UNITED STATES DEPARTMENT OF THE INTERIOR J. A. Krug, Secretary
bUREAU OF MINES
James Boyd. Director

REPORT OF INVESTIGATIONS

YAKOBI .ISLAND NICKEL DEPOSIT SITKA MINING DISTRICT, ALASKA

BY

REPORT OF INVESTIGATIONS

UNITED STATES DEPARTMENT OF THE INTERIOR - BUREAU OF MINES

YAKOBI ISLAND NICKHL DEPOSIT; SITKA MINING ITSTRICT, ALASKAI/
By J. H. East, Jr., 2/W. M. Traver Jr. \because and W. S. Wright5/ S. Sanford, $4 /$
CONTENTS
Page
Introduction
3
3
Acknowledgments
Acknowledgments 4
Accessibility 4
Topography 5
Timber 5
Water power 5.
Ownership 5
History, production, and development 6
Geology 6
Ore 7
Core drilling 8
Diamond-drill sampling 9
Tunnel and pit sampling 22
Beneficiation 26
Buik flotation of copper ard nickel 26
Differential flotation of copper and nickel 27
Bi.bliography 28Figurepage

1. Territory of Alaska index map, Yakobi Island, Alaska 4 Yakobi Island, Alaska
4
2. Location and claim map, Bohemia Basin 6
3. Tripod ore body; surface profile, section, and assay plän, D.D. holes 4 and 4 A 8
17 The Bureau of Mines will welcome reprinting of this paper provided the following footnote acknowledgment is used: "Reprinted from Bureau of Mines Report of Investigations 4i82."
2/ Mining engineer, Bureau of Mines, Washington, D. C.3/ Mining engineer, Bureau of Mines, Denver, Cola.Acting chier, Alaska Division, Mining Branch, Bur ou of Mines, Juneau,Alaska.
5/ Mining engineer, Bureau of Mines, Juneau, Alaska.
Following
page Figure
4. Tripod ore body; surface profile, section, and assay plan, D.D. hole 14 8
5. Tunnel ore body; surface profile, section, and assay plan, D.D. hole ll 8
6. Tunnel ore body; surface profile, section, and assay plan, D.D. hole ILA 8
7. Tunnel ore body; surface profile, section, and assay plan, D.D. holes I and IA 8
8. Tunnel ore body; surface profile, section, and assay plan, D.D. hole 12 8
9. Tunnel ore body; surface profile, section, and assay plan, D.D. hole 16 8
10. Tunnel ore body; surface profile, section; and assay plan, D.D. hole 2 8
11. Tunnel ore body; surface profile; seotion; and assay plan; D.D. hole. 15 8
12. Tunnel ore body; surfece profile, section; and assay plan, D.D. hole 17 8
13. North Muskeg ore body; surface profile, gection, and assay plan, D.D. hole 7A 8
14. North-Muskeg ore body; surface profile, seotion, and assay plan, D.D. hole 10 8
15. South Muskeg ore body; surface profile, section, and assay plan, D.D. hole 13 8
16. Tunnel ore body; geologic and assay plan, Bohemia tunnel 22
17. Tripod ore bodios; geologic and assay plan, pits 10, 11 , 9, A, and 8 22
18. North Muskeg ore body; geologic and assay plan, pits 2 and 3 22
19. South luskeg ore budy; geologic andassay plan; pits 4,5, and 7 22
20. Proposed bulk flotation flow sheet for fakobl mill 28

INITODUCTION

This report describes the results obtained from a diamond-drill exploration project performed by the Bureau of Mines on the nickel deposits of the Yakobi Island, Alaska.

The Federal Geological Survey (completed a detailed geologic study and mapped the area during the summer of 1940, and a Bureau of Mines examining ongineer I/ made a preliminary examination of the deposits in June 1941, at which time core drilling was suggested as the logical means of determining the extent and grade of the deposits.

6/ Reed, J. C., and Dorr, J. Van N., II, Nickel Deposits of Bohemia Basin and Vicinity, Yakobi Island, Alaska: Geol. Sur. Bull. 931-F, 1941, pp. 105-138.
7/ Spangler, Ricker, senior mining engineer.

Equipment and supplies were unloaded on the beach at Yakobi Island on October 21, 1941: The drills were moved to Bohemia Basin, where actual drilling operations were begun under the direction of a Bureau of Mines engineer 8 / on Noverber 7, 1941. Two core-drili holes were completed on December 7, 1941. Upon the request of the driliing contractor, operations were recessed owing to severe winter conditions. Work on the project was resumed April 27, 1942, : under the direction of another Bureau of Mines engineerg/ and was completed August 15, 1942. During the 1942 season, 13 core-drill holes were completed, and 10 surface pits and a tunnel were sampled. A total of 5 , 191 feet of coredrimi hole was drilled in 15 holes auring the entire project. The results of drilling and sampling forin the basis of this report.

The Federal Geological Survey maintained a fleld partylo/ on the island during the drilling and collaborated with the Bureau of Mines engineer in logging' diamond-drillcores and interpreting geologic data obtained in the course of the work.

ACKIVOWL EIGGMETIS .
This paper is one of many reporting on various aspects of the Bureau of Mines program initiated in August 1939. by passage of the Strategic Minerals Act, the scope of which was greatly expanded by subsequent legisiation.

Some of these papers were published as war mineral reports; others are Issued as bulletins, technical papers, reports of investigations, and information circulars of the Bureau of Mines or in technical journals.

In its program of investigation of mineral deposits, the Bureau of Mines has as its primary objective the more offective utilization of our mirieral resources to the end that they make the 'greatest possible contribution to national security and economy. It is the policy of the Bureau to publish the facts developed by each project as soon as practicable after its conclusion. The Mining Branch, Lowell B. Moon, chicf, conducts preliminary examinations, porforms the actual exploratory work and prepares the final report. The Motallurgical Branch, Olivor C. Ralston, chiof, analyzos samples and performs the boncficiation tosts.

The Yakobi Island profect was part of a program for the invostigation of mincral doposits in Alaska under the general supervision of R. S. Sanford, acting division chiof. From October 1941 to March 1942 the projoct was undor the supervieion of J. H. East, Jr.; William M. Traver, Jr., was project onginear from March until the projcct was completed in August 1942.

Acknowledgment is made to J. A. McAllistor, formor metallurgist, Salt Lake City Division, Mctallurgical Branch, for bencficiation and analytical tosts on tho ore.

8/ J. H. Weast, Jr, , mining ongincor.
9/ W. M. Traver, mining engineer:
10/ George 0. Gatas, assistant gcologist, and George C. Konnody, junior gcologist.

Acknowledgment is also made to J, C. Reed, J. V. N. Dorr II, W. T. Pecora, George O. Gates, George C. Kennedy, and Matt S. Walton, Jr., of the Geological Survey for their detailed geologic map of the area and the interpretation of geologic data from drill cores.

LOCATION

Yakobi Island 1 the northermost island of the Alexander Archipelago of southeastern Alaska. (See fiǵ, I,) It is in the extreme northern part of the Sitka mining district at a latitude $58^{\circ} \mathrm{N}$. and longitude $136^{\circ}: 25^{\circ} \mathrm{W}$. The island is about 100 miles airline west from Juneau and 76 miles north of Sitka; as shown in figure 2. Lisianski strait, onehalf mile in width, and Lisianski. Inlet separate it from Chicagof Island. Yakobi Isłand is 18 miles long, and its greatest width is 6 miles. Pelican City, the nearest settlement, is a fishing village located on Chicasof Island in Lisianski Inlet and 1 s about 7 miles from the beach camp on Yakobi Island.

The specific area to which this report fefers is Bohemia Basin, the local name applied to the valley of Bohemia Creek. It is located on the east side of Yakobi Island (fig. 3) and is roughly midwey between the north and south points of the island. Six showings of mineralization are known to exist and are located on figure 3. The area south of the Bohemia Bàsin camp is the largest in extent and is the one upon, which the exploration was concentrated. The deposits are 2-1/2 miles by, trail southwest of the mouth of Bohemia Creek, but the airline distance is only about $1-1 / 2$ miles. The trail is the only means of access to the deposits. Bohemia Creek empties into Lisianski Strait 2-1/4 miles southwest of Miner Island, which is a conspicuous landmark.

ACCESSIBILITY.

Yakobi Island is oxtremely inaccessible. A motorship makes a weekly scheduled trip botween Juneau and Sitka but does not travel the route through Cross Sound (if. ?). It does, howevor, on alternate wecks, connect at Hoonah with a contract mail boat which receites and delivers mail to Pelican City.

The mein steamer route to the west from Juneau passes through Cross Sound north of the island. None of the steamers on the run now make regular stops at Pelican City; morchandise and passengers must be routcd to Juncau and arrangements made for delivery from there.

Alaska Coastal Alrways makes periodical trips from Juncau to Pelican City. Passongers, on request, arc landed at Bohomia Basin Camp on Yakobi Island at the same farc ($\$ 20.88$ incluaing tax).

The island can roadily be reachod by small motorboats from either Juncau or Sitka, but the formor is preforrod becausc tho route from that point is by inside, safer waters. Dicsel boats average 15 hours for the trip. Flying time is 45 minutes.

When available on regular schedulos, boat faros from Juneau to Pelican City are. \$18.00. Freight rates with independent boatmon, on indefinite schedules, average $\$ 10.00$ a ton.
1954

Figure 1. - Territory of Alaska index map, Yakobi Island.

Figure 2. - Yakobi Island and vicinity; Bohemia Basin nickel deposit.

Figure 3. - Location and claim map, Bohemia Basin.

Tides are a factor in the islends' accessibility, especially important when dock construction and operation are considered. They are about the same as for Sitka, as shown in the Tide Tables published by the Coast and Geodetic Survey of the United States Department of Commerce, with a maximum of about 15 feet.

TOPOGRAPHY AND CLIMATE

Yakobi Island, like most of the islands of the Alexander Archipelago, is very rugged, and altitules range from sea level to 2,500 feet. The terrain rises abruptly on the northwest side of Bohemia Creek, but the relifef to the southeast is moderate. Fiat areas along the basin are covered with as much as 7 feet of muskeg that is completely saturated, except in very infrequent. dry periods.

The climate is similar to that of all southeastern Alaska; extremely heavy precipitation, chiefly rain, can always be expected. Snow is reported to reach a depth of 12 feet on the level at the higher altitudes during the winter. An average annual precipitation of 120 inches, a maximum temperature of $57^{\circ} \mathrm{F}$. and a minimum of $30^{\circ} \mathrm{F}$. were recorded at Kimshan Cove, the closest Government weather station, for the period August 1940-July 1942.

TIMBER

Spruce, pine, hemlock, and cedar grow abundantly over a great portion of the island up to altitudes of 1,500 to 2,000 feet. The height, diameter, and soundness vary in different localitios, but a sufficient amount of timber for limited mining operations appears to be available. Wood suitable for heating and cooking is available in the section adjacent to the Bohemia Basin camp.

WATER POWER

Water for domestic purposes and for concentrator operation can be supplied by Bohemia Lake, $1 / 4$-mile west of the deposits, or Takanis Lake, 2 miles southwest.

Measuroments wore not made of the flow of water from Takanis Lake, but from the drainage area and amount of rainfall, it is estimated that it would not provide more than 20 percont of the water required to operate a hydroclectric plant to furnish powor necessary for mine and concentrator plants.

OWNERSHIIP

The controlling interosts in the ore deposits of Bohemia Basin are largely owned by S. H. P. Vevelstad, Hon. David Sholtz, and associates, Figure 3 shows the claims thought to cover the main mineral areas. Data for the location of the clatms shown on figure 3 were furnished by Carl Vevelstad, one of the owners, as was the following list of the 124 unpatented claims with the recorded ownorship. Claims are all 600 feet by 1,500 feet, many of them overlapping.

All core drilling by the Bureau of Mines was on claims 2 A and 4 A of the Yakobi group.

HISTORY, PRODUCTION, AND DEVELOPMENT

S. H. P. Vevelstad is credited with discovery of the nickel-copper ores on Yakobi Island in 1921. Since that time many claims have been added to those originally staked until they cover practically all of Bohemia Creek and the west shoreline of Lisianski Strait. In 1939 the ore bodies herein referred to as area 1 (fig. 3), which is just south of the Bohemia Basin camp, were segregated in the Yakobi group, and those of the two Takanis bodies (area 2, fig. 3) were included in the Mayflower and Portia groups. Some of the ground was restaked in 1940 by a prominent mining company, on agreement. with Vevelstad, but were not recorded.

Iittle authentic historical information is available concerning the property.

No ore shipments have been made.
Soon after location, the Bohemia tunnel was started on the "Tunnel ore body" and has been advanced from time to time, probably to fulfill the requirements of annual assessment work, until at present it has a total length of 160 feet. The various other ore bodies have been prospected by 20 open surface trenches or: pits. The lower ore bodies are covered by muskeg. They have been sampled by removing the muskeg from prominent ridges and blasting a fresh face in the solid formation exposed. The pits on the higher bodies expose fresh faces on the outcrops. In the tunnol, as well as in the open pits, there is evidence that an effort has beon made to follow the richest mineralization wherever possible.

GEOLCGY11/

The oldest stratified rocks of Yakobi Isiand are Upper Triassic and in part Lower Cretaceous, largely volcanic rocks and graywacke. Two intrusions

II/ Reed, J. C., and Dorr, J. Van N., II, Nickel Deposits of Bohemia Basin and Vicinity, Yakobi Islend, Alaska: Geol. Survey Bull. 931-F,1941,pp. 105-138; Buddington, A. F., Mineral Investigations in Southeastern Alaska: Geol. Survey Bull. 773, 1925, $267 \mathrm{pp}$. ; and Kennedy, Gcorge C. and Walton, Matt S., Jr., Nickel Investigations in Southcastern Alaska: Gcol. Survoy Bull. $947-\mathrm{C}, 1943$ and 1944, pp. 39-64.

Figure 4. - Geologic and topographic map, Yakobi Island.
into the stratified rocks are identified - an earlier one related to the Coast Range batholith, mostly albite granite gneiss and amphibolite, and a later stoc of unfoliated intrusives, norite, gabbro, diorite, and quartz diorite. Metamorphism was extensive as a result of both intrusions, and in places inclusions of amphibole schists have been metamorphosed to hornfels.

It is the rocks of this later stock, particularly the norite, with which this report is concerned, for the sulfide-bearing bodies are almost entirely confined to this one rock type. Ore bodies are thought to be the result of magmatic segregation, mainly pyrrhotite, pentlandite, chalcopyrite, and magnetite, and are considered among the last minerals to crystallize from that part of the magma which formed the norite. Alteration of the minerals is very elight, even close to and at the surface. While the mineralization is con fined almost entirely to the norite, the greater part of the norite is barren.

Many dikes, mostly andesite, cut the rocks of the area. Some are presumed to be related to the intrusive gneise and some to the later stock.

There are also a large number of smell faultings, both pre- and postintrusions, but none were found to affect the ore bodies measurably.

The names of the ore bodies outlined by the Geological Survey Bulletin 931-F are adhered to on the plan map, figure 4. Six of the eight bodies oxposed by 1,500 feet of trenches or pits and one tunnel 160 feet long; are in the area explored; these are the West Tripod, East Tripod, Tunnel, North Muskeg, and Side Hill.

No: drilling was done on the Side Hill body, and drill hole 14 proved the West and East Tripod bodies to bo continuous.

The outline of the various bodios where no magnetic prospecting has been done is more or less arbitrary, especially in the case of the lower bodies, which are completely covercd by muskeg. The upper bodies are more readily delineated, since the contact between mincralized and unmineralized zones in in part exposed.

ORE
Tho mincrals pyrrhotito, pentlandite, chalcopyrite and magnetitc occur In the norite and form the ore.

The sulfide content of the ore, as shown in trenchos and diamond drill holos, is orratic. Sampling proved that practically all nickol and copper valuos aro confined to the sulfide zones.
A sample of about a ton of the ore, mined from the Bohemia tunnel, was tested in the Bureau of Mines metallurgical laboratory. The analysis of the ore, which is given below, showed that no motals of economic importance, other than nickel and copper, were prosont:

CORE DRILIING

Drilling was done by a private contractor under the direct supervision of a Bureau of Mines engineer. Standard portable rotary drills, powered with model T Ford motors, were used, and cores were recovered through double core barrels obtaining solid cores of standard "BX", "AX", and "EX" sizes.

Sleds were built to haul rods, pipe, etc., using green timber for runners. The drills were winched up the trail pulling three sleds behind each of two drills.

Figure 4 is a geologic and topographic plan of the area, showing the location of the various ore bodies drilled and the position of core-drill holes with respect to these bodies. Holes $4,4 \mathrm{~A}$, and 14 (see figs. 5 and 6) are on the Tripod body; 11, 11A, 1, 1A, 12, 16, 2, 15 and 17 (figs. 7 through 14) in the Tunnel body; and 7A, 10, and 13 (figs. 15, 16, and 17) in the North and South Muskeg bodies.

Table 1 gives collectively significant data regarding the drill holes.
TABLE 1. - Diamond-drill-hole data

Hole	$\begin{gathered} \text { Collar eleva- } \\ \text { tion, ft. } \end{gathered}$	End elevaition, $\mathrm{f}^{\prime} \mathrm{t}$.	Bearing Incli-	$\begin{gathered} \text { Length, } \\ \text { ft. } \end{gathered}$	$\begin{aligned} & \text { Ore, } \\ & \text { ft. } \end{aligned}$	$\begin{aligned} & \text { Core recov- } \\ & \text { ery, percent } \end{aligned}$
			Tripod ore body			
4	890	890	N. $41^{\circ} \mathrm{W} .0^{\circ}$	289.5	124.8	94.8
4 A	885	567	N. 41° W. -70°	338.6	216.8	92.5
14	793	572	N. $20^{\circ} \mathrm{W} .-45^{\circ}$	312.9	106.4	87.6
			Tunnel ore body			
11.	945	830	South -260 30'	258.1	180.4	89.2
11A	944	761	S. $30^{\circ} \mathrm{W} .-45^{\circ}$	258.5	125.8	93.9
12	806	514	S. 12° W. -45°	433.2	302.4	93.9
1	938	718	S. $17^{\circ} \mathrm{W} .44^{\circ}$	310.4	122.5	95.4
IA	941	941	S. $17^{\circ} \mathrm{W} .0^{\circ}$	220.7	188.2	94.3
16	731	392	S. $30^{\circ} \mathrm{W} .-45^{\circ}$	479.3	125.0	92.7
2	964	964	S. $24^{\circ} \mathrm{E} .0^{\circ}$	352.8	40.9	89.2
151/	814	465	S. 8° E. -55°	425.8	-	87.9
171/	703	224	S. $65^{\circ} \mathrm{W} .-67^{\circ}$	520.3	-	94.2
			North Muskeg body			
	678	386	S. $47^{\circ} 39^{\prime}$ E. -45°	413.3	154.5	92.0
101/	708	492	S. $27^{\circ} 39^{\prime}$ E. -45°	305.0	-	84.1
			South Muskeg body			
13	710	503	S. $25^{\circ} 30^{\prime}$ E. -45°	292.5	104.0	89.0

If Not considered in ore zone.

Figure 5. - Tripod ore body; surface profile, section, and assay plan, diamond-drill holes 4 and 4A.

Modified from Geological Survay section.

Figure 6. - Tripod ore body; surface profile, section, and assay plan, diamond-drill hole 14.

Modified from Geological Survey section.

Figure 7. - Tunnel ore body; surface profile, section, and assay plan, diamond-drill hole Il.

Modified from Geological Survey section.

Figure 8. - Tunnel ore body; surface profile, section, and assay plan, diamond-drill hole IIA.

Modified from Geological Survey section.

Figure 9. - Tunnel ore body; surface profile, section, and assay plan, diamond-drill holes I and IA.

Figure 10. - Tunnel ore body; surface profile, section, and assay plan, diamond-drill hole 12.

Figure II. - Tunnel ore body; surface profile, section, and assay plan, diamond-drill hole 16.

Modified from Geological Survey section.

Figure 12. - Tunnel ore body; surface profile, section, and assay plan, diamond-drill hole 2.

Figure 13. - Tunnel ore body; surface proflle, section, and assay plan, diamond-drill hole 15.

Figure 14. - Tunnel ore body; surface profile, section, and assay plan, diamond-drill hole 17.

Figure 15. - North Muskeg ore body; surface profile, section, and assay plan, diamond-drill hole 7A.

Moditied from Geological Survey section.

Figure 16. - North Muskeg ore body; surface profile, section, and assay plan, diamond-drill hole 10.

NW

Modified from Geological Survey section.

Figure 17. - South Muskeg ore body; surface profile, section, and assay plan, diamond-drill hole 13.

Standard metal "sludge tanks" were used, and the cuttings were recovered from all holes while ore was being drilled. Since a high core recovery was obtained, the cuttings were discarded when the core was removed from the hole. Only six cutting samples were sent for analysis, and although the results were recorded, they were disregarded in calculations.

Cores were filled in wooden core boxes with metal dividers until logged, . after which they were split longitudially, one half going for assay and the duplicate retained at the project for use in case of lost shipments, or for a check on results if required.

In all, 467 core samples and 113 pit and tunnel samples were shipped to the Bureau of Mines laboratory at Reno, Nev., for analysis; in addition, a sample of more than 1 ton was mined in the tunnel and sent to the Bureau of Mines laboratory at Salt Lake City, Utah, for metallurgical testing.

Tables 2 to 14, inclusive, show sample lengths and core analyses.

Tripod ore body drill hole 4

Tripod ore body drill hole 4 A

Sample	Depth, f .	Sample length, ft.	Core analysis, percent		Sample	Depth, ft.	Sample length; ft.	$\begin{gathered} \text { Core } \\ \text { analysis, } \\ \text { nercent } \end{gathered}$	
			Ni :	Cu				Ni	Cu
1	71.5	4.8	0.19	0.15	I	17.5	0.6	0.01*	0.02*
2	76.8	5.3	. 15	. 13	2	22.5	5.0	.01*	.02*
3	81.0	4.2	. 18	. 12	3	28.3	5.8	.01*	.02*
4	85.5	4.5	. 02	. 02		40.8	12.5	.01*	.02*
5	86.5	1.0	. 06	. 03	5	44.0	$3 . ?$.01*	.02*
6	89.7	3.2	. 27	. 12	6	68.5	24.5	.01*	.06*
7	94.5	4.8	.01*	. 03	7	81.8	13.3	.01*	.02*
8	99.3	4.8	.01*	. 02	8	88.3	6.5	. 08	. 05
9	102.0	2.7	.07*	. 04	9	93.5	5.2	. 18	. 14
10	107.0	5.0	. 40	. 18	10	98.1	4.6	. 37	. 13
11	111.3	4.3	. 67	. 20	11	103.2	5.1	.01*	.02*
12	114.3	3.0	'1.77'	1.13	12	106.6	3.4	. 10	.02*
13	118.2	3.9	. 49	. 24	13	111.6	5.0	. 67	. 24
14	120.0	1.8	. 37	. 10	14	117.6	6.0	.01*	.02*
15	124.0	4.0	. 69	. 29	15	122.3	4.8	. 72	. 40
1.6	126.7	2.7	. 74	. 76	16	123.8	1.5	.01*	.02*
17	129.3	2.6	1.91	. 92	17	126.0	2.2	. 39	. 09
18	131.7	2.4	. 44	. 43	18	202.0	76.0	.01*	. 02
19	134.3	2.6	. 09	. 10	19	204.0	2.0	. 57	. 16
20	135.5	1.2	. 50	. 40	20	224.9	20.9	.01*	. 12
21	135.9	0.4	5.85	. 04	21	230.0	5.1	1.40	. 42
22	139.4	3.5	. 62	. 52	22	235.0	5.0	. 51	. 51
23	144.2	4.8	. 64	. 34	23	238.6	3.6	1.10	. 43
24	146.2	2.0	1.32	. 25	24	242.7	4.1	.01*	. 02
25	149.0	2.8	.01*	.02*	25	248.0	5.3	. 94	. 48
26	153.8	4.8	.01*	.02*	26	253.0	5.0	. 94	. 44
27	158.7	4.9	.01*	.02*	27	258.0	5.0	. 77	. 36
28	163.7	5.0	. 34	. 23	28	264.6	6.6	. 47	. 37
29	168.6	4.9	. 16	. 08	29	279.0	14.4	.01*	.02*
30	173.8	5.2	.33	. 17	30	285.0	6.0	.01*	.02*
31	177.6	3.8	.01*	. 02	31	290.6	5.6	. 18	. 05
32	181.3	3.7	. 41	. 24	32	293.6	3.0	. 21	. 04
33	186.5	5.2	. 55	. 52	33	298.6	5.0	1.04	. 45
34	191.5	5.0	. 25	. 25	34	305.0	6.4	1.04	. 86
		124.8	. 384	. 222			216.8	. 256	. 150
35	196.5	5.0	. 04	. 04	35	311.0	6.0	. 03	. 04
36	201.5	5.0	.01*	. $02 *$	36	338.7	27.7	. 02	. 02
37	206.3	4.8	.01*	. $02 *$					
38	289.5	83.2	.01*	.02*					

*Less than.
No sample taken, $0.66 .7 \mathrm{ft} . ;$
barren formations.
Composite sample, 206.3-289.5 ft.
*Less than.
No sample taken, 0 - 3.7 ft ; overburden.
No sample taken; 3.7-16.9 ft.; barren norite.
Composite sample, $311.0-338.7 \mathrm{ft}$.

TABLE 3. - Tripod ore-body drill hole 14

TABLE 4.- Tunnel ore-body drill hole 11

TABLE 5. - Tunnel ore-body drill hole 11-A

Sample	Depth, ft.	Sample length, ft.	Core anelysis, percent		Sample	$\begin{aligned} & \text { Depth, } \\ & \text { ft. } \end{aligned}$	Sample length, ft.		
			Ni :	Cu				Ni :	Cu
1	13.5	7.5	0.15	0.06	24	136.1	4.3	0.07	0.05
2	18.5	5.0	. 20	. 11	25	141.1	5.0	. 10	. 06
3	19.5	1.0	. 45	. 31	26	146.1	5.0	. 06	. 08
4	40.7	21.2	. 08	. 06	27	151.0	4.9	. 05	. 06
5	45.7	5.0	. 61	. 41	28	156.6	5.6	. 05	. 02
6	50.7	5.0	. 72	.76	29	161.7	5.1	. 01	. 03
7	56.0	5.3	. 33	. 24	30	. 166.7	5.0	. 47	.34
8	61.3	5.3	. 61	. 26	31	172.5	5.8	. 54	. 43
9	64.5	3.2	1.18	1.04	32	177.0	4.5	. 05	. 06
10	69.5	5.0	. 55	. 11	33	182.0	5.0	. 08	. 06
11	74.9	5.4	. 64	. 32	34	186.1	4.1	. 09	. 08
12	80.0	5.1	1.13	3.18	35	191.1	5.0	. 05	. 02
13	85.1	5.1	3.60	3.13	36	194.5	3.4	. 04	. 04
14	90.1	5.0	. 08	. 13	37	197.7	3.2	. 45	. 19
15	95.1	5.0	. 15	. 10	38	199.5	1.8	. 01	. 05
16	100.0	4.9	. 43	. 16	39	204.6	5.1	. 12	. 07
17	105.0	5.0	. 27	. 18	40	209.6	- 5.0	. 05	. 02
18	110.3	5.3	. 84	.71	41	212.1	2.5	. 08	. 05
19	115.3	5.0	. 99	. 23	-	213.2	1.1	-	-
20	120.0	4.7	1.30	. 36	42	217.4	$\therefore 4.2$. 18	.13
21	125.4	5.4	1.56	. 94	43	221.6	' 4.2	. 30	. 12
22	129.3	3.9	. 01	. 04	44	229.7	8.1	. 05	. 04
23	131.8	2.5	1.30	. 45	45	233.3	3.6	. 36	. 16
		125.8	. 649	.514	46*	258.5	$\frac{101.5}{25.2}$	$\underline{.146}$. .099
```*Composite semple, 233.3-258 f`. No sample taken, 0-6.0 ft.; overburden.```									

TABLE 6. - Tunnel ore body, drill holes 1 and 1-A
Drill hole 1
Drill hole 1-A

Sample	$\begin{gathered} \text { Depth, } \\ \text { ft. } \\ \hline \end{gathered}$	Sample   length, ft.	Core analysis, percent		Sample	Depth, ft.	Sample length, ft.	Core analysis, percent	
			Ni :	Cu				Ni	Cu
1	15.3	4.6	0.01*	0.02*	1	10.3	4.6	0.01*	$\frac{0.02^{*}}{}$
2	20.3	5.0	.01*	. 05	2	15.5	5.2	. 30	. 12
3	25.5	5.2	. 14	. 16	3	20.5	5.0	. 66	. 32
4	29.0	3.5	. 05	. 08	4	25.5	5.0	. 47	. 29
5	34.0	5.0	. 20	. 11	5	30.5	5.0	. 22	. 16
6	39.0	5.0	. 53	. 24	6	47.5	17.0	. 05	. 05
7	43.7	4.7	. 24	. 11	7	65.0	17.5	.01*	. 02
8	48.7	5.0	. 13	. 10	8	70.7	5.7	. 04	. 03
9	53.7	5.0	. 29	. 19	9	75.7	5.0	.16	. 05
10	57.8	4.1	. 03	. 02	10	80.6	4.9	. 17	. 10
11	63.0	5.2	. 42	. 27	11	85.6	5.0	. 31	. 11
12	68.0	5.0	. 35	. 23	12	90.5	4.9	. 45	. 19
13	73.0	5.0	. 27	. 17	13	95.5	5.0	. 49	. 24
14	78.0	5.0	. 29	. 17	14	100.5	5.0	. 44	. 16
15	83.0	5.0	. 29	. 16	15	105.5	5.0	. 44	. 27
16	87.5	4.5	. 25	. 20	16	110.5	5.0	. 43	. 20
17	92.5	5.0	. 27	. 13	17	115.5	5.0	. 48	. 30
18	97.5	5.0	. 37	. 23	18	120.5	5.0	. 39	. 18
19	101.1	3.6	.37	. 30	19	125.5	5.0	. 41	. 16
20	106.0	4.9	. 79	. 42	20	130.5	5.0	. 23	. 19
21	111.0	5.0	. 72	. 28	21	135.5	5.0	. 34	. 15
22	116.0	5.0	. 62	. 24	22	140.5	5.0	. 72	. 48
23	119.0	3.0	. 09	. 04	23	145.5	5.0	. 67	. 31
24	122.5	3.5	. 42	. 19	24	150.0	4.5	. 85	. 19
25	126.5	4.0	. 45	. 20	25	155.0	5.0	. 63	. 45
26	130.1	3.6	. 44	. 18	26	160.0	5.0	1.04	.40
27	135.0	4.9	. 09	. 06	27	164.0	4.0	. 56	. 30
28	140.0	5.0	. 53	. 14	28	169.5	5.5	. 10	. 10
29	145.0	5.0	. 17	.67	29	174.5	5.0	. 26	. 12
30	151.5	6.5	. 12	. 10	30	179.5	5.0	. 53	. 29
					31	184.5	5.0	. 37	. 33
		122.5	. 337	. 200	32	188.5	4.0	. 33	. 17
					33	198.5	10.0	. 16	. 06
31	156.5	5.0	.01*	. 04					
32	161.5	5.0	.01*	. 02			188.2	.338	.176
33	167.0	5.0	. 05	.02*					
34	253.0	86.0	.01*	.02*	34	201.0	2.5	. 08	. 03
35	310.4	57.4	.01*	.02*	35	220.7	19.7	. 09	. 05

*Less than.
No sample taken, $0-10.7 \mathrm{ft} . ;$ overburden and mine dump. Composite samples: 167.0-253.0 ft. Composite sample, 201.0-220.7ft. 253.0-310.4ft.
*Less than.
No sample taken, $0-5.7 \mathrm{ft}$. ; overburden.

TABLE 7. - Thnnel ore-body drill hole 12

Sample	$\begin{aligned} & \text { Depth, } \\ & \text { ft. } \end{aligned}$	$\begin{gathered} \text { Sample } \\ \text { length, } \\ \text { ft. } \end{gathered}$	Core analysis, percent		Sample	Depth, ft.	$\begin{gathered} \text { Sample } \\ \text { lergth, } \\ \text { ft. } \end{gathered}$	Coreanalysis,percent	
			N1:	Cu.				Ni :	Cu
1	49.4	46.4	0.07	0.03	29	224.1	2.2	0.18	0.15
2	54.9	5.5	. 10	. 09	30	229.1	5.0	. 41	. 13
3	59.5	4.6	. 36	.14	31	234.1	5.0	. 17	. 14
4	67.3	7.8	. 14	. 05	32	239.1	5.0	. 20	. 14
5	70.3	3.0	. 28	.14	33	243.5	4.4	. 20	. 12
6	75.3.	5.0	-. 69	. 27	34	249.0	5.5	. 19	. 12
7	80.2	4.9	. 55	. 24	35	255.5	6.5	. 20	:11
8	85.2	5.0	. 39	. 22	36	260.8	5.3	. 52	. 26
9	90.2	5.0	. 4.7	. 19	37	265.8	5.0	. 80	. 38
10	92.7	2.5	.33	. 12	38	271.0	5.2	. 44	. 33
11	98.8	6.1	. 37	. 19	39.	275.5	4.5	. 61	. 24
12	102.4	3.6	. 09	. 03	40	276:6	1.1	. 06	. 05
13	107.3	4.9	.01*	. 03	41	280.5	3.9	. 68	. 30
14	118.5	. 11.2	.01*	. 03	42	285.5	5.0	. 93	. 45
15	127.0	. 8.5	. 02	. 03	43	290.5	5.0	1.19	. 38
16	138.0	11.0	. 04	. 03	44	295.5	5.0	1.10	. 28
17	143.0	5.0	. 39.	. 22	45	299.8	4.3	1.02	. 53
18	148.0	5.0	. 32 .	. 18	: 46	304.8	5.0	. 43	. 33
19	154.8	6.8	. 30.	. 19	47	309.0	4.2	. 66	. 43
20	259.3	4.7	. 30	.17	$\bigcirc 48$	313.5	4.5	. 27	. 22
21	164.8	5.3	. 14	. 10	49	318.6	5.1	. 28	:20
22	167.3	2.5	. 05	. 05	50	321.6	3.0	. 18	. 05
23	170.4	3:1	. 06	. 04	51	322,8	1.2	. 03	.04
24	175.4	5.0	. 25	.16	52	327.8	5.0	. 46	. 25
$25^{\circ}$	180.4	5.0	. 16	. 13	53	332.8	5.0	. 55	. 26
26.	185.8	5.4	. 15	.08	54	337.8	5.0	. 45	. 31
27	206.0	20.2	. 07	. 06	55	342.8	5.0	. 44	. 23
28	210.0	4.0	. 02	. 05	. 56	347.0	4.2	. 55	. 40
-	221.9.	11.9	-	-	$\begin{aligned} & 57 \\ & 58 \\ & \hline \end{aligned}$	352.0 357.3	5.0 5.3	.49 .17	.28   .19
				$\cdots$			302.4	.318	.169
					- 59	363.5	6.2	.10	. 11
		:			- 60	390.0	26.5	. 07	. 05
					61	413.1	23.1	. 03	. 03

*Less than.
No sample taken, $0-3.0 \mathrm{ft}$. ; overburden.
No sample taken, 210.0 - 221.9 ft ; barren formations.
Composite samples: 3.0-49.4 ft.

$$
263.5-390.0 \mathrm{ft} .
$$

$$
390.0-413.1 \mathrm{ft} .
$$

TABLE 8. - Tunnel ore-body drill hole 16

*Less than.
No sample taken, $0-29.5 \mathrm{ft}$; overburden.
No sample taken, 29.5-265.0 ft.; barren formations,
No sample taken, 271.7 - 272.7 ft .; barren gainbro.
No sample taken, $278.7-283.0 \mathrm{It}_{\uparrow}$; barren norite.
No sample taken, 302.0-303.0 fit.; barren dike.
No sample taken, $312.0-345.0 \mathrm{ft}$; ; barren norite.
No sample taken, $408.0-479.3 \mathrm{ft}$. ; barren formations.
$\cdots$ TABLE 9. - Tunnel ore-body drill hole $2 * *$

Sample	Depth, ft.	$\begin{aligned} & \text { Sample } \\ & \text { length, ft? } \end{aligned}$	Core analysis, percent	
			Ni	$\because \mathrm{Cu}$
1	196.3	$\because \quad 159.7$	0.01*	0.03
2	198.8	$\because 2.5$	. 16	. 40
3	203.8	5.0	. 22	$\cdots \quad .25$
4	206.3	2.5	. 53	$\because \quad .27$
5	209.5	3.2	. 46	$\because \quad .38$
6	213.0	3.5	. 11	. 11
7	217.0	4.0	. 27	$\therefore \quad .25$
8	222.4	5.4	.01*	. 03
9	227.5	$\therefore \quad 5.1$	. 03	. 02
10	232.5	5.0	. 48	$\therefore \quad .25$
11	237.2	4.7	.36	. 14
	(2-11)	40.9	. 245	. 188
12	238.0	0.8	. 06	. 03
13	$\therefore 242.8$	4.8	$\because .27$	. 09
24	247.8	... 5.0....	... -08	. 03
15	252.8	- 5.0	. 08	. 02
16	257.8	5.0	. 13	. 02
17	262.8	. 5.0	. 12	. 02
18	268.2	5.4	. 12	$\cdots .02$
19	273.4	5.2	- 08	. $: 02$
20	278.5	5.1	-. 08	. 05
21	283.5	$5.0 \cdots$	. 15	. 12
22	289.0	5.5.	. 27	. 02
	$(12-22)$ $(2-22)$	51.8 92.7	.137 .184	$\begin{aligned} & .040 \\ & .105 \end{aligned}$
23	352.8	63.8	. $01 *$	.02*

*Less than.
**Hole located between ore sections.
No sample taken, $0-36.6 \mathrm{ft}$. ; slide rock.
Composite sample, $36.6-196.3 \mathrm{ft}$. ; barren hornfels.
Composite sample, $289.0-352.8 \mathrm{ft}$; barren hornfels.
R.I. 4182

TABLE 10. - Tunnel ore-body dridl hole 15**

Sample	Depth; ft.	$\begin{gathered} \text { Sample } \\ \text { length, ft. } \end{gathered}$	Core ánalysis, percent		
			Ni	-	Cu
1	277.7	5.0	0.01*		0.04
2	282.7	5.0	. 18		. 08
3	288.0	5.3	. 26		.15
4	293.0	5.0	. 22		.10
5	298.0	5.0	. 15		. 12
6	303.0	5.0	.10		. 13
7	308.0	5.0	. 15		.12
8	313.0	5.0	.10		. 09
9	318.4	5.4	. 04		. 04
10	320.5	2.1	. 15		. 14
-	336.7	16.2			
11	338.6	1.9	. 10		.10
12	352.0	13.4	. 02		. 05
13	356.0	4.0	.24		.18
14	360.0	4.0	. 15		. 24
-	: 363.8	3.8	-		-
15	368.0	4.2	. 18		. 14
16	- 373.0	5.0	.30		.16
17	. 381.0	8.0	.16		. 05
		103.3	.116		. 082
18	- 425.8	44.8	.01*		.02*
* Less thant.					
**Hole located outside of ore sections.					
No sample taker, 0 - $3.0{ }^{\prime \prime} \pm$.; overburden.					
No sample taken, 3.0-272.7 ft.; barren formations,					
No sample taken, 320.5-336.7 ft, i barren norite.					
No sample taken, 360,0-363.8 ft.; barren nowite					
Composite sample, 381.0-425.8 ft. .					

TABIE 11. - Tunnel ore-body drill hole 17**

Sample	Depth, ft.	$\begin{aligned} & \text { Sample } \\ & \text { Iength, ft. } \end{aligned}$	Core analysis, percent		
			Ni	:	Cu
- -	- 75.2	47.7	${ }^{+}$		-***
1	80.2	5.0	0.04		0.04
2	82.9	2.7	. 29		. 19
3	- 85.0	2.1	.01*	,	. 02
4	86.5	1.5	. 20	,	.11
5	89.0	2.5	. 03		. 02 .
-	380.0	291.0	-	\|	-***
6	383.7	3.7	.01*	+	. 03
7	384.3	0.6	. 17	+	.13
8	. 386.5	2.2	. 01	,	. 04
- .	- 391.5	5.0	-	,	-***
10	. 394.1	0.8	. 12	+	. 11
11	396.7	. 2.6	. 02	,	. 04
-	438.3	41.6	$-$	'	-***
12	. 439.5	1.2	. 05		. 10
-	. 440.8	1.3	-		-***
13	. 441.8	1.0	. 10		. 09
-	471.8	30.0			-***
14	473.0	1.2	.13		. 09
-	474.0	1.0	-		-***
15	479.0	5.0	.01*	.	. 06
16	483.7	4.7	.01*	.	. 05
-	520.3	36.6	-		-***

*Less then.
**Hole located outside ore sections.
***No sample taken; berren formations.
No sample taken, 0-27.5 ft.; overburden.

TABLIT 12. - North Muskeg ore-body arili hole 7-A

Semple	Depth, ft.	Sample length, ft.	$\begin{gathered} \text { Core } \\ \text { analysis, } \\ \text { percent } \end{gathered}$		Sample	Depth, ft.	Sample   length, ft.	$\begin{gathered} \text { Core } \\ \text { analysia, } \\ \text { percent } \end{gathered}$	
			Ni :	Ca				Ni	Cu
1	103.2	4.7	0.01*	0.02	2.6	216.1	3.1	0.20	0.19
2	108.4	5.2	. 18	.14	27	221.8	5.7	. 22	. 17
3	112.6	4.2	. 01	. 01	28	225.6	4.8	. 14	. 15
4	118.3	5.7	.01*	. 02	29	230.8	4.2	. 11	. 10
5	119.7	1.4	.01*	.03	30	235.1	4.3	. 18	. 10
6	126.6	6.9	. 15	. 19	31	240.9	5.8	. 22	. 15
7	131.4	4.8	. 21	. 14	32	245.9	5.0	. 09	. 07
8	136.2	4.8	.01*	. 03	33	251.1	5.2	. 14	. $01 *$
9	141.3	5.1	. 59	.37	34	254.9	3.8	. 12	. 05
10	146.5	5.2	. 37	. 28	35	258.8	3.9	. 25	. 09
11.	151.6	5.1	. 27	.24	36	264.6	5.8	. 10	.01*
12	156.8	5.2	.30	.15	37	269.8	5.2	. 26	. 15
13	161.0	4.2	. 22	. 16	38	275.0	5.2	. 18	. 10
14	166.1	5.1	. 26	. 15	39	278.3	3.3	. 51	. 15
15	170.9	4.8	. 35	. 31	40	281.4	3.1	. 25	. 07
16	175.7	4.8	. 30	. 23	41	285.5	4.1	. 23	. 25
17	177.7	2.0	. 67	. 28	42	290.7	5.2	. 39	. 04
18	183.1	5.4	. 39	.14			154.5	.241	.145
19	186.3	3.2	. 34	.i2					
20	190.6	4.3	. 18	.14	43	295.8	5.1	. 07	. 03
21	196.2	5.6	. 13	. 08	44	304.9	9.1	. 05	. 03
22	199.2	3.0	. 06	. 08	45	313.0	8.2	.01*	. 02
23	203.2	4.0	. 10	. 11	46	314.8	1.8	. 01 *	. 01
24	208.2	5.0	. 13	. 08	47	323.7	8.9	. 01	. 03
25	213.0	4.8	. 17	.23	48	325.9	2.2	. 05	. 10
					49	330.7	4.8	. 02	. 04

*less than.
No sample taken, $0-3.0 \mathrm{ft} . ;$ overburden.
No sample taken, 3.0-98.6 ft.; barren formations.
No sample taken, $330.7-413.3 \mathrm{ft}$. ; barren formations.

TABLE 13. - North Muskeg ore-body drill hole 10**

Sample	Depth, ft.	$\begin{aligned} & \text { Sample } \\ & \text { length, ft. } \end{aligned}$	Core analysis, percent		
			Ni	-	Cu
-	195.4	175.4	-		-
1	203.5	8.1	0.01*		0.01
2	204.0	. 5	.01*		. 02
3	205.0	1.0	.01*		. 02
4	209.6	4.6	.01*		. 03

*Less than.
**Hole located outside ore section.
No sample taken, $0-20.0$ ft.; overburden.
No sample taken, 20.0-203.5 ft.; barren formations:
No sample taken, 209.6-305.0 ft.; barren formations.
TABLE. 14. - South Muskeg ore-body drill hole 13

Sample	Depth, ft.	$\begin{gathered} \text { Sample } \\ \text { length, ft. } \end{gathered}$	Core analysis, percent		
			Ni	:	Cu
	$\cdots 9.0$.	3.0	-		-
1	33.0	24.0	0.08		0.02
2	37.0	4.0	. 24		. 03
3	42.0	5.0	. 44		. 30
4	47.0	5.0	. 41		. 24
5	50.6	3.6	. 20		. 15
6	70.0	19.4	. 09		. 08
7	74.0	4.0	. 36		. 23
8	96.0	22.0	. 07		. 05
9	99.0	3.0	.17		. 15
-	101.0	2.0	-		-
10	104.0	3.0	. 08		. 06
11	109.0	5.0	. 21		. 14
12	111.0	2.0	. 56		. 20
13	118.0	7.0	. 05		. 02
14	124.5	6.5	3.08		. 90
15	129.5	5.0	. 68		. 41
16	134.0	4.5	. 77		. 37
17	137.0	3.0	. 51		. 21
		104.0	.407		. 183
18	169.4	32.4	. $01 *$		. 02
19	176.0	6.6	.01*		. 05
20	177.2	1.2	.01*		. 07
21	181.9	4.7	.01*		. 04
22	185.0	3.1	.01*		. 05
23	292.5	107.5	.01*		. 03

*Less than.
No sample taken, $0-6.0 \mathrm{ft}$. ; overburden.
No sample taken, 99.0 - 101.0 ft.; barren norite.
Composite sample, 137.0 - 169.4 ft .
Composite sample, 185.0-292.5 ft.

## TUINIEL AND PIT SAMPLIITG

The character of the rock made hand sampling difficult and complete sampling would have been impossible in the short working season with inexperienced samplers. A total of 127.7 feet of channel samples, taken in $2-$ by 3 -inch grooves, were.cut along the sides of the Bohemia tunnel. (See fig. 18.).

In pits 8, 9, 10, 11, and A on the Iripod body representative channel samples of mineralized sections were taken and applied in the formula on page 23 to determine the grade. The assumption that the unmineralized exposures were barren was justified by a study of assay returns previously received on core drill samples which proved that the dike rock, homfels, or norite which make up these zones and in which no, aulides were discernable, were obviously so lean as to be considered barren of nickel or copper. (See fig. 19.) :

Pits 2 and 3 on the North Muskeg body (fig. 20) and pits 4, 5; and 7 on the South Muskeg body (fig. 2l) were sampled in the same manner, except that a larger number of samples were taken and they were chips instead of channels.

Tables 15 to 18 show analyses of channel and pit samples.

somple No.	$\begin{gathered} \text { Length } \\ \text { Pt } \end{gathered}$	Percent	
		Ni.	Cu
1	5.0	0.19	0.18
2	5.0	87	31
3	5.0	56	26
4	5.0	85	62
5	5.0	77	45
6	2.0	1.00	75
7	5.0	13	10
8	5.0	15	09
9	5.0	. 08	06
10	50	. 10	07
11	2.7	25	14
12	5.0	46	19
13	5.0	30	10
14	5.0	33	25
15	5.0	35	18
16	50	23	12
17	5.0	19	08
18	5.0	33	14
19	50	40	17
20	50	23	10
21	50	38	20
22	50	27	15
Aver:	1047	. 368	200
23	5.0	. 08	05
24	50	85	55
25	50	31	. 21
26	5.0	51	. 33
27	50	A4	25
28	3.0	40	26
Avere ${ }^{\text {d }}$	1050	450	252

- Samples 7-1/ incl. a 23 omitted.

Comp "/-8 Shows no platinum matals by spectrographic analysis and also no cobalt


Figure 18. - Tunnel ore body; geologic and assay plan, Bohemia tunnel.


Modified from U.SG.S. Bulletin 931-F, Plate 23.


Figure 19. - Tripod ore bodies; geologic and assay plan; pits 10, 11, 9, A, and 8.


Figure 20. - North Muskeg ore body; geologic and assay plan, pits 2 and 3.


Figure 21. - South Muskeg ore body; geologic and assay plan, pits 4, 5, and 7.

TABLE 15. - Tripod ore-body; analysis of pit samples and 5-foot chamel samples

Pit 8

	Analysis, percent	
Sample	Ni	Cu
81	0.52	0.45
82	1.00	.97
83	.46	. .88
84	.68	.45
133	.26	.16
134	.38	.36
Av.	.550	.495


Pit 9		
	Analysis, percent	
Sample	Ni	Ci
135	0.61	0.59
136	.62	.32
137	.45	.19
138	.29	.17
91	.95	.46
Av.	.584	.346


Pit 10		
	Analys1s, percent	
Sample	Ni	Ou
101	0.42	0.17
102	.35	.39
103	.49	.26
139	.15	.14
Av.	.352	.240

Pit 11

	Analysis, percent	
Sample	N1	Cu
111	0.49	0.26
112	.62	.80
113	.67	.37
	.593	.477



Pits	819 10 [11 1"A"Total		
		Feet	
Exposed form	138164	070.155	
Mineralized	100155	$75 \quad 48 \quad 55$	33

Nickel average: $100 \times 0.550+55 \times 0.584+75 \times 0.352+48 \times 0.593+55 \times 0.550=$ 0.403.

Copper average: $\frac{100 \times 0.495+55 \times 0.346+75 \times 0.240+48 \times 0.477+55 \times 0.436}{427}=$ 0.312.

TABLE 16. - North Muskeg ore-body enal ysis of pit samples
5-fout chip samples


Sample	Analysis, percent	
	- NI	Cu
140	- 0.29	0.18
141	. .15	. 04
142	. . 18	. 04
143	-..-. -37	. 27
144	- . 75	. 52
Av.	. 348	.210


Pit	2	)	Total
Exposed formation	80 ft .	35 ft .	115 ft .
Mineralized	65 ft .	25 ft.	901

Copper av. $\frac{65 \times 0.369+25 \times 0.210}{115}=0.254$.

TABLE 17. - South Muskeg ore-body analysis of pit samples j-foot chip samples

	Analysis,   percent	
Sample	Nit	Cu
145	0.26	0.40
146	.23	.50
147	.15	.28
148	.32	.27
149	.40	.38
150	.10	$: 08$
	.243	.318


	Analysia, percent	
	Ni	$\cdots$
151	0.17	0.24
152	. 25	. .40
$153:$	. 27	. 30
154.	. 20	. .25
155.	:07	. 15
156	.24	.20
157	. 29	. 25
158.	. 59	. 36
159 .	. 30	-. 52
160 :	. 18	-. 41
161 :	.57	. .57
162 :	. 42	. . 27
163 :	. 40	: . 33
164.	. 17	- . 29
165.	.22	-. 37
166.	.17	-. 24
167 :	.16	$\therefore .23$
168	. 22	- .30
169	. 15	.19
170	. 21	. 1.4
171	. 19	.16
172	. 29	. 20
173	. 43	. 33
174	. 45	. 58
175	. 27.	. 35
176	. 39	. 62
177	. 46	. 49
178	. 40	. 46
179	. 40	. 34
Av.	. 294	. 329


	Analysis   percent	
Sample	Ni   180	0.48
181	.46	0.45
182	.39	.24
183	.35	.15
184	.22	.15
185	.32	.17
186	.45	.24
187	.29	.19
Av.	.371	.232


Pits	4	5	7	Potal
Exposed formation	34 ft.	165 ft.	50 ft	249 ft.
Mineralized.....	$30 \mathrm{ft}$.	145 ft.	$40 \mathrm{ft}$.	$215 \mathrm{ft}$.

Wickel av. $\frac{30 \times 0.243+145 \times 0.294+40 \times 0.371}{249}=0.260$.
Copper av. $\frac{30 \times 0.318+145 \times 0.329+40 \times 0.232}{249}=0.267$.

TABLE 18. - Tunnel ore-body tunnel channel samples

Sample	$\begin{aligned} & \text { Sample } \\ & \text { length,ft. } \end{aligned}$	Analysis, percent	
		Ni	Cu
1	5.0	0.19	0.18
2	5.0	. 87	. 31
3	5.0	.56	. 26
4	5.0	. 85	. 62
5	- 5.0	. 77	. 45
6	2.0	1.00	.75
7	5.0	. 13	.10
8	5.0	. 15	. 09
9	5.0	. 08	. 06
10	5.0	. 10	. 07
11.	2.7	. 25	. 14
12	5.0	. 46	.19
13	5.0	. 30	. 10
14	5.0	. 33	$\because 25$
15	5.0	. 35	.18
16	5.0	. 23	. 12
17	5.0	. 19.	. 08
18	5.0	. 33	. 14
19	5.0	. 40	. 17
20	5.0	. 23	. 10
21	5.0	. 38	. 20
22	5.0	. 27	. 15
	104.7	.368	.200

## BENEFICIATION

The beneficiation test indicated that two treatment procedures would be satisfactory. One was the bulk flotation of a sulfide concentrate containing the nickel and copper that could be subsequently smelted to produce a nickel-copper matte. In the bulk flotation of this ore, 69.8 percent of the nickel and 84.4 percent of the copper were recovered. The other treatment was the selective flotation of both a copper and nickel concentrate. By this procedure a copper concentrate containing 78.3 percent of the copper was recovered, and subsequently a nickel concentrate was recovered that contained. 68.1 percent of the nickel. . The latter methods, however, would necessitate a more complex flow sheet. Typical tests using both procedures are reported herewith.

## Bulk Flotation of Copper and Nickel

The ore used in the beneficiation tests was ground with an equivalent of 0.08 pounds of Minerec $B$ (Denver Equipment Co., Donver, Colo.) for each ton of ore. The ground flotation feed was 57 percent minus 200-mesh. The conditioning reagents were 1.5 pounds of copper sulfate, 0.14 pound of pine oil, 0.20 pound of $Z-3$, and 0.20 pound of $Z-6$ for each ton of feed. ( $Z-3$ and $Z-6$, also from Denver Equipment Co.) The conditioning time was 5 minutes
and the flotation time 12 minutes. The pulp density used in conditioning was 50 percent solids, and the density in the flotation was about 25 percent solids. The pH in the roughing circuit was 7.8 . The reagents used in the cleaner were 0.1 pound of sulfuric acid and 0.1 pound of sodium silicate for each ton of feed.

Metallurgical data

Product	Percent, weight	Analysis, percent				Recovery, percent			
		Ni	Cu	Insol.	Fe	IVi	Cu	Insol.	Fe
Bulk cleaner concentrate ..............	4.8	4.82	3.5	38.6	22.2	69.8	84.4	2.2	48.4
Bulk cleaner tailing.	3.7	. 98	. 6	79.4	5.8	10.9	11.1	3.5	7.3
Buik rougher tailing.	91.5	. 07	. 01	87.8	1.4	19.3	4.5	94.3	44.3
Calculated head .....	100.0	.33	. 20	85.1	2.9	100.0	100.0	100.0	100.0

The concentration ratio was 21:1.

## Differential Flotation of Copper and Nickel

The size of grind and the pulp dilution were the same as in the bulkflotation tests. The other pertinent details of the test are:

Reagents and data


Metallurgical data

Product	Percent,	Analysis, percent				Recovery, percent			
	weight	Ni	Cu	Insol.	Fe	Ni	Cu	Insol.	Fe
Cu cleaner concentrate ............	0.7	0.08	20.21	28.4	22.5	0.3	78.3	0.2	5.7
Cu cleaner tailing.	1.1	. 55	. 62	82.2	4.6	2.0	3.9	1.0	1.8
Ni cleaner concentrate ............	2.8	7.39	. 54	33.6	31.8	68.1	8.4	1.0	31.9
Ni cleaner tailing.	3.1	1.18	. 25		8.3	12.2	4.4	2.7	9.3
Rougher tailing ...	92.3	. 057	. 01		1.6	17.4	5.0	95.1	51.3
Calculated head...	100.0	. 30	.18		2.8	100.0	100.0	100.0	100.0

Although the low head assay would not seem to warrant the more complex selective flotation treatment, its installation might bo advised because of the fewer complications involved in the subsequent smelting and refining operations, to produce separate nickel and copper metals. These might also be proauced comercially from the bulk flotation matte by a combined elcctrothermal and electrolytic process. 12
$12 /$ Koster, J., and Others, Recovery of Nickel, Copper, and Precious Metals from Domestic Ores by a Combined Electrothermal and Electrolytic method: Bureau of Mincs Rept. of Investigations 3483, 1939, 28 pp.
F.I. 4182

A proposed buik-flotation flow sheet is show in figure 22.

## BIBLIOGRAPHY

BUDDINGTON, A. B., Mineral Invostigations in Southeastern Aláska." Geol. Survey Buli. 773, 1925, pp: 71-139.
-KOSTER, J., and others, Recovery of Nickel, Copper, and Rececious Metals from Domestic Ores by a Combined Electrothermal and Electrolytic Method. Buraau of Mines Rept. of Investigations. 3483, 1939, 28 pp .

REED, J. C. and DORR, J. VAN N., II, Nickel Deposits of Bohemia Besin and Vicinity, Yakobi Island, Alaska. Geol. Survey Bull. 931-F, 1941, pp. 105-138.

KENNEDY, GEORGE C., änd WALTON," MATT S., JR., Nichel Invéstigations in Southeastern Alaska. Geol. Survey Bull. 947-C, 1943 and 1944, pp. 39-64.

Run-of-mine ore ( 5000 tons per 24 hours) (30 percent minus l-inch)

Grizziy


Vibrating screen
(double deck) Undersize
$\begin{array}{cc}\text { Oversize } & \text { (double deck) Undersize } \\ \text { Plus l-inch) } & \text { (2-inch and l-inch) (Minus l-inch) }\end{array}$
Picked waste (and 2 to -1)
(Minus l-inch)

$$
10
$$


(openings)

Cone crusher


Figure 22. - Proposed bulk flotation flow sheet for Yakobi mill.

