 1.34 1.43	11.75 9.01 9.68	1.5	
		28-33	4 2 3	3.19	8.58 8.87	34.69 35.83 39.32	53.54 55.30 60.68	12918 13344 14642	0.21 0.21 0.23	73.20 75.61 82.97	5.10 4.90 5.38	1.22 1.26 1.39	11.68 9.14 10.03	2.0	
		33-38	4 2 3	3.22	3.98 4.11	35.30 36.47 38.04	57,50 59,42 61,96	13694 14150 14756	0.20 0.20 0.21	77.45 80.02 83.45	5.43 5.24 5.46	1.28 1.32 1.38	11.67 9.10 9.49	2.0	
Seam Average 1.6 Floats		25-38	4 2 3	3.26	6.37 6.58	34.59 35.76 38.28	55.78 57.66 61.72	13245 13691 14655	0.23 0.24 0.26	75.23 77.76 83.24	5.22 5.02 5.37	1.26 1.30 1.39	11.70 9.10 9.74	2.0	
83-8C Core Raw Coal	К3	51-52	4 2 3	3.43	10.30 10.66	29.72 30.78 34.45	56.55 58.56 65.55	12459 12901 14441	0.37 0.39 0.43	70.96 73.48 82.25	4.90 4.68 5.24	1.25 1.29 1.44	12.22 9.50 10.64		
		52-53	4 2 3	3.59	6.20 6.43	34.30 35.57 38.02	55.91 58.00 61.98	13157 13647 14585	0.26 0.27 0.29	74.13 76.89 82.17	5.51 5.30 5.66	1.35 1.40 1.50	12.55 9.71 10.38		
		53-54	4 2 3	3.37	14.69 15.20	30.84 31.91 37.63	51.11 52.89 62.37	11555 11958 14101	0.17 0.17 0.20	66.66 68.98 81.35	4.80 4.57 5.39	1.18 1.23 1.45	12.51 9.85 11.61		
		54-55	4 2 3	4.39	7.24 7.57	32.99 34.50 37.33	55.38 57.92 62.67	12763 13349 14443	0.17 0.18 0.20	72.93 76.28 82.54	5.22 4.94 5.35	1.22 1.28 1.38	13.21 9.74 10.54		
		55-56	4 2 3	3.07	20.33 20.98	27.90 28.78 36.43	48.70 50.24 63.57	10874 11218 14196	0.18 0.18 0.23	63.18 65.18 82.49	4.50 4.29 5.42	0.96 0.99 1.26	10.85 8.38 10.61		

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 28
Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/ib	Sulfur, %	C,%	н,%	N,%	0,%	FSI	HGI
		56-57	4 2	3.44	20.20 20.92	27.89 28.88	48.47 50.20	10659 11039	0.15 0.15	61.65 63.84	4.49 4.25	0.99 1.02	12.53 9.81		
			3		20.92	36.52	63.48	13960	0.19	80.73	5.37	1.29	12.41		
		57-58	4	3.59	2.91	34.40	59.10	13705	0.18	77.86	5.56	1.27	12.22		
			2 3		3.02	35.68 36.79	61.30 63.21	14215 14657	0.18 0.19	80.76 83.28	5.35 5.51	1.32 1.36	9.37 9.66		
		58-59	4	2.98	2.63	39.43	54.95	13966	0.16	78.28	5.78	1.43	11.72		
			2 3		2.71	40.64 41.78	56.64 58.22	14394 14796	0.16 0.17	80.68 82.93	5.61 5.77	1.48 1.52	9.35 9.62		
		59-60	4	3.22	3.04	36.77	56.97	13767	0.22	78.01	5.67	1.35	11.72		
			2 3		3.14	38.00 39.23	58.87 60.77	14225 14685	0.22 0.23	80.61 83.22	5.48 5.66	1.40 1.44	9.15 9.45		
		60-61	4	6.61	2.44	32.17	58.77	13374	0.14	75.88	5.63	1.17	14.73		
			2 3		2.62	34.45 35.38	62.93 64.62	14320 14705	0.15 0.16	81.25 83.44	5.24 4.38	1.26 1.29	9.48 9.74		
		61-62	4	3.56	3.90	35.50	57.04	13485	0.19	76.68	5.51	1.25	12.47		
			2 3		4.04	36.81 38.36	59.15 61.64	13983 14572	0.19 0.20	79.51 82.86	5.30 5.52	1.30 1.35	9.65 10.06		
		62-63	4	3.44	3.78	35.98	56.80	13550	0.19	76.74	5.64	1.21	12.44		
			2		3.91	37.26 38.78	58.82 61.22	14032 14604	0.19 0.20	79.47 82.71	5.45 5.67	1.26 1.31	9.72 10.12		
		63-64	4	5.24	6.31	33.19	55.26	12881	0.20	73.09	5.39	1.21	13.80		
			2		6.66	35.03 37.52	58.31 62.48	13593 14563	0.21 0.23	77.13 82.63	5.07 5.43	1.28 1.37	9.65 10.34		
		64-65	4	3.40	8.72	33.47	54.41	12934	0.29	72.94	5.20	1.22	11.62		
			2 3		9.03	34.65 38.09	56.32 61.91	13390 14719	0.31 0.34	75.51 83.00	4.99 5.49	1.26 1.39	8.90 9.79		
										_					

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free

^{4 -} Equilibrium Moisture 5 - As Analyzed

Table 28
Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Dritt Hote Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Maner, %	Fixed Carbon, %	Heating Value, Btu/Ib	Sulfur, %	C,%	Н,%	N,%	O,%	FSI	HGI
83-8C Core Raw Coal Calculated	К3	51-55	4 2 3	3.51	10.58 10.96	32.10 33.27 37.37	53.80 55.76 62.63	12492 12946 14540							
		55-58	4 2 3	3.46	13.10 13.57	31.29 32.41 37.50	52.15 54.02 62.50	11958 12387 14332							
		58-62	4 2 3	3.44	2.89 2.99	37.16 38.48 39.67	56.51 58.52 60.33	13159 13628 14048							
		62-65	4 2 3	3.51	6.61 6.84	35.16 36.44 39.12	54.72 56.71 60.88	13150 13628 14630							
Raw Coal Seam Average		51-65	4 2 3	3.48	8.07 8.36	34.03 35.26 38.48	54.42 56.38 61.52	12892 13357 14576							
83-8c Core 1.5 SG Float	К3	51-55	4 2 3	3.51	5.36 5.56	33.66 34.89 36.94	57.46 59.55 63.06	13448 13937 14757	0.33 0.35 0.37	76.16 78.93 83.58	5.28 5.06 5.36	1.30 1.35 1.43	11.56 8.75 9.26	2.0	
		55-58	4 2 3	3.46	5.57 5.77	33.61 34.82 36.95	57.35 59.41 63.05	13360 13839 14687	0.20 0.21 0.23	76.21 78.94 83.78	5.42 5.21 5.53	1.19 1.23 1.31	11.40 8.63 9.15	2.0	
		58-62	4 2 3	3.44	2.18 2.25	37.08 38.40 39.29	57.30 59.35 60.71	13987 14486 14820	0.21 0.21 0.22	78.84 81.65 83.54	5.67 5.47 5.60	1.31 1.36 1.39	11.79 9.05 9.25	4.0	
		62-65	4 2 3	3.51	3.57 3.70	36.01 37.32 38.76	56.91 58.98 61.24	13694 14192 14737	0.23 0.24 0.25	77.23 80.04 83.11	5.57 5.36 5.57	1.21 1.26 1.30	12.19 9.40 9.76	2.5	

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 28
Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н%	N,%	0,%	FS1	HGI
Seam Average 1.5 SG Float		51-65	4 2 3	3.48	4.01 4.15	35.24 36.51 38.09	57.27 59.33 61.91	13654 14146 14758	0.25 0.26 0.27	77.24 80.03 83.50	5.49 5.28 5.51	1.26 1.31 1.37	11.75 8.97 9.35	2.5	
83-8C 1.5 SG Sink		51-55	2 3		43.34	23.59 41.64	33.07 58.36	7010 1237 i	0.22 0.39						
		55-58	2 3		44.20	22. 96 41.15	32.84 58.85	6684 11980	0.13 0.24						
		58-62	2 3		32.03	41.69 61.33	26.28 68.67	6747 9926	0.07 0.10						
		62-65	2		46.32	25.43 47.37	28.25 52.63	6577 12252	0.17 0.32						
Seam Average 1.5 SG Sinks		51-65	2		43.38	24.81 43.82	31.81 56.18	6796 12003							
83-10 Drill Cuttings	К3	69-74	4 2 3	3.42	15,51 16.06	30.89 31.98 38.10	50.18 51.95 61.90	11514 11922 14204	0.24 0.25 0.30						
		74-79	4 2 3	3.53	5.66 5.87	34.72 35.99 38.24	56.08 58.14 61.76	13228 13712 14567	0.20 0.20 0.22						
		79-84	4 2 3	3.41	4.96 5.14	36.32 37.61 39.64	55.30 57.25 60.36	13351 13822 14571	0.19 0.19 0.20						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 28 Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture,	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	0,%	FSI	HGI
Seam Average Raw Coal		69-84	4 2 3	3.45	8.71 9.02	33.98 35.19 38.68	53.86 55.78 61.32	12698 13152 14456	0.20 0.21 0.23						
83-10 1.6 SPG Float	К3	69-74	4 2 3	3.42	6.85 7.10	32.97 34.14 36.74	56.76 58.77 63.26	13102 13566 14602	0.27 0.28 0.31	74.57 77.21 83.11	5.14 4.93 5.30	1.14 1.18 1.27	12.02 9.30 10.02	1.5	
		74-79	4 2 3	3.53	3.39 3.52	34.64 35.91 37.22	58.43 60.57 62.78	13706 14208 14726	0.20 0.20 0.21	77.75 80.59 83.53	5.43 5.21 5.41	1.10 1.14 1.18	12.14 9.34 9.68	2.0	
		79-84	4 2 3	3.41	2.70 2.79	36.03 37.30 38.37	57.86 59.91 61.63	13876 14366 14778	0.19 0.19 0.20	77.80 80.55 82.86	5.56 5.36 5.52	1.09 1.13 1.17	12.66 9.97 10.26	2.0	
Seam Average 1.6 Floats		69-84	4 2 3	3.45	4.32 4.47	34.55 35.78 37.45	57.69 59.75 62.55	13562 14047 14704	0.21 0.22 0.23	76.71 79.45 83.17	5.38 5.17 5.41	1.11 1.15 1.20	12.27 9.54 9.99	2.0	
83-11 Drill Cuttings	K3 ?	47-50	4 2 3	3.36	23.30 24.11	27.96 28.93 38.13	45.38 46.95 61.87	10449 10812 14248	0.29 0.30 0.40						
		50-55	4 2 3	3.52	15.83 16.41	31.73 32.88 39.34	48.92 50.71 60.66	11436 11853 14180	0.21 0.22 0.27						
		55-60	4 2 3	3.14	13.77 14.22	33.33 34.41 40.12	49.75 51.37 59.88	12028 12417 14476	0.20 0.20 0.24						
		60-65	4 2 3	3.46	9.16 9.49	34.33 35.56 39.29	53.05 54.95 60.71	12736 13193 14576	0.20 0.20 0.22						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free

^{4 -} Equilibrium Moishire 5 - As Analyzed

Table 28
Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	O,%	FSI	HGI
		65-68	4 2 3	3.30	15.23 15.75	32.58 33.69 39.99	48.89 50.56 60.01	11805 12208 14490	0.23 0.23 0.28						
Seam Average Raw Coal		47-68	4 2 3	3.36	14.74 15.25	32.31 33.43 39.45	49.60 51.32 60.55	11798 12208 14405	0.21 0.22 0.26						
83-11 1.6 SG Float	K3 ?	47-50	4 2 3	3.36	6.06 6.27	33.24 34.39 36.69	57.35 59.34 63.31	13302 13765 14685	0.34 0.35 0.38	75.43 78.06 83.28	5.16 4.95 5.29	1.18 1.22 1.30	11.83 9.15 9.76	2	
		50-55	4 2 3	3.52	4.22 4.37	34.94 36.22 37.88	57.32 59.41 62.12	13653 14151 14798	0.22 0.22 0.23	76.87 79.68 83.32	5.42 5.21 5.45	1.15 1.20 1.25	12.12 9.32 9.75	2	
		55-60	4 2 3	3.14	3.10 3.20	36.70 37.89 39.15	57.06 58.91 60.85	13888 14338 14812	0.23 0.23 0.24	77.86 80.38 83.04	5.61 5.43 5.61	1.27 1.32 1.36	11.93 9.44 9.75	2.5	
		60-65	4 2 3	3.46	2.48 2.57	36.38 37.68 38.68	57.68 59.75 61.32	13979 14480 14862	0.18 0.18 0.19	78.33 81.13 83.27	5.59 5.39 5.53	1.18 1.22 1.26	12.24 9.50 9.75	3.5	
		65-68	4 2 3	3.30	3.90 4.04	36.30 37.54 39.12	56.50 58.43 60.88	13696 14163 14759	0.22 0.23 0.24	76.88 79.51 82.85	5.53 5.34 5.56	1.17 1.21 1.26	12.29 9.68 10.08	2.0	
Seam Average 1.6 Floats		47-68	4 2 3	3.36	3.76 3.89	35.65 36.89 38.38	57.23 59.22 61.62	13742 14220 14796	0.22 0.23 0.24	77.25 79.94 83.18	5.49 5.29 5.50	1.20 1.24 1.29	12.08 9.41 9.79	2.5	
83-11C Core Raw Coal Calculated		47-51	4 2 3	3.57	9.99 10.36	33.35 34.58 38.58	53.10 55.07 61.42	12494 12957 14454							

^{*1 -} As Received Moisture

^{2 -} Moisture Free
3 - Moisture and Ash Free
4 - Equilibrium Moisture
5 - As Analyzed

Table 28
Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	0,%	FSI	HGI
-		51-55	4	3,69	13.32	30.02	52.96	11784							
			2		13.83	31.17	54.99	12235							
			3			36.17	63.83	14199							
		55-58	4	3.48	2.80	39.14	54.58	13822							
			2		2.90	40.55	56.55	14320							
			3			41.76	58.24	14748							
		58-62	4	3.61	2.46	35.93	58.00	13834							
			2		2.55	37.28	60.17	14352							
			3			38.26	61.74	14728							
		62-64	4	3.66	5.74	34.69	55.90	13280							
			2		5.96	36.01	58.02	13784							
			3			38.29	61.71	14658							
Raw Coal Seam		47-64	4	3.60	7.23	34.36	54.81	12969							
Average			2		7.50	35.64	56.86	13453							
			3			38.53	61.47	14544							
83-11c Core	К3	47-51	4	3.57	4.41	35.00	57.02	13499	0.36	76.62	5.43	1.15	12.03	2.0	
1.5 SG Float	?		2		4.57	36.30	59.13	13998	0.38	79.46	5.22	1.19	9.19		
			3			38.04	61.96	14669	0.39	83.26	5.47	1.24	9.63		
		51-55	4	3.69	4.77	33.03	58.50	13442	0.21	76.65	5.24	1.13	11.99	2.5	
			2		4.96	34.30	60.74	13957	0.21	79.59	5.02	1.18	9.05		
			3			36.09	63.91	14685	0.22	83.74	5.28	1.24	9.52		
		55-58	4	3.48	1.81	39.17	55.54	14104	0.20	79.16	6.03	1.19	11.61	6.0	
			2		1.88	40.58	57.54	14613	0.20	82.01	5.84	1.24	8.83		
			3			41.35	58.65	14892	0.21	83.58	5.95	1.26	9.00		
		58-62	4	3.61	1.86	35.89	58.64	13986	0.19	78.93	5.71	1.19	12.11	2.5	
			2		1.93	37.23	60.84	14509	0.19	81.89	5.51	1.24	9.24		
			3			37.96	62.04	14795	0.20	83.50	5.62	1.26	9.42		

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 28
Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Bru/lb	Sulfur, %	C,%	H,%	N,%	0,%	FSI	HGI
		62-64	4 2 3	3.66	4.09 4.25	35.07 36.40 38.02	57.18 59.35 61.98	13591 14108 14733	0.30 0.31 0.33	76.84 79.76 83.29	5.60 5.39 5.63	1.15 1.20 1.25	12.01 9.09 9.50	2.5	
Seam Average 1.5 SG Float		47-64	4 2 3	3.60	3.28 3.40	35.65 36.98 38.28	57.46 59.61 61.72	13742 14255 14757	0.24 0.25 0.26	77.74 80.64 83.48	5.61 5.40 5.59	1.17 1.21 1.25	11.97 9.10 9.42	3.0	
11c Core 1.5 SG Sink	К3	47-51	2 3		44.48	24.42 43.98	31.10 56.02	6821 12285	0.25 0.46						
		51-55	2 3		38.45	22.50 36.56	39.05 63.44	7457 12116	0.16 0.26						
		55-58	2 3		27.33	39.93 5 4.95	32.74 45.05	7286 10026	0.16 0.22						
		58-62	2 3		38.38	40.09 65.07	21.53 34.93	5277 8564	0.54 0.88						
		62-64	2		43.17	27.62 48.59	29.22 51.41	6745 11869	0.71 1.25						
Seam Average 1.5 SG Sinks		47-64	2		39.79	25.03 41.57	35.17 58.43	7144 11865							
84-108 Core	K3 ?	20.6-22.4	1 2 3	4.97	2.26 2.38	34.36 36.15 37.04	58.41 61.46 62.96	13565 14274 14622	0.29 0.31 0.31						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 28
Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	0,%	FSI	HGI
		22.4-24.7	1 2 3	4.02	8.09 8.43	35.18 36.66 40.03	52.70 54.91 59.97	12930 13472 14712	0.23 0.24 0.27						
		24.7-25.0	1 2 3	5.23	79.42 83.81	8.86 9.35 57.75	6.48 6.84 42.25	1270 1340 8275	0.09 0.09 0.56						
		30.0-31.4	1 2 3	4.80	15.03 15.79	33.24 34.91 41.46	46.93 49.30 58.54	11682 12271 14573	0.38 0.40 0.47						
		31.4-32.0	1 2 3	7.36	34.75 37.52	24.77 26.74 42.80	33.11 35.74 57.20	8165 8814 14105	0.58 0.62 0.99						
Seam Average		20.6-32	1 2 3	4.82	14.11 14.82	32.28 33.91 39.82	48.79 51.26 60.18	11800 12398 14555	0.30 0.32 0.37						
84-109b Core	К3	46.4-48.5	1 2 3	4.37	21.87 22.87	28.45 29.76 38.58	45.30 47.37 61.42	10501 10981 14237	0.33 0.35 0.45						
		48.5-50.5	1 2 3	4.68	5.70 5.98	35.68 37.43 39.81	53.94 56.59 60.19	13166 13812 14690	0.22 0.23 0.25						
		50.5-52.5	1 2 3	4.53	13.60 14.24	29.40 30.79 35.91	52.47 54.96 64.09	11662 12215 14244	0.16 0.17 0.20						
		52.5-54.2	1 2 3	4.69	9.16 9.61	30.26 31.75 35.12	55.89 58.64 64.88	12422 13033 14418	0.18 0.19 0.21						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 28 Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture,	Ash, %	Volatile Mauer, %	Fixed Carbon, %	Heating Value, But/lb	Sulfur, %	C,%	Н,%	N,%	0,%	FSI	HGI
		54.2-56.1	1 2 3	5.07	2.37 2.50	32.84 34.59 35.48	59.71 62.90 64.52	13620 14347 14715	0.17 0.18 0.19						
		56.1-57.6	1 2 3	5.20	8.74 9.22	33.49 35.33 38.92	52.57 55.45 61.08	12498 13184 14523	0.21 0.22 0.25						
Seam Average		46.4-57.6	1 2 3	4.7	10. 8 3 11.36	31.49 33.04 37.28	52.98 55.29 62.72	12218 12821 14464	0.21 0.22 0.25						
84-109 Core	К3	16.0-18.7	1 2 3	5.81	8.19 8.70	31.70 33.65 36.86	54.30 57.65 63.14	12301 13059 14303	0.34 0.36 0.39						
		18.7-20.2	1 2 3	3.92	13.56 14.11	32.81 34.15 39.76	49.71 51.73 60.24	12010 12501 14555	0.19 0.19 0.22						
		20.2-23.4	1 2 3	4.76	8.72 9.16	30.05 31.56 34.74	56.47 59.29 65.26	12451 13073 14391	0.17 0.18 0.20						
		23.4-25.2	1 2 3	4.49	3.83 4.01	33.65 35.24 36.71	58.03 60.76 63.29	13416 14046 14633	0.18 0.19 0.20						
		25.2-26.9	1 2 3	4.18	8.11 8.46	34.90 36.42 39.79	52.81 55.11 60.21	12883 13445 14688	0.25 0.26 0.29						
		27.2-27.5	1 2 3	5.06	35.67 37.57	23.93 25.20 40.37	35.34 37.23 59.63	8367 8813 14117	0.40 0.42 0.67						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free

^{4 -} Equilibrium Moisture 5 - As Analyzed

Table 28
Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	H,% 	N,%	0,%	FSI	HG[
Seam Average		16-26.9	1 2 3	4.76	9.32 9.79	31.93 33.53 37.16	53.99 56.69 62.84	12437 13059 14475	0.23 0.24 0.27						
84-117	К3	22.3-24.1	1 2 3	14.40	11.80 13.78	26.35 30.78 35.70	47.46 55.44 64.30	9216 10766 12487	0.31 0.36 0.41						
		24.1-25.6	1 2 3	15.15	4.70 5.54	29.42 34.68 36.71	50.73 59.78 63.29	9911 11681 12366	0.21 0.24 0.26						
		25.6-27.6	1 2 3	13.58	11.10 12.84	26.54 30.71 35.23	48.79 56.45 64.77	9365 10837 12433	0.17 0.19 0.22						
		27.6-29.6	1 2 3	13.53	9.04 10.46	27.85 32.21 35.97	49.57 57.33 64.03	9476 10959 12239	0.17 0.19 0.22						
		29.6-31.4	1 2 3	15.95	2.72 3.24	30.69 36.51 37.73	50.64 60.25 62.27	9752 11602 11990	0.15 0.18 0.19						
		31.4-34.0	1 2 3	16.21	3.94 4.71	30.56 36.47 38.27	49.29 58.83 61.73	9627 11490 12057	0.20 0.24 0.25						
Seam Average		22.3-34.0	1 2 3	14.84	7.21 8.47	29.12 34.19 37.36	48.83 57.34 62.64	9548 11212 12249	0.20 0.23 0.26						
84-118 Core	К3	28.6-30.0	1 2 3	5.22	17.92 18.91	29.77 31.41 38.73	47.09 49.69 61.27	11028 11635 14348	0.34 0.36 0.44						

^{*1 -} As Received Moissure 2 - Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 28 Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
35.82 64.18 14247 0.27 32.5-35.0 1 4.62 15.30 28.41 51.66 11491 0.91 2 16.04 29.79 54.17 12047 0.20 3 35.48 64.52 14349 0.24 35.0-36.3 1 5.06 3.37 35.01 56.56 13437 0.20 2 3.55 36.87 59.58 14153 0.21 3 38.23 61.77 14673 0.22 36.3-38.1 1 4.85 3.79 34.27 57.09 13378 0.20 2 3.99 36.02 59.99 14059 0.21 3 37.51 62.49 14643 0.22 38.1-39.7 1 4.48 7.05 34.72 53.76 12993 0.25 2 7.38 36.34 56.28 13602 0.26	
32.5-35.0 1 4.62 15.30 28.41 51.66 11491 0.91 2 16.04 29.79 54.17 12047 0.20 3 35.0-36.3 1 5.06 3.37 35.01 56.56 13437 0.20 2 3.55 36.87 59.58 14153 0.21 3 38.23 61.77 14673 0.22 36.3-38.1 1 4.85 3.79 34.27 57.09 13378 0.20 2 3.99 36.02 59.99 14059 0.21 3 37.51 62.49 14643 0.22 38.1-39.7 1 4.48 7.05 34.72 53.76 12993 0.25 2 7.38 36.34 56.28 13602 0.26	
2 16.04 29.79 54.17 12047 0.20 35.48 64.52 14349 0.24 35.0-36.3 1 5.06 3.37 35.01 56.56 13437 0.20 2 3.55 36.87 59.58 14153 0.21 3 38.23 61.77 14673 0.22 36.3-38.1 1 4.85 3.79 34.27 57.09 13378 0.20 2 3.99 36.02 59.99 14059 0.21 3 37.51 62.49 14643 0.22 38.1-39.7 1 4.48 7.05 34.72 53.76 12993 0.25 2 7.38 36.34 56.28 13602 0.26	
35.0-36.3	
35.0-36.3	
2 3.55 36.87 59.58 14153 0.21 38.23 61.77 14673 0.22 36.3-38.1 1 4.85 3.79 34.27 57.09 13378 0.20 2 3.99 36.02 59.99 14059 0.21 3 37.51 62.49 14643 0.22 38.1-39.7 1 4.48 7.05 34.72 53.76 12993 0.25 2 7.38 36.34 56.28 13602 0.26	
3 38.23 61.77 14673 0.22 36.3-38.1 1 4.85 3.79 34.27 57.09 13378 0.20 2 3.99 36.02 59.99 14059 0.21 3 37.51 62.49 14643 0.22 38.1-39.7 1 4.48 7.05 34.72 53.76 12993 0.25 2 7.38 36.34 56.28 13602 0.26	
36.3-38.1 1 4.85 3.79 34.27 57.09 13378 0.20 2 3.99 36.02 59.99 14059 0.21 3 37.51 62.49 14643 0.22 38.1-39.7 1 4.48 7.05 34.72 53.76 12993 0.25 2 7.38 36.34 56.28 13602 0.26	
2 3.99 36.02 59.99 14059 0.21 37.51 62.49 14643 0.22 38.1-39.7 1 4.48 7.05 34.72 53.76 12993 0.25 2 7.38 36.34 56.28 13602 0.26	
3 37.51 62.49 14643 0.22 38.1-39.7 1 4.48 7.05 34.72 53.76 12993 0.25 2 7.38 36.34 56.28 13602 0.26	
38.1-39.7 1 4.48 7.05 34.72 53.76 12993 0.25 2 7.38 36.34 56.28 13602 0.26	
2 7.38 36.34 56.28 13602 0.26	
3 39.24 60.76 14685 0.28	
Seam Average 28-6-39.7 1 5.12 11.98 30.90 52.00 12008 0.22	
2 12.63 32.57 54.81 12656 0.23	
3 37.27 62.73 14485 0.27	
84-119b Core K3 36.5-38.2 1 4.84 11.69 31.85 51.62 12137 0.29	
2 12.29 33.47 54.24 12754 0.30	
3 38.16 61.84 14540 0.35	
38.2-40.0 1 4.25 9.08 32.49 54.18 12591 0.18	
2 9.48 33.93 56.58 13150 0.19	
3 37.49 62.51 14528 0.21	
40.0-41.7 1 4.51 11.50 29.71 54.28 12237 0.17	
2 12.04 31.11 56.85 12815 0.18	
3 35.37 64.63 14570 0.21	

^{*1 -} As Received Moisture

^{2 -} Moissure Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 28
Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	O,%	FSI	HGI
		41.7-43.4	1	4.21	12.47 13.02	31.35	51.97	11959 12485	0.18						
			2		13.02	32.73 37.63	54.25 62.37	14354	0.19 0.22						
		43.4-45.0	1	5.06	3.40	34.21	57.33	13375	0.17						
			2 3		3.58	36.04 37.38	60.38 62.62	14087 14611	0.18 0.19						
		45.0-46.8	1	4.97	5,77	33.85	55.41	13019	0.19						
			2		6.07	35.62 37.92	58.31 62.08	13700 14586	0.20 0.22						
		46.8-48.1	ŀ	4.85	4.62	35.62	54.91	13393	0.30						
			2 3		4.86	37.44 39.35	57.71 60.65	14076 14794	0.31						
Seam Average		36.5-48.1	ì	4.65	8.58	32.58	54.19	12636	0.21						
			2 3		9.00	34.17 37.55	56.83 62.45	14301 15715	0.22 0.04						
84-120 Core	К3	41.2-44.0	1	4.99	12.64	31.10	51.28	11983	0.22						
			2 3		13.30	32.73 37.75	53.97 62.25	12612 14547	0.23 0.27						
		44.0-46.7	1	5.02	12.69	29.32	52.97	11915	0.16						
			2 3		13.36	30.86 35.62	55.77 64.38	12545 14479	0.17 0.20						
		46.7-48.2	1	4.59	6.08	35.94	53.39	12980	0.19						
			2 3		6.37	37.67 40.23	55.96 59.77	13605 14531	0.20 0.22						
		48.2-50.0	ì	5.28	2.46	33.60	58.66	13652	0.18						
			2 3		2.60	35.47 36.42	61.93 63.58	14413 14797	0.19 0.20						

^{*1 -} As Received Moisture 2 - Moisture Free 3 - Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 28
Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	0,%	FSI	HGI
		50.0-52.8	1	5.04	5.75	33.99	55.22	13077	0.22						
			2		6.05	35.79	58.15	13771	0.23						
			3			38.10	61.90	14659	0.25						
Seam Average		41.2-52.8		5.00	8.66	32.37	53.97	12603	0.20						
			2		9.12	34.07	56.81	14319	0.21						
			3			37.49	62.51	15755	0.23						
84-121 Core	К3	30.1-32.0		6.81	7.58	31.12	54.48	11841	0.29						
			2		8.14	33.40	58.46	12706	0.31						
			3			36.36	63.64	13832	0.33						
		32.0-35.0		5.09	10.56	31.67	52.69	12218	0.18						
			2		11.12	33.36	55.52	12873	0.19						
			3			37.54	62.46	14484	0.22						
		35.0-36.9	Į	4.66	18.07	24.74	52.52	10946	0.19						
			2		18.96	25.95	55.09	11481	0.20						
			3			32.02	67.98	14166	0.25						
		36.9-38.5		4.90	2.96	36.32	55.81	13533	0.19						
			2		3.12	38.20	58.69	14230	0.20						
			3			39.42	60.58	14688	0.21						
		38.5-40.0		5.96	3.14	33.81	57.09	13317	0.18						
			2		3.34	35.96	60.71	14161	0.19						
			3			37.20	62.80	14650	0.20						
		40.0-42.5	1	4.44	6.18	34.15	55.24	13036	0.22						
			2		6.47	35.73	57.80	13642	0.23						
			3			38.20	61.80	14585	0.25						
Scam Average		30.1-42.5	1	4.60	8.77	31.72	54.91	12398	0.21						
-			2		9.19	33.25	57.56	12996	0.22						
			3			36.62	63.38	14311	0.24			•			

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free

^{4 -} Equilibrium Moisture 5 - As Analyzed

Table 28
Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Bm/lb	Sulfur, %	С,%	н,%	N,%	0,%	FSI	HGI
84-122 Core	К3	95.3-96.8	1 2 3	4.40	7.39 7.73	31.60 33.05 35.82	56.62 59.22 64.18	12813 13403 14525	0.39 0.41 0.44	73.17 76.54 82.95	5.02 4.74 5.14	1.16 1.21 1.31	12.87 9.37 10.16		
		96.8-98.4	1 2 3	4.25	12.40 12.95	31.16 32.54 37.39	52.19 54.50 62.61	12023 12557 14426	0.19 0.20 0.23	68.37 71.40 82.02	4.82 4.54 5.22	1.07 1.12 1.29	13.15 9.79 11.24		
		98.4-100.0) 1 2 3	3.98	8.93 9.30	33.49 34.88 38.45	53.60 55.83 61.55	12538 13058 14396	0.16 0.16 0.18	71.96 74.94 82.62	4.98 4.72 5.20	1.20 1.25 1.38	12.77 9.63 10.62		
		100.0-101.	7 1 2 3	4.76	16.79 17.63	29.19 30.65 37.21	49.26 51.72 62.79	10920 11466 13921	0.16 0.17 0.21	64.02 67.22 81.61	4.33 3.99 4.84	1.05 1.10 1.34	13.65 9.89 12.00		
		101.7-104.	4 1 2 3	4.78	3.51 3.68	37.85 39.75 41.27	53.87 56.57 58.73	13458 14134 14674	0.17 0.18 0.19	75.62 79.42 82.45	5.60 5.32 5.52	1.30 1.37 1.42	13.80 10.03 10.42		
		105.0-108.9	0 1 2 3	5.09	3.02 3.18	35.80 37.72 38.96	56.09 59.09 61.04	13504 14229 14696	0.17 0.18 0.19	76.54 80.64 83.29	5.56 5.26 5.70	1.23 1.30 1.34	13.48 9.44 9.48		
Seam Average		95.3-104.4 105.0-108.		4.63	7.62 7.99	33.89 35.54 38.62	53.86 56.47 61.38	12722 13340 14498	0.19 0.20 0.22	72.45 75.97 82.56	5.15 4.86 5.28	1.19 1.25 1.36	13.36 9.74 10.58	2.5	56

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Pree 4 - Equilibrium Moisture 5 - As Analyzed

Table 28
Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Bru/lb	Sulfur, %	C,%	Н,%	N,%	0,%	FSI	HGI
DH91-1	К3	24-27	5 2 3	1.94	4.62 4.71	32.08 32.71 34.33	61.36 62.57 65.67	13680 13951 14640	0.26 0.27 0.28						
		27-30	5 2 3	2.10	17.06 17.43	28.62 29.23 35.40	52.22 53.34 64.60	11630 11879 14386	0.16 0.16 0.20						
		34-36	5 2 3	2.11	6.54 6.68	33.96 34.69 37.18	57.39 58.63 62.82	13260 13546 14516	0.24 0.25 0.26						
Seam Average	К3	24-36	5 2 3	2.04	9.77 9.97	31.25 31.90 35.43	56.93 58.12 64.57	12806 13073 14521	0.22 0.22 0.24						
DH91-2	К3	144-150	5 2 3	2.02	15.12 15.43	30.37 31.00 36.65	52.49 53.57 63.35	11980 12227 14458	0.21 0.21 0.25						
DH91-3	К3	241.5-246	5 2 3	1.51	13.65 13.86	31.88 32.37 37.58	52.96 53.77 62.42	12260 12448 14451	0.19 0.19 0.22						
		246-251	5 2 3	1.50	6.70 6.80	34.99 35.52 38.12	56.81 57.68 61.88	13440 13645 14641	0.18 0.18 0.20						
		251-254	5 2 3	1.52	7.24 7.35	34.89 35.43 38.24	56.35 57.22 61.76	13350 13556 14632	0.19 0.19 0.21						
DH91-4	К3	298.5-301.5	5 5 2 3	1.55	10.62 10.79	33.10 33.62 37.69	54.73 55.59 62.31	12770 12971 14539	0.22 0.22 0.25						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 28 Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	С,%	H,%	N,%	0,%	FSI	HGI
		301.5-306.5	5 5 2 3	1.39	9.63 9.77	32.69 33.15 36.74	56.29 57.08 63.26	12850 13031 14441	0.19 0.19 0.21						
		306.5-311.5	5 5 2 3	1.41	2.88 2.92	38.92 39.48 40.66	56.79 57.60 59.34	14210 14413 14847	0.18 0.18 0.19						
		311.5-313.5	5 5 2 3	1.55	6.93 7.04	36.92 37.50 40.34	54.60 55.46 59.66	13480 13692 14729	0.19 0.19 0.21						
Seam Average	К3	298.5-313.5	5 5 2 3	1.45	7.22 7.33	35.41 35.93 38.77	55.92 56.74 61.23	13371 13568 14641	0.19 0.19 0.21						
DH91-5	К3	54-56	4 2 3	3.07	4.02 4.15	34.32 35.40 36.94	58.59 60.45 63.06	13632 14063 14672	0.32 0.33 0.34	78.42 80.90 84.40	5.26 5.07 5.29	1.28 1.32 1.38	10.70 8.23 8.58	2.5	60
		56-58	4 2 3	2.91	13.70 14.11	32.01 32.97 38.38	51.38 52.92 61.62	11925 12283 14301	0.24 0.24 0.28	69.11 71.18 82.87	4.64 4.44 5.17	1.05 1.08 1.25	11.27 8.95 10.42	1.0	58
		58-60	4 2 3	2.70	15.40 15.83	29.47 30.29 35.98	52.43 53.89 64.02	11639 11962 14212	0.23 0.23 0.28	68.18 70.07 83.24	4.35 4.16 4.94	0.96 0.98 1.17	10.89 8.73 10.37	1.5	57
		60-62	4 2 3	3.01	3.48 3.58	35.16 36.25 37.59	58.36 60.17 62.41	13605 14028 14549	0.22 0.22 0.23	78.03 80.45 83.44	5.37 5.19 5.38	1.20 1.24 1.28	11.71 9.31 9.66	3.0	61
		62-71.3	4 2 3	3.09	3.54 3.66	36.52 37.68 39.11	56.85 58.66 60.89	13805 14245 14786	0.24 0.24 0.25	77.89 80.37 83.43	5.40 5.21 5.41	1.11 1.14 1.19	11.82 9.37 9.73	4.5	61

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 28
Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Maner, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	O,%	FSI	HGI
Seam Average	К3	54-71.3	4 2 3	3.01	6.13 6.32	34.77 35.85 38.27	56.08 57.82 61.73	13294 13707 14631	0.25 0.26 0.28	75.83 78.18 83.46	5.17 4.98 5.32	1.12 1.15 1.23	11.50 9.10 9.71		
DH91-7	К3	32.5-34.5	4 2 3	3.62	3.26 3.38	33.03 34.27 35.47	60.09 62.34 64.53	13635 14147 14642	0.43 0.45 0.46	78.01 80.94 83.77	5.19 4.97 5.14	1.34 1.39 1.44	11.77 8.87 9.19	2.0	56
		34.5-36.5	4 2 3	4.83	14.89 15.64	29.90 31.42 37.25	50.38 52.94 62.75	11589 12177 14435	0.23 0.24 0.29	68.04 71.50 84.76	4.86 4.54 5.38	1.15 1.21 1.43	10.82 6.86 8.13	1.5	52
		36.5-38.5	4 2 3	3.72	12.98 13.48	26.79 27.83 32.16	56.51 58.69 67.84	11783 12238 14145	0.19 0.19 0.22	69.67 72.36 83,64	4.29 4.02 4.65	1.04 1.08 1.24	11.84 8.87 10.25	1.5	61
		38.5-40.5	4 2 3	3.78	5.21 5.41	32.63 33.91 35.85	58.38 60.68 64.15	13294 13816 14607	0.23 0.23 0.25	76.12 79.11 83.64	5.05 4.81 5.09	1.29 1.34 1.42	12.10 9.09 9.60	2.0	58
		40.5-50	4 2 3	2.97	3.43 3.53	37.00 38.13 39.53	56.60 58.33 60.47	13915 14341 14866	0.22 0.22 0.23	78.73 81.14 84.11	5.47 5.29 5.49	1.33 1.38 1.43	10.82 8.44 8.75	5.0	61
Seam Average	К3	32.5-50	4 2 3	3.44	6.02 6.23	34.07 35.28 37.63	56.48 58.49 62.37	13303 13777 14693	0.24 0.25 0.27	76.09 78.80 84.04	5.19 4.98 5.31	1.27 1.32 1.40	11.19 8.42 8.98		
DH91-7		36.5-41.5	5 2 3	1.32	15.55 15.76	30.42 30.83 36.59	52.71 53.42 63.41	11830 11988 14231	0.20 0.20 0.24		-				
		41.5-46.5	5 2 3	1.29	4.40 4.46	37.70 38.19 39.97	56.61 57.35 60.03	13920 14102 14760	0.24 0.24 0.25						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 28
Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	0,%	FSI	HGI
Seam Average	К3	36.5-46.5	5 2 3	1.31	9.98 10.11	34.06 34.51 38.39	54.66 55.39 61.61	12874 13045 14512	0.22 0.22 0.24						
DH91-9	К3	144-147	5 2 3	1.37	11.86 12.02	32.01 32.45 36.89	54.76 55.52 63.11	12570 12745 14487	0.27 0.27 0.31						
		147-152	5 2 3	1.68	12.19 12.40	31.67 32.21 36.77	54.46 55.39 63.23	12480 12693 14490	0.19 0.19 0.22						
		152-157	5 2 3	1.55	4.50 4.57	37.94 38.54 40.38	56.01 56.89 59.62	13940 14159 14838	0.18 0.18 0.19						
		157-159	5 2 3	1.61	5.38 5.47	36.73 37.33 39.49	56.28 57.20 60.51	13740 13965 14773	0.19 0.19 0.20						
Seath Average	К3	144-159	5 2 3	1.57	8.65 8.79	34.50 35.05 38.43	55.28 56.16 61.57	13134 13344 14630	0.20 0.20 0.22						
DH91-10	К3	129-131-5	5 2 3	1.67	21.82 22.19	29.37 29.87 38.39	47.14 47.94 61.61	10740 10922 14037	0.18 0.18 0.24						
		131.5-136.5	5 5 2 3	1.59	15.01 15.25	31.63 32.14 37.93	51.77 52.61 62.07	12040 12235 14436	0.16 0.16 0.19						
		136.5-140.	5 5 2 3	1.68	6.06 6.16	34.60 35.19 37.50	57.66 58.65 62.50	13530 13761 14665	0.22 0.22 0.24						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 28
Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture,	Ash, %	Volatile Mauer, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	0,%	FSI	HGI
Seam Average	К3	129.0-140.3	5 5 2 3	1.64	13.38 13.60	32.17 32.71 37.86	52.82 53.70 62.14	12275 12480 14444	0.19 0.19 0.22						
DH91-10c	К3	129-141.5		3.32	9.49 9.82	32.37 33.48 37.12	54.82 56.70 62.88	12639 13073 14496	0.21 0.21 0.24	72.80 75.30 83.50	4.88 4.66 5.17	1.22 1.26 1.39	11.41 8.75 9.70	1.5	54
DH91-11	К3	356.5-361	5 2 3	1.40	12.28 12.45	32.99 33.46 38.22	53.33 54.09 61.78	12390 12566 14354	0.17 0.17 0.20						
		361-366	1 2 3	1.64	10.70 10.88	31.48 32.00 35.91	56.18 57.12 64.09	12780 12993 14579	0.19 0.19 0.22						
		366-367	1 2 3	1.60	7.10 7.22	35.89 36.47 39.31	55.41 56.31 60.69	13460 13679 14743	0.25 0.25 0.27						
Seam Average	К 3	356.5-367.0	0 5 2 3	1.53	11.03 11.20	32.54 33.05 37.22	54.89 55.74 62.78	12678 12875 14499	0.19 0.19 0.21						
DH9-13	К3	401-406	5 2 3	1.55	15.92 16.17	31.59 32.09 38.28	50.94 51.74 61.72	11920 12108 14443	0.21 0.21 0.25						
		406-411	5 2 3	1.46	8.95 9.08	32.55 33.03 36.33	57.04 57.89 63.67	13110 13304 14633	0.18 0.18 0.20						
DH9-13	К3	411-417	5 2 3	1.34	6.77 6.86	34.91 35.38 37.99	56.98 57.75 62.01	13420 13602 14604	0.18 0.18 0.20						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 28 Proximate and Ultimate Analysis of K3 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Hesting Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	0,%	FSI	HGI
Seam Average	К3	401-417	5 2 3	1.44	10.31 10.46	33.14 33.62 37.55	55.11 55.92 62.45	12854 13042 14566	0.19 0.19 0.21						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Pree

^{4 -} Equilibrium Moisture 5 - As Analyzed

Table 29 Proximate and Ultimate Analysis of K4 Seam, Deadfall Syncline (continued)

Drill Hote Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	O,%	FSI	HGI
АН 73-24	K4	3.8-10.0	4 2 3	12.10	10.50 11.95	29.60 33.67 38.24	47.80 54.38 61.76	9480 10785 12248	0.20 0.23 0.26	57.10 64.96 73.77	4.70 3.81 4.32	1.00 1.14 1.29	26.50 17.92 20.35		
83-10 Drill Cuttings	K4	125-130	4 2 3	3.28	11.32 11.70	33.31 34.44 39.00	52.10 53.86 61.00	12430 12852 14555	0.26 0.27 0.31						
83-10 1.6 SG Float	K 4	125-130	4 2 3	3.28	2.90 3.00	35.20 36.40 37.52	58.61 60.60 62.48	13890 14361 14806	0.26 0.27 0.28	78.14 80.79 83.29	5.57 5.38 5.55	1.15 1.19 1.23	11.97 9.36 9.65	2.0	
DH91-1	K4	96.5-99	5 2 3	2.22	18.82 19.25	29.74 30.42 37.66	49.22 50.34 62.34	11610 11874 14704	0.36 0.37 0.46						
DH91-2	K4	210-213.5	5 2 3	2.03	10.17 10.38	32.76 33.44 37.31	55.04 56.18 62.69	12920 13188 14715	0.29 0.30 0.33						
DH91-3	K4	317-321	5 2 3	1.51	28.33 28.76	28.04 28.47 39.97	42.12 42.77 60.03	10110 10265 14410	0.24 0.24 0.34						
DH91-4	K4	354.5-360	5 2 3	1.58	16.74 17.01	33.88 34.42 41.48	47.80 48.57 58.52	12000 12193 14691	0.21 0.21 0.26						
DH91-5	K4	116-117	5 2 3	1.67	9.64 9.80	35.38 35.98 39.89	53.31 54.22 60.11	13020 13241 14680	0.21 0.21 0.24						
DH91-6	K4	94-99	5 2 3	1.75	18.83 19.17	30.09 30.63 37.89	49.33 50.21 62.11	11590 11796 14593	0.21 0.21 0.26						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 29
Proximate and Ultimate Analysis of K4 Seam, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet) B	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Bru/lb	Sulfur, %	C,%	Н,%	N,%	%,0	FSI	HGI
		99.5-100	998	1.31	61.49	16.94 17.16 45.54	20.26 20.53 54.46	4680 4761 12631	0.23 0.23 0.62						
Seam Average	K4	94-100	300	1.71	22.70	28.91 29.41 38.24	46.70 47.51 61.76	10965 11156 14505	0.21 0.21 0.27						
DH 91-7 Core	K 4	1025-1045	400	3.09	5.63	33.66 34.74 36.88	57.62 59.45 63.12	13439 13868 14723	0.25 0.25 0.27	77.75 80.23 85.18	5.14 4.95 5.26	1.33 1.37 1.46	9.90 7.38 7.84	2.5	55
		104.5-106.9	N 4 W	3.30	3.13	35.36 36.57 37.75	58.31 60.30 62.25	13847 14319 14781	0.25 0.25 0.26	78.68 81.36 83.99	5.39 5.19 5.36	1.33 1.37 1.42	11.34 8.69 8.98	3.0	53
Seam Average		102.5-106.9	226	3.20	4.21	34.60 35.74 37.37	57.99 59.91 62.63	13662 14114 14755	0.24 0.25 0.26	78.26 80.85 84.52	5.28 5.08 5.32	1.33 1.37 1.44	10.68 8.10 8.46		
6-16HQ	K4	218.5-223	8 8 8 8	1.91	7.09	34.67 35.35 38.10	56.33 57.43 61.90	13500 13763 14835	0.26 0.27 0.29						
DH91-10	K 4	197-201	M 20 KA	1.67	21.15	29.58 30.08 38.33	47.60 48.41 61.67	11460 11655 14848	0.27 0.27 0.35						

^{*1 -} As Received Moisture
2 - Moisture Free
3 - Moisture and Ash Free
4 - Equilibrium Moisture
5 - As Analyzed

Table 30 Proximate Analyses of K5 Seam, Deadfall Syncline

Drill Hole Number Sear	Seam No.	Depth Interval (feet)	Basis	Moisture,	Ash, %	ا هد	ರೆ	Heating Value, BtuAb	Sulfur,	ပ %	н,%	% Z	%,0	PSI	HOI
	1) () (n	2:	36.86	25.86 20.95	37.28 59.05	8993	0.24						

^{*1 -} As Received Moisture
2 - Moisture Free
3 - Moisture and Ash Free
4 - Equilibrium Moisture
5 - As Analyzed

Table 31
Proximate and Ultimate Analyses of 20, 21 and Uncorrelated Seams, Deadfall Syncline

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture,	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/Ib	Sulfur, %	C,%	H,%	N,%	0,%	FSI	HGI
АН 73-2	20	2.7-7.5	4 2 3	9.90	20.10 22.31	28.40 31.52 40.57	41.60 46.17 59.43								
AH 73-3	20	3.0-9.8	4 2 3	12.20	12.60 14.35	28.50 32.46 37.90	46.70 53.19 62.10	9197 10475 12230							
АН 73-1	21 Seam Average	4.5-17.5	4 2 3	6.60	26.80 28.69	23.40 25.05 35.14	43.20 46.25 64.86	8586 9193 12892	0.20 0.21 0.30	51.30 54.93 77.03	3.70 3.17 4.45	0.80 0.86 1.20	17.20 12.14 17.03		
		4.5-8.0	4 2 3	7.00	17.10 18.39	23.20 24.95 30.57	52.70 56.67 69.43								
		8.0-12.0	4 2 3	11.30	32.00 36.08	22.00 24.80 38.80	34.70 39.12 61.20								
		12.0-16.0	4 2 3	6.60	31.70 33.94	22.10 23.66 35.82	39.60 42.40 64.18								
		16.0-17.5	4 2 3	6.40	33.80 36.11	23.20 24.79 38.80	36.60 39.10 61.20								
83-12 Drill Cuttings	21	33-40	4 2 3	4.47	25.77 26.97	24.36 25.50 34.93	45.40 47.52 65.07	9375 9813 13438	0.15 0.15 0.21						
83-12 1.6 SG Float	21	33-40	4 2 3	4.47	11.27 11.80	27.44 28.72 32.56	56.82 59.48 67.44	11924 12482 14152	0.17 0.17 0.20	69.75 73.01 82.78	4.44 4.13 4.68	1.19 1.24 1.41	13.18 9.64 10.93	0	

^{*1 -} As Received Moisture

^{2 -} Moisture Free
3 - Moisture and Ash Free
4 - Equilibrium Moisture
5 - As Analyzed

Table 31 Proximate and Ultimate Analyses of 20, 21 and Uncorrelated Seams, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture,	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	0,%	FSI	HGI
83-13C Raw Coal Calculated	21	32-35	4 2 3	4.98	15.74 16.57	22.73 23.92 28.67	56.56 59.52 71.33	10848 11417 13685							
		35-38	4 2 3	4.94	20.87 21.95	26.27 27.63 35.40	47.93 50.42 64.60	10132 10659 13657							
		38-41	4 2 3	3.74	32.00 33.24	23.84 24.77 37.10	40.42 41.99 62.90	8534 8866 13280							
		41-42	4 2 3	4.15	8.31 8.67	33.26 34.70 37.99	54.28 56.63 62.01	12475 13015 14251							
Raw Coal Seam Average		32-42	4 2 3	4.51	21.38 22.39	25.17 26.36 33.96	48.93 51.24 66.04	10107 10584 13637							
83-13C Core 1.5 SG Float	21	32-35	4 2 3	4.98	10.16 10.69	23.35 24.57 27.51	61.51 64.74 72.49	11991 12619 14129	0.30 0.32 0.36	70.91 74.63 83.56	4.30 3.94 4.41	1.06 1.12 1.25	13.27 9.31 10.42	0	
		35-38	4 2 3	4.94	7.98 8.39	28.99 30.50 33.29	58.09 61-11 66.71	12445 13091 14291	0.16 0.16 0.18	72.33 76.08 83.05	4.86 4.53 4.94	1.30 1.37 1.50	13.38 9.46 10.33	1.5	
		38-41	4 2 3	3.74	10.16 10.55	29.41 30.56 34.16	56.69 58.89 65.84	12332 12811 14323	0.20 0.20 0.23	71.35 74.12 82.86	4.70 4.45 4.98	1.23 1.28 1.43	12.37 9.39 10.50	1.5	
		41-42	4 2 3	4.15	4.89 5.10	33.80 35.27 37.16	57.16 59.63 62.84	13172 13742 14481	0.41 0.43 0.45	74.75 77.98 82.18	5.33 5.08 5.35	1.37 1.43 1.51	13.25 9.98 10.52	2.0	

^{*1 -} As Received Moisture
2 - Moisture Free
3 - Moisture and Ash Free
4 - Equilibrium Moisture
5 - As Analyzed

Table 31
Proximate and Ultimate Analyses of 20, 21 and Uncorrelated Seams, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture,	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	H,%	N,%	0,%	FSI	HGI
Scam Average 1.5 SG Float		32-42	4 2 3	4.51	8.53 8.93	28.08 29.41 32.29	58.88 61.66 67.71	12417 13003 14278	0.25 0.26 0.29	72.21 75.62 83.04	4.73 4.42 4.85	1.23 1.29 1.42	13.06 9.48 10.42	1.0	
13C 1.5 SG Sink	21	32-35	2 3		24.63	23.02 30.54	52.36 69.46	9770 12962	0.19 0.26						
		35-38	2 3		49.85	21.72 43.32	28.43 56.68	5654 11275	0.10 0.20						
		38-41	2 3		42.55	22.39 38.97	35.06 61.03	7247 12615	0.15 0.27						
		41-42	2 3		35.90	30.35 47.35	33.75 52.65	7479 11667	0.04 0.06						
Seam Average 1.5 SG Sinks		32-42	2		38.92	22.63 37.05	38.46 62.95	7616 12469							
83-16 Drill Cuttings	Un- Correlated	96-99	4 2 3	3.00	28.25 29.13	29.41 30.32 42.79	39.33 40.55 57.21	9829 10133 14297	0.28 0.28 0.40						
		100-102	4 2 3	2.87	26.09 26.86	33.10 34.08 46,60	37.94 39.06 53.40	10160 10461 14303	0.25 0.25 0.35						
		102-109	4 2 3	3.21	16.59 17.14	33.37 34.48 41.61	46.83 48.39 58.39	11583 11967 14442	0.23 0.23 0.28						

^{*1 -} As Received Moisture

^{2 -} Moisture Free
3 - Moisture and Ash Free
4 - Equilibrium Moisture
5 - As Analyzed

Table 31 Proximate and Ultimate Analyses of 20, 21 and Uncorrelated Seams, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Bnt/lb	Sulfur, %	C,%	Н,%	N,%	0,%	FSI	HGI
Seam Average Raw Coal		96-109	4 2 3	3.10	21.09 21.76	32.34 33.37 42.65	43.49 44.88 57.35	10909 11258 14389	0.24 0.25 0.32						
83-16 1.6 SG Float	Un- Correlated	96-99	4 2 3	3.00	15.80 16.29	32.13 33.12 39.57	49.07 50.59 60.43	11904 12272 14660	0.29 0.30 0.36	67.24 69.32 82.81	4,77 4,57 5,46	1.24 1.27 1.52	10.66 8.27 9.85	1.5	
		100-102	4 2 3	2.87	11.20 11.53	37.74 38.85 43.92	48.20 49.62 56.08	12711 13086 14791	0.25 0.25 0.29	70.70 72.78 82.27	5.45 5.29 5.97	1.50 1.54 1.74	10.91 8.61 9.73	2.0	
		102-109	4 2 3	3.21	8.36 8.64	35.47 36.64 40.11	52.96 54.72 59.89	13003 13434 14705	0.23 0.23 0.25	73.18 75.61 82.76	5.37 5.18 5.67	1.40 1.45 1.58	11.46 8.89 9.73	2.5	
Seam Average 1.6 Float		100-109	4 2 3	3.10	10.69 11.03	35.01 36.13 40.61	51.20 52.84 59.39	12680 13086 14708	0.24 0.25 0.28	71.29 73.57 82.69	5.24 5.05 5.68	1.38 1.42 1.60	11.16 8.68 9.76	2.0	
83-17 Drill Cuttings	Un- Correlated	62-67	4 2 3	4.38	20.63 21.57	31.19 32.61 41.59	43.81 45.81 58.41	10374 10850 13834	0.43 0.45 0.58						
		67-72	4 2 3	4.45	21.32 22.31	32.05 33.54 43.17	42.18 44.15 56.83	10305 10785 13883	0.49 0.51 0.66						
Seam Average		62-72	4 2 3	4.42	20.97 21.94	31.62 33.08 42.38	42.99 44.98 57.62	10340 10818 13859	0.46 0.48 0.61						
83-17 1.6 SG Float		62-67	4 2 3	4.38	12.84 13.43	32.44 33.92 39.19	50.34 52.65 60.81	11735 12273 14176	0.38 0.40 0.46	66.56 69.61 80.41	4.91 4.62 5.34	1.33 1.40 1.61	13.98 10.55 12.19	1.0	

^{*1 -} As Received Moisture

^{2 -} Moisture Free 3 - Moisture and Ash Free

^{4 -} Equilibrium Moisture 5 - As Analyzed

Table 31 Proximate and Ultimate Analyses of 20, 21 and Uncorrelated Seams, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture,	Ash, %	Votatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	0,%	FSI	HGI
		67-72	4 2 3	4.45	11.87 12.42	33.78 35.36 40.37	49.89 52.22 59.63	11948 12504 14278	0.41 0.43 0.49	67.57 70.71 80.75	5.10 4.81 5.50	1.43 1.50 1.71	13.62 10.12 11.56	1.5	
Seam Average 1.6 Float		62-72	4 2 3	4.42	12.36 12.93	33.11 34.64 39.78	50.12 52.44 60.22	11841 12389 14229	0.40 0.42 0.48	67.06 70.16 80.58	5.01 4.72 5.42	1.39 1.45 1.67	13.79 10.32 11.85	1.0	
83-17C Core Raw Coal Calculated	Un- correlated	66-68	4 2 3	4.91	6.66 7.00	33.01 34.71 37.32	55.44 58.30 62.88	12550 13198 14191							
		68-71	4 2 3	4.68	6.28 6.59	35.04 36.76 39.35	54.00 56.65 60.65	12832 13462 14412							
Raw Coal Seam Average		66-71	4 2 3	4.77	6.43 6.75	34.23 35.94 38.54	54.57 57.31 61.46	12719 13356 14323							
83-17C 1.5 SG Float		66-68	4 2 3	4.91	3.45 3.63	33.41 35.14 36.46	58.22 61.23 63.54	13243 13927 14452	0.50 0.52 0.54	75.62 79.52 82.52	5.29 4.98 5.17	1.45 1.52 1.58	13.70 9.82 10.19	2.0	
		68-71	4 2 3	4.68	1.99 2.09	35.86 37.63 38.43	57.46 60.28 61.57	13553 14219 14523	0.44 0.46 0.47	76.71 80.48 82.20	5.53 5.25 5.37	1.60 1.68 1.72	13.72 10.03 10.25	2.0	
Seam Average 1.5 SG Float		66-71	4 2 3	4.77	2.57 2.70	34.89 36.64 37.66	57.77 60.66 62.34	13430 14103 14494	0.46 0.48 0.49	76.28 80.10 82.32	5.43 5.14 5.28	1.54 1.62 1.66	13.72 9.96 10.24	2.0	
17C 1.5 \$ink		66-68	2 3		41.03	30.35 51.46	28.62 48.54	5831 9887	0.58 0.98						

^{*}I - As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 31 Proximate and Ultimate Analyses of 20, 21 and Uncorrelated Seams, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	H,%	Ň,%	0,%	FSI	HGI
		68-71	2 3		60.53	26.38 66.83	13.09 33.17	4385 11111	0.40 1.02						
Seam Average 1.5 SG Sink		66-71	2 3		51.99	28.12 58.57	19.89 41.43	5018 10452							
83-19 Raw Coal	Un- Correlated	Outcrop	4 2 3	20.23	22.78 28.56	25.88 32.44 45.41	31.11 39.00 54.59	6663 8353 11692	0.24 0.30 0.42						
83-19 1.6 SG Float	Un- Correlated	Outcrop	4 2 3	20.23	11.83 14.82	28.79 36.09 42.37	39.16 49.09 57.63	7877 9874 11593	0.29 0.36 0.42	48.86 61.25 71.91	5.15 3.62 4.24	1.18 1.47 1.73	32.71 18.48 21.70	0	
83-20 Drill Cuttings	Un- Correlated	4-6.5	4 2 3	8.00	33.02 35.89	25.45 27.67 43.16	33.53 36.44 56.84	7566 8224 12828	0.38 0.42 0.65						
83-20 1.6 SG Float	?	4-6.5	4 2 3	8.00	21.66 23.54	28.66 31.15 40.74	41.68 45.31 59.26	9095 9886 12930	0.40 0.44 0.57	53.33 57.97 75.81	4.45 3.87 5.06	1.21 1.32 1.72	18.95 12.87 16.83	0	
83-21 Drill Cuttings	Un- Correlated	78-83	4 2 3	3.48	9.20 9.53	35.69 36.97 40.87	51.64 53.50 59.13	12710 13168 14555	0.23 0.23 0.26						
		83-84	4 2 3	3.14	7.69 7.94	36.46 37.65 40.89	52.70 54.41 59.11	13176 13603 14777	0.20 0.20 0.22						
Seam Average Raw Coal		78-84	4 2 3	3.42	8.94 9.26	35.81 37.08 40.86	51.82 53.65 59.14	12788 13241 14592	0.22 0.23 0.25						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free 4 - Equilibrium Moisture 5 - As Analyzed

Table 31 Proximate and Ultimate Analyses of 20, 21 and Uncorrelated Seams, Deadfall Syncline (continued)

Drill Hole Number	Seam No.	Depth Interval (feet)	Basis	Moisture, %	Ash, %	Volatile Matter, %	Fixed Carbon, %	Heating Value, Btu/lb	Sulfur, %	C,%	Н,%	N,%	0,%	FSI	HGI
83-21 1.6 SPG Float	7	78-83	1 2 3	3.48	4.78 4.95	37.18 38.52 40.53	54.56 56.53 59.47	13507 13994 14723	0.21 0.21 0.22	75.07 77.78 81.83	5.52 5.32 5.60	1.60 1.66 1.75	12.82 10.08 10.60	2.5	
		83-84	1 2 3	3.14	4.26 4.40	37.26 38.46 40.23	55.34 57.14 59.77	13766 14212 14866	0.20 0.20 0.21	77.36 79.87 83.54	5.68 5.50 5.75	1.37 1.42 1.48	11.14 8.62 9.01	3.0	
Seam Average 1.6 SG Float		78-84	1 2 3	3.42	4.69 4.86	37.19 38.51 40.48	54.69 56.63 59.52	13550 14030 14747	0.20 0.21 0.22	75.46 78.13 82.12	5.55 5.35 5.62	1.56 1.62 1.70	12.53 9.83 10.33		
83-22 Drill Cuttings	Un- Correlated	50-52.5	1 2 3	4.10	23.37 24.37	29.82 31.09 41.11	42.71 44.54 58.89	10277 10717 14170	0.35 0.37 0.49						
83-22 1.6 SPG Float	-	50-52.5	1 2 3	4.10	6.42 6.70	34.11 35.57 38.12	55.37 57.73 61.88	12983 13538 14510	0.41 0.43 0.46	773.68 776.83 882.34	5.23 4.98 5.34	1.55 1.61 1.73	12.71 9.46 10.13	1.5	
DH91-8	un- correlated	112-117.5	5 2 3	1.49	19.87 20.17	28.23 28.66 35.90	50.41 51.17 64.10	11210 11380 14255	0.27 0.27 0.34						
		199-200	5 2 3	1.41	11.28 11.44	30.76 31.20 35.23	56.55 57.36 64.77	12660 12841 14500	0.44 0.45 0.50						
DH91-12	un- correlated	21-25	5 2 3	1.70	13.51 13.74	32.33 32.89 38.13	52.46 53.37 61.87	12170 12380 14353	0.44 0.45 0.52						
DH91-13	un- correlated	21.5-24	5 2 3	1.76	13.14 13.38	32.11 32.69 37.73	52.99 53.94 62.27	12490 12714 14677	0.30 0.31 0.35						

^{*1 -} As Received Moisture

^{2 -} Moisture Free

^{3 -} Moisture and Ash Free

^{4 -} Equilibrium Moisture 5 - As Analyzed

Table 32.

Concentration of Major and Minor Elements as a Percent of High Temperature Ash and Ash Fusibility Data for Deadfall Syncline Coal Samples

			86 Test Pit							
Drill Hole No.	86 Test Pit#3	91-2	#2 Bulk Sample	Seam Average	91-1					Seam Average
Seam No.	DFS-1	DFS-2	DFS-2	DFS-2	DFS-3	DFS-4	DFS-4	DFS-4	DFS-4	DFS-4
Depth, Interval,	4-6	39~	11.5-	-	36-	30-	32.5-	35.0-	37.5-	30-
FL Elemental Apolonia		46	18.6		48	32.5	35.0	37.5	40	40
Elemental Analysis Ash, Wt. %										
SiO ₂	52.6	28.0	31.1	29.6	31.0	32.6	23.1	22.2	22.1	25.0
A12O3	33.4	24.0	23.4	23.7	22.9	27.5	31.7	32.9	34.1	31.6
TiO ₂	1.37	1.15	1.20	1.18	0.79	0.78	0.95	0.98	1.16	0.97
Fe ₂ O ₃	3.36	11.3	12.8	12,1	16.2	4.62	6.20	4.39	4.39	4.83
CaO	3.92	13.2	15.0	14.1	10.3	10.1	10.7	13.2	10.4	11.1
MgO	1.62	6.72	7.03	6.88	6.72	3.93	6.46	8.46	5.02	5.94
Na ₂ O	1.64	4.17	4.16	4.16	1.54	2.39	3.09	4.87	5.58	4.06
K ₂ O	1.46	0.79	1.49	1.14	1.17	0.35	0.28	0.19	1.16	0.52
P2O5	_	1.76	-	1.76	1.59	4.51	0.50	1.12	3.27	2.45
\$O ₃	0.85	4.70	4.33	4.51	4.23	8.68	9.53	7.90	9.55	8.90
SrO	-	0.28	-	0.28	0.22	0.94	0.27	0.33	0.60	0.55
BaO	-	1.41	-	1.41	0.82	2.09	1.66	1.36	1.89	1.76
MnO	0.03	0.07	0.09	0.08	0.14	0.01	0.01	0.01	0.01	0.01
Base: Acid Ratio	0.14	0.68	0.73	-	0.66	0.35	0.48	0.55	0.46	0.46
T250* Temp. 'F	2850	2215	2200	-	2225	2465	2335	2285	2352	2352
Fusibility on Temp. of Ash 'F REDUCING										
Initial Deformation	1875(?)	2055	2057		2065	2335	2195	2095	2170	2196
Softening	2800+	2075	2238	-	2115	2370	2290	2210	2285	2287
Hemispherical	2800+	2080	2284	-	2120	2390	2350	2235	2320	2321
Fluid	2800+	2090	2487	-	2130	2410	2650	2390	2440	2463
OXIDIZING										
Initial Deformation	1850(?)	2245	2087	-	2230	2375	2330	2330	2400	2360
Softening	2800+	2405	2256	-	2350	2390	2455	2550	2495	2474
Hemispherical	2800+	2440	2296	-	2370	2400	2525	2650	2565	2537
Fluid	2800+	2465	2497	-	2400	2450	2800+	2800+	2595	2655

^{*}Sage, W.L., and McIlroy, J.B., Relationship of Coal-Ash Viscosity to Chemical Composition, Journal of Engineering for Power, April 1960, Trans ASME, p. 145-155.

Table 32.

Concentration of Major and Minor Elements as a Percent of High Temperature Ash and Ash Fusibility Data for Deadfall Syncline Coal Samples (continued)

, —— ,— , <u>— ,- ,- ,- ,- ,</u> , 				91	-5			<u> </u>	<u></u>
Drill Hole No.	84-122						Seam Average		
1	[•					
Seam No.	К3	К3	К3	К3	К3	K 3	K3		
Depth, Interval,	95.3-	54-	56-	58-	60-	62-	54.0-		
Ft.	108	56	58	60	62	71.3	71.3		
Elemental Analysis	1								
Ash, Wt. %	20.0	10.0	25.0	20.5	0.02	10.4	00.04		
SiO ₂	30.9	19.8	35.0	38.5	8.03	19.4	28.24		
A12O3	29.2	23.5	37.1	39.2	24.9	25.7	32.33		
TiO ₂	0.68	0.69	1.13	1.08	1,18	0.90	1.01		
Fe ₂ O ₃	4.84	8.04	2.38	1.86	6.73	6.53	4.24		
CaO	17.5	14.8	7.62	5.53	25.7	15.7	11.26		
MgO NacO	6.69 6.86	8.32 7.16	4.71 4.62	2.94	13.3 9.96	8.90 8.81	6.34 6.75		
Na ₂ O	1		0.44	5.59					
K ₂ O	0.56	0.82		0.47	0.48	0.60	0.53		
P ₂ O ₅	0.76	0.84	0.90 4.26	0.66	0.21	0.63	0.70 6.75		
\$O ₃	1.50	11.83		3.08	7.58	10.80			
SrQ BaO	0.23 1.09	0.30 2.23	0.21 1.07	0.21 0.70	0.23 1.25	0.27 1.40	0.24 1.17		
MnO	0.02	0.04	0.01	0.70	0.01	0.01	0.01		
Base: Acid Ratio	0.60	0.89	0.27	0.21	1.65	0.88	0.47		
T250* Temp. °F	2257	2170	2565	2665	2400	2172	2340		
-	,								
Fusibility on Temp.									
of Ash °F									
REDUCING	2002	0.000	0160	0.400	0100	0100	0142		
Initial Deformation	2093	2070	2160	2400	2180	2100	2147		
Softening	2143	2150 2175	2410 2425	2450 2495	2215 2220	2165 2210	2230 2264		
Hemispherical Fluid	2189	2175	2423	2600	2235	2300	2332		
riud	2109	2193	2430	2000	2233	2300	2332		
OXIDIZING									
Initial Deformation	_	2375	2180	2385	2430	2400	2373		
Softening	-	2490	2335	2490	2500	2525	2492		,
Hemispherical		2500	2380	2515	2510	2540	2510		
Fluid	-	2515	2500	2550	2550	2555	2542		

^{*}Sage, W.L., and McIlroy, I.B., Relationship of Coal-Ash Viscosity to Chemical Composition, Journal of Engineering for Power, April 1960, Trans ASME, p. 145-155.

Table 32.

Concentration of Major and Minor Elements as a Percent of High Temperature Ash and Ash Fusibility Data for Deadfall Syncline Coal Samples (continued)

<u> </u>			91	-7				<u></u>	
Drill Hole No.						Seam Average	91-10C_	Seam Average	
Seam No.	К3	К3	К3	К3	К3	К3	К3	К3	
Depth, Interval,	32.5-	34.5-	36.5-	38.5-	40.5-	32.5-	129.0-	-	
Ft.	34.5	36.5	38.5	40.5	50.0	50.0	141.5		
Elemental Analysis Ash, Wt. %									
SiO ₂	14.8	42.3	32.7	17.6	15.8	27.66	33.9	29.8	
A12O3	30.2	37.4	30.4	25.8	24.7	30.19	33.8	31.4	
TiO ₂	0.90	0.77	0.81	0.37	0.84	0.77	0.90	0.56	
Fe ₂ O ₃	7.60	1.60	2.71	4.96	6.77	4.16	3.33	4.15	
CaO	10.9	4.37	10.3	17.8	14.8	10.76	8.62	11.5	
MgO	5.20	3.00	7.21	9.64	9.70	6.89	4.24	6.14	
Na ₂ O	5.04	3.76	6.84	6.70	9.37	6.61	7.14	6.81	
K ₂ O	0.46	0.79	0.46	0.71	0.86	0.70	0.66	0.61	
P ₂ O ₅	4.74	0.43	0.36	2.46	0.73	0.97	0.88	0.83	
SO ₃	12.88	3.15	5.88	7.95	10.00	7.00	3.00	4.93	
SrO	0.92	0.13	0.15	0.79	0.32	0.31	0.27	0.26	
BaO	3.94	1.19	1.24	3.12	1.67	1.71	1.56	1.39	
MaO	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.01	
Base: Acid Ratio	0.64	0.17	0.43	0.91	1.00	0.50	0.35	-	
T250* Temp. 'F	2235	2750	2377	2165	2160	2320	2465	-	
Fusibility on Temp. of Ash 'F									
REDUCING									
Initial Deformation	2125	2090	2170	2250	2080	2158	2115	-	
Softening	2320	2145	2185	2260	2125	2221	2175	-	
Hemispherical	2410	2175	2200	2270	2150	2254	2190	-	
Fluid	2480	2225	2225	2295	2270	2348	2300	-	
<u>OXIDIZING</u>									
Initial Deformation	2370	2425	2150	2300	2405	2362	2260	-	
Softening	2565	2550	2350	2490	2525	2508	2315	-	
Hemispherical	2610	2625	2400	2510	2545	2541	2340	-	
Fluid	2775	2800+	2495	2525	2580	2611	2450	•	

^{*}Sage, W.L., and Mcllroy, J.B., Relationship of Coal-Ash Viscosity to Chemical Composition, Journal of Engineering for Power, April 1960, Trans ASME, p. 145-155.

Table 32.

Concentration of Major and Minor Elements as a Percent of High Temperature Ash and Ash Fusibility Data for Deadfall Syncline Coal Samples (continued)

· ··· · · · · · · · · · · · · · · · ·			·
			Seam
Drill Hole No.	91-7	-	Average
			A A T V - WALV
Seam No.	K4	-	-
Depth, Interval,	102.5-	104.5-	102.5-
Ft.	104.5	106.5	106.5
Elemental Analysis			
Ash, Wt. % SiO ₂	33.6	9.94	24.31
A1 ₂ O ₃	33.9	21.2	28.91
	0.85	1.02	0.92
TiO ₂	3.31	8.2	5.23
Fe ₂ O ₃ CaO	3.31 7.74	20.8	12.87
MgO	7.74 4.49	20.8 12.9	7.79
Na ₂ O	6,50	9.18	7.19
K ₂ O	0.54	0.52	0.53
P ₂ O ₅	1.54	0.52	0.94
SO ₃	4.80	11.45	7.41
SrO	0.34	0.23	0.30
BaO	1.51	1.69	1.58
MnO	0.01	0.02	0.01
Base: Acid Ratio	0.33	1.60	0.63
T250* Temp. 'F	2490	2340	2240
, i			-
Fusibility on Temp.			
of Ash 'F			
REDUCING			
Initial Deformation	2090	2200	2150
Softening	2190	2240	2217
Hemispherical Fluid	2270 2400	2280 2460	2275 2432
Fluid	2400	2400	2432
OXIDIZING			
Initial Deformation	2290	2450	2377
Softening	2380	2550	2472
Hemispherical	2435	2600	2525
Fluid	2475	2650	2570

^{*}Sage, W.L., and Mcliroy, J.B., Relationship of Coal-Ash Viscosity to Chemical Composition, Journal of Engineering for Power, April 1960, Trans ASME, p. 145-155.