SAMPLING FOR COBALT AT BORNITE, ALASKA

By Jeffrey Y. Foley

* Field Report - January, 1983

U. S. DEPARTMENT OF THE INTERIOR

James G. Watt, Secretary

BUREAU OF MINES
TABLE OF CONTENTS

Introduction ..
Economic Geology ...
Work by the Bureau ...
Recommendations ..
References ..
INTRODUCTION

Carrollite \((\text{CuCo}_2\text{S}_4)\), an ore mineral of cobalt, is known to occur in the Ruby Creek Cu-Zn deposit at Rornite (fig. 1), in northwest Alaska \((5, 9)\). The events leading to mineralization of dolomite and argillite units and the distribution of these rocks in the Bornite district are among the topics covered in a PhD dissertation by M. W. Hitzman of Stanford University (in progress). Hitzman has identified carrollite and cobaltiferous pyrite at numerous intersections in diamond drill core belonging to Rear Creek Mining Corporation, the present operator of the property. A brief visit to collect bulk samples was made by a Bureau geologist in July, 1981, as part of the Alaska Critical Metals program.

ECONOMIC GEOLOGY

Hitzman summarizes the distribution of cobalt as occurring:

1) "...as late cobaltiferous pyrite rims on earlier formed pyrite grains in pyritiferous, ferroan dolomite with disseminated sphalerite and massive siderite"

2) "...as carrollite in high-grade bornite, chalcocite, chalcopyrite, and sphalerite ore at higher levels in the deposit."

2 Underlined numbers in parentheses refer to items in the list of references at the end of this report.
Carbonate rocks including limestone, dolomites and ferroan dolomites are by far the most abundant lithologies in the district. These carbonates stratigraphically overlie a shale sequence and Devonian ages are inferred for both units on the basis of paleontological evidence (8). These units are aligned along a large symmetrical anticlinorium that strikes NNW in the western Brooks Range (9). Hitzman interprets the limestone and some of the dolomites as carbonate bank deposits approximately 1000 m thick which were deposited adjacent to a shale-filled graben (5). Both mineralized dolomite and ferroan dolomite are of hydrothermal origin, which resulted in a vertical zoning of metals within the deposit. Runnells further describes the presence of the supergene sulfides djurleite (Cu1.96S) and covellite at Ruby Creek.

The Ruby Creek deposit has been drilled and Cu-Zn reserves have been calculated at 1 million tons of Cu in ore ranging from 4-12%. The old mine workings are currently flooded but drilling and assessment work continues annually by the Bear Creek Mining Co. Although cobalt has been identified at numerous intersections, no reserves for this commodity have yet been calculated. Discussions with Jay Hammit of Bear Creek Mining indicate the company is recalculating reserves based on a Cu-Co recovery.

WORK BY THE BUREAU

Permission to visit Rornite and sample the Ruby Creek ore dump was granted to the Bureau by Mr. Hammit. Three bulk samples weighing over 100 lb. each were collected by the writer on July 16, 1981. Numerous specimens of various sulfide assemblages were also collected. Analyses for 3 hand specimens and head analyses for 3 bulk samples are presented.
below. M. W. Hitzman has advised us that it now appears from his data that higher cobalt values are present in lower-grade chalcopyrite-pyrite-bornite material. The Bureau's sample results below support this hypothesis.

TABLE 1. - Head analyses of Ruby Creek bulk samples

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Fe(%)</th>
<th>Cu(%)</th>
<th>Co(%)</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW 18806</td>
<td>11.2</td>
<td>36.4</td>
<td>0.10</td>
<td>19.8</td>
</tr>
<tr>
<td>SW 18807</td>
<td>10.3</td>
<td>36.4</td>
<td>0.08</td>
<td>18.9</td>
</tr>
<tr>
<td>SW 18808</td>
<td>12.5</td>
<td>34.7</td>
<td>0.10</td>
<td>20.0</td>
</tr>
</tbody>
</table>

* Samples collected from Ruby Creek ore dump. Material specifically selected for bornite-and chalcopyrite-rich specimens. Each sample weighed between 100 and 150 pounds.

TABLE 2. - Summary of preliminary cobalt analyses on grab samples from Ruby Creek ore dump

<table>
<thead>
<tr>
<th>USRM sample</th>
<th>Co(ppm)</th>
<th>Cu</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW 18811A</td>
<td>230</td>
<td></td>
<td>5-10% Bo(bornite) in carbonate rock.</td>
</tr>
<tr>
<td>SW 18811B</td>
<td>2950</td>
<td></td>
<td>Several % pyrite, with minor Cc(chalcopyrite and Bo.</td>
</tr>
<tr>
<td>SW 18811C</td>
<td>43</td>
<td></td>
<td>Several % Bo with trace Cc.</td>
</tr>
</tbody>
</table>

1 Atomic absorption analyses by Bondar-Clegg, Vancouver.

RECOMMENDATIONS

These preliminary analyses and statements by Hitzman indicate that samples of pyritic material should be specifically selected from the dump where the other bulk samples were collected. Permission has been requested and granted from Mr. Hammit to accomplish this goal in the summer of 1983.

The presence of cobalt in the Ruby Creek copper deposits suggests that copper showings along the Ruby anticlinorium to both the east
and west should also be examined for Co content. Most of these show-
ings are presently included in restrictive land classifications which
prevent evaluation by industry.

It is proposed that Jeff Foley and one other worker from AFOC-
Fairbanks follow up with a 2-3 day visit to Bornite in the summer of
1983.

REFERENCES

1. Cobb, E. H. Summary of References to Mineral Occurrences (Other

2. Cobb, E. H. and C. F. Mayfield. Summaries of Data on and Lists
of References to Metallic and Selected Nonmetallic Mineral Occurrences
in the Ambler River Quadrangle, Alaska, Supplement to Open-File Report

3. ______. Summaries of Data on and Lists of References to Metallic
and Selected Nonmetallic Mineral Occurrences in the Ambler River
Quadrangle, Alaska, Supplement to Open-File Report 75-628, Part B --
Lists of References to January 1, 1981. U.S. Geol. Survey OFR 81-570B,
1981.

4. Ellersieck, I. Map showing Chromium, Nickel, and Cobalt Stream-
Sediment Geochemical Anomalies, Ambler River Quadrangle, Alaska. U.S.

5. Hitzman, M. W. The Ruby Creek Cu-Co-Zn Deposit, Southwestern
Brooks Range, Alaska (abstract) presented at Alaska Miner's Association

