UNITED STATES DEPARTMENT OF THE INTERIOR

J. A. KRUG, Secretary

BUREAU OF MINES R. R. SAYERS, Director

Technical Paper 682

ANALYSES OF ALASKA COALS

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON: 1946

PREFACE

One of the important functions of the Bureau of Mines is the analysis of coal from every coal-mining State and from Alaska. These analyses are being published for use of Government officials and the

public.

In connection with analytical data showing composition and quality of coals of the States, consumers, producers, and the general public will be interested also in a brief description of the geologic structure of the coal basins, typical mining conditions in the several districts, and important economic data on the industry. These publications therefore are designed to include such features to present in concise form the principal facts regarding occurrence, reserves, quality, char-

acteristics, production, and uses of coals of each producing State.

Alaska is known to have extensive coal reserves ranging in rank from lignite to anthracite. Coal beds occur along the coast as well as in the interior of Alaska, but additional prospecting work must be done before the tonnage of recoverable coal can be estimated. In 1909 the Geological Survey estimated the minimum reserves of the known coal fields in Alaska at 15,104,500,000 short tons. In 1913 the Survey published a revised estimate of more than 21,597,000,000 short tons. It was recognized, however, that many times this tonnage eventually will be found available as the Territory is more thoroughly explored and more detailed information is obtained.

Reconnaissance work in areas that had not been surveyed in 1913 and detailed investigations in areas that were little known in 1913 have greatly increased the estimates of known reserves, which in this report total nearly 100 billion short tons. Most of the available information has been obtained from reconnaissance surveys and indicates only the order of magnitude of the reserves. It is believed that even these latest revised estimates are conservative and that future surveys

will disclose further coal reserves of the Territory.

Production of coal in Alaska during 1943 aggregated 289,232 short tons, valued at the mines at \$1,842,000, or an average per ton of \$6.37. This output came from 5 active mines of commercial size, which worked an average of 321 days, employed 251 men, and produced an average of 3.59 tons per man per day. The economic position of the coal industry of Alaska and the trend of development in recent years are

discussed in the section on Production, Distribution, and Use.

The samples, represented by the analyses reported herein, have been taken by representatives of the Geological Survey, Bureau of Mines, War and Navy Departments, and Alaskan Engineering Commission. The analyses of delivered-coal samples bearing index numbers 1 to 129, inclusive, and the mine samples designated by laboratory numbers preceded by "X" were made by M. L. Sharp at Anchorage, Alaska. All other analyses were made in the laboratory of the Bureau of Mines at Pittsburgh, Pa.

From time to time the Bureau has published analytical results in large bulletins. Although the analyses in any one bulletin are grouped by States or by special uses, to find the analyses of coals from any

TY PREFACE

particular section of the country necessitates reading a number of bulletins, some of which are no longer available for distribution.

Moreover, when the Bureau receives an inquiry for analyses of coal from any particular part of the country, it constitutes a large wastage of public documents to send a number of bulletins to show the analyses for an individual mine or for any one district. It therefore has been deemed expedient to republish the analyses of coal in a series of inexpensive publications by separate States or, if the coal

a series of inexpensive publications by separate States or, if the coal production is small in any State, by groups of adjacent States. To these have been added analyses not previously published.

Technical Paper 269 on Iowa coal was the first of these to be issued. The technical papers published to date, with their numbers, are as follows: Alabama, 347; Arkansas, 416; Colorado, 574; Illinois, 641; Indiana, 417; Iowa, 269; Kansas, 455; Kentucky, 308 and 652; Maryland, 465; Missouri, 366; Montana, 529; New Mexico, 569; Ohio, 344; Oklahoma, 411. Pannsylvania hituminous, 590 (Supplement, 645). Oklahoma, 411; Pennsylvania bituminous, 590 (Supplement 645); Pennsylvania anthracite, 659; Tennessee, 356 and 671; Utah, 345; Virginia, 365 and 656; Washington 491 (Supplement 618); West Virginia, 405 and 626; and Wyoming 484. From time to time these papers will be revised to include later analyses and other data.

> A. C. FIELDNER, Chief, Fuels and Explosives Branch.

CONTENTS

-	1	173	age
	age		age
Preface, by A. C. Fieldner	III	Relationship of mine samples to	
Coal fields of Alaska, by George O.		commercial shipments—Con.	
Gates	1	Method of sampling coal for ship-	10
Introduction	1	ment or delivery	16
Coal deposits	2	Comparison of results obtained	-1.0
Northern Alaska and Seward		by two methods of sampling	16
Peninsula regions	2	Interpretation of sampling re-	
Yukon Basin	2	sults	16
Nenana	3	Analyses of mine, tipple, and deliv-	
Jarvis Creek	3	ered samples, by H. M. Cooper,	
Cook Inlet-Susitna region	4	N. H. Snyder, R. F. Abernethy,	
Matanuska Valley	4	E. C. Tarpley, and R. J. Swingle	19
Broad Pass depression	5	Explanation of table of analyses.	19
Susitna lowland	6	Differences in volatile-matter and	
Kenai Peninsula	6	fixed-carbon determinations	19
Southwestern Alaska	6	Classification of coal by rank	20
Copper River and Alaska Gulf		Agglomerating index	22
regions	7	Sources of information	23
Bering River	7	Size designation of delivered coal	23
Southeastern Alaska	7	Fusibility of ash	23
Reserves	7	Explanation of symbols used in	
	8	table of analyses	24
Selected bibliography	8	Description of mine samples, by	
General	0	H. M. Cooper, R. F. Abernethy,	
Northern Alaska and Seward	8	and E. C. Tarpley	70
Peninsula	8	Northern Alaska region	70
Yukon Basin	9	Seward Peninsula region	72
Cook Inlet-Susitna region	9	Yukon region	73
Copper River and Alaska Gulf	^	Broad Pass field	73
regions	9	Nenana field	76
Southwestern Alaska	9	Kuskokwim region	82
Southeastern Alaska	9	Southwestern Alaska region	82
Production, distribution, and use,		Cook Inlet region	85
by C. H. Bell and R. L. Ander-		Cook Inlet field	85
son	10	Matanuska field	87
Production and value	10		101
Production of mechanically		Alaska Gulf region Bering River field	101
cleaned coal	12		107
Uses	13	Southeastern Alaska region	101
Relationship of mine samples to	10	Description of delivered samples,	
		by N. H. Snyder and R. J.	100
commercial shipments, by N.H.	15	Swingle	108
Snyder	т9	Linguistant of their of descrip	400
Method of collecting mine sam-	-4 100	tion	
ples	7.9	Index	111
TTT	TTCIT	A THE O'N	
Fig.	USI	TRATION	
	al a	reas known to contain coalFo	lder

ANALYSES OF ALASKA COALS 1

COAL FIELDS OF ALASKA

By George O. GATES 2

INTRODUCTION

Coal is distributed widely throughout Alaska in fields differing greatly in size and in geologic environment. Much of the known coal is in moderately or slightly deformed rocks and is of lignitic or subbituminous rank. However, bituminous coal and anthracite occur in some more intensely deformed rocks. Only those fields close to main lines of transportation have been developed or are likely to be of economic importance in the near future. Large deposits of coal occur in more-remote parts of the Territory, and when these are studied in greater detail or opened up the extent of the coal beds and reserves probably will be much larger than now estimated.

reserves probably will be much larger than now estimated.

The major coal fields of Alaska are shown in figure 1 (folder). Almost all the coal produced from them in recent years has come from fields close to the Alaska Railroad, which extends from Seward on the Pacific coast to Fairbanks in the interior. The most important of these fields, both in terms of production and known reserves, are the lower Matanuska Valley field, 45 miles northeast of Anchorage, and the Nenana field, approximately 75 miles southwest of Fairbanks.

The central areas of the principal mountain ranges, as well as the eastern part of the Yukon Basin in Alaska and the Seward Peninsula, are chiefly regions of igneous and metamorphic rocks and contain little coal. The foothills and lowlands north of the Brooks Range and the western part of the Yukon Basin, largely underlain by Cretaceous rocks, are known to contain significant coal deposits. Within and along the borders of the extensive Pacific Mountain system are a number of basins and isolated areas of Tertiary rocks, many of which contain coal. The rocks within the mountain ranges are highly deformed, and the coal is of bituminous or anthracitic rank. Other areas on the flanks of the ranges or in the intermontane basins are less deformed, and the coal is of lignitic or subbituminous rank.

The coal fields are described here under regional headings. Many of the smaller, less-important coal areas are not mentioned, but references to reports describing them are given in the bibliography at the end of this section.

Work on manuscript completed May 1945,
 Geologist, U. S. Department of the Interior, Geological Survey, Alaskan Branch.

COAL DEPOSITS

NORTHERN ALASKA AND SEWARD PENINSULA REGIONS

Coal of subbituminous and bituminous rank is known at many places north of the Brooks Range between the Colville River and the Arctic coast. Coal probably occurs at or near the surface throughout most of this tract which is at least 300 miles long in an east-west direction and in places as much as 120 miles wide. The coal is in the middle part of a sequence of upper Cretaceous rocks in a shale section as much as 5.000 feet thick underlain and overlain by marine sandstone and related rocks. The best-known sections are near the Arctic coast at Corwin and in the valleys of some of the larger streams that flow north. Near Corwin 34 coal beds aggregate 135 feet of coal; 15 of these beds, 3 to 30 feet thick, aggregate 115 feet of coal. In the Kukpowruk-Útukuk area, between Corwin and Wainwright, are 69 coal beds each at least 3 feet thick; the largest is 20 feet thick. In the northern part of the area the coal beds are flat lying or very gently warped. Farther south they are more closely folded, and dips as high as 90° have been reported. A small quantity of coal has been mined from the beds at Corwin and Wainwright.

Lenticular beds of bituminous coal and anthracite occur near Cape Lisburne in highly folded rocks of possible Carboniferous age, but

so far as is known they are of small extent.

South of the Brooks Range in the Kobuk River Valley and on Seward Peninsula, small areas of poorly consolidated Tertiary sandstone and shale contain a few beds of lignite, some of which are as much as 5 feet thick. The best-known beds are near the mouths of the Ambler and Kallarichuk Rivers, tributaries of the Kobuk River, and on Chicago Creek and Buckland and Koyuk Rivers on Seward Peninsula.

YUKON BASIN

Coal occurs throughout the Yukon Basin in small, scattered areas. The largest of these are in basins of Tertiary rocks along the northern flank of the Alaska Range and include the Nenana coal field and the Jarvis Creek coal area. Numerous isolated areas of Tertiary rocks in other parts of the basin contain lignite. Many of these are on or near the Yukon River, particularly east of its junction with the Tanana River; the best-known deposits are near Rampart and on Washington Coal and Repanya Creeks poor the Canadian beyondary. Washington, Coal, and Bonanza Creeks near the Canadian boundary.

At several places throughout the basin, especially west of the junction of the Yukon and Tanana Rivers, bituminous coal has been found in Cretaceous rocks. The deposits along the Yukon River near and downstream from Nulato, at Tramway Bar on the Koyukuk River, and at Chicken near the Fortymile River are the best known. Bituminous coal occurs in Pennsylvanian (?) rocks at the mouth of the Nation River, near the Canadian boundary.

The basin eventually may prove to be an important source of coal, but it has been inadequately explored and little information is available regarding the extent of its coal resources.

NENANA

The Nenana coal field is in the foothill belt north of the Alaska Range. Coal underlies topographic basins that are elongate parallel to the range. It is exposed at many places in a tract about 20 miles wide extending from the Toklat River eastward to the Delta River, a distance of 130 miles; considerable coal has been mined from some of these deposits. The coal-bearing sequence, of Tertiary age, consists of slightly consolidated sands, clays, and gravels, with numerous beds of lignite. The sequence rests unconformably on schist and is overlain in part by the stream-laid Nenana gravel and glacial deposits. The coal-bearing sequence is generally uniform throughout the field.

The coal is high-rank lignite. In the vicinity of the Suntrana mine, on Healy Creek 3½ miles east of its junction with the Nenana River, 250 feet of coal in 23 separate beds has been located in the Tertiary section which is at least 1,900 feet thick; 240 feet of this coal is in the lower two-thirds of the section, comprising 6 beds 20 to 40 feet thick. Most of the coal mined at Suntrana has come from No. 6 bed, although other beds have now been opened. The Roth property 8 miles east of the Suntrana mine contains 21 beds of coal, the largest of which is 48 feet thick. The Diamond mine, on the west side of the Nenana River, 3½ miles southwest of the mouth of Healy Creek, contains a 40-foot bed of lignite, which dips about 35° N. On Lignite Creek, north of Healy Creek, 15 beds of coal total 140 feet in thickness.

Structurally, the coal deposits are in basins down-folded or down-faulted against masses of crystalline rock that separate the basins. The dip in most places does not exceed 15°. In general, the beds in the southern part of the field dip more steeply than elsewhere.

A synclinal coal basin, in part faulted, extends from the Roth property west along Healy Creek to and beyond the Nenana River. It includes the coal at the Roth property, the coal at the Suntrana mine, and probably that at the Diamond mine. On the north side of the syncline the beds dip 70° S. to vertical and on the south side, 30° to 45° N. North of this basin is another large basin that includes the coal along Lignite Creek as well as that around the headwaters of California and Totatlanika Creeks. The beds in this basin dip gently, except near the margins of the basin where they dip as much as 45°.

The chief producing mine in the Nenana field is the Suntrana mine. A spur line connects the mine with the Alaska Railroad.

JARVIS CREEK

An area of a few square miles east of Donnelly, on the Richardson Highway between Fairbanks and Valdez, is underlain by Tertiary coal-bearing rocks. Topographically, it is a ridge about 1,000 feet high, which separates Jarvis Creek from the Delta River. Probably not fewer than 20 beds of coal ranging from a few inches to 20 or more feet in thickness are interbedded with clay and sand. The sequence is several hundred feet thick. Throughout most of the area the beds are nearly horizontal.

COOK INLET-SUSPENA REGION

The Cook Inlet-Susitna region, within the Pacific Mountain system in south-central Alaska, contains some of the most-important coal fields in Alaska. The coal deposits of this region are in the large lowland area comprising the Susitna lowland and northwestern. Kenai Peninsula; the lowland extends northward through the region in two discontinuous belts of Tertiary rocks which project from it into the bordering mountains. These belts include the Matanuska Valley, extending northeastward and eastward from the head of Cook Inlet, and the Broad Pass depression, extending northward and northeastward parallel to and south of the great are of the Alaskan Range.

MATANUSKA VALLEY

The Matanuska Valley is a structural and topographic depression between the Talkeetna Mountains on the north and the Chugach Range on the south. It contains the Moose Creek, Eska, Chickaloon, and Anthracite Ridge coal fields. The Moose Creek and Eska fields are often grouped together as the lower Matanuska field; the other fields are farther east in the upper Matanuska Valley.

are farther east in the upper Matanuska Valley.

Lower Matanuska Valley.—The lower Matanuska Valley coal field includes about 12 square miles and is about 45 miles northeast of Anchorage. The coal beds are in the Chickaloon formation of Tertiary age, which consists of alternating beds of sandstone, siltstone, claystone, and coal. The Chickaloon formation is overlain by the Eska conglomerate. The coal in this field is high-volatile bituminous.

Three groups of coal-bearing beds have been recognized. The uppermost group, the top of which is about 120 feet below the base of the Eska conglomerate, is 50 to 60 feet thick and is divided into two parts by 15 to 40 feet of rock. Nos. 2, 3, and 4 beds of the Evan

Jones mine are believed to belong to this coal group.

The Premier coal group, the top of which is stratigraphically 140 to 210 feet below the base of the uppermost coal group, is 85 to 210 feet thick and includes 25 to 30 feet of coal. No. 2 bed in the Premier mine, No. 3 bed in the Buffalo mine, No. 1 bed in the Wishbone Hill mine, and No. 4 bed in the Howard & Jesson mine are correlated together as the same bed, which ranges from 7 to 10 feet in thickness and is the thickest bed in Premier coal group. With a few exceptions, the pricipal beds in these mines, as well as those in the Baxter and New Black Diamond mines, are in the Premier coal group. However, No. 5 bed in the Premier mine, No. 1 bed in the Buffalo mine, and Nos. 1 and 2 beds at the Howard & Jesson mine are stratigraphically below the Premier coal group. The No. 0 and No. 00 beds in the Evan Jones mine are believed to be in the upper part of the Premier coal group.

The Eska coal group, the top of which is 250 to 450 feet below the base of the Premier coal group, is 50 to 60 feet thick and contains four prominent beds, which are best exposed in the Eska mine. In this mine the beds of the Eska group in upward succession are the Martin, about 3½ feet thick, the Lower Shaw, about 5 feet thick, the Upper Shaw, about 4 feet thick, and the Eska, 2½ to 6 feet thick.

Several coal beds that have not been identified with any definite coal group have been located in the lower Matanuska Valley coal field and are believed to occur in the stratigraphic interval between the Premier and Eska coal groups. These beds include the Emery in the Eska mine area, Nos. 8 and 9 in the Evan Jones mine, and certain beds along Moose Creek. They are all less than 5 feet thick and are separated by 30 or more feet of sandstone and shale.

The dominant structural feature of the lower Matanuska Valley coal field is an open syncline striking southwestward. The dip of the beds ranges from a few degrees at the axis to nearly 90° in local areas of tight folding and in some faulted blocks. It more commonly ranges from 18° to 50°. Transverse and strike faults are common; the greater displacement is on the transverse faults. Along some

faults the horizontal displacement exceeds 300 feet.

The principal producing mines of this field are the Eska and Evan Jones in the eastern part of the field. Some coal has been produced from the Premier, Baxter, Buffalo, New Black Diamond, Wishbone Hill, and Howard & Jesson mines along Moose Creek in the western part of the field. Of the mines along Moose Creek only the Buffalo mine is now producing. Structural disturbance of the coal beds has resulted in higher mining and development costs and in lower recovery of coal, especially lump coal.

recovery of coal, especially lump coal.

*Upper Matanuska Valley.—The upper Matanuska Valley coal field occupies most of a rolling upland north of the Matanuska River and extends 20 miles eastward from the Kings River. This tract is underlain by the coal-bearing Chickaloon formation which here consists of a monotonous succession of shale and sandstone, shale predominating. The Chickaloon formation has been invaded by numerous sills and

dikes of basic igneous rock.

The field contains high-rank bituminous coking coal and some anthracite. The coal beds are numerous and locally are as much as 10 feet thick, although beds 2 feet thick or less predominate. Individual beds are not extensive and pinch and swell from place to place. The character of the coal varies greatly within short distances. The field has been prospected most thoroughly in the vicinities of Chickaloon and Anthracite Ridge. The beds are complexly folded and faulted, and dips ranging from 50° to 90° are common. Displacement along some of the faults is large.

Mining development and exploration at Chickaloon and Coal Creek by the Navy Alaska Coal Commission showed that the cost of mining would be high owing to complexity of structure and abrupt changes

in the character of the coal beds.

BROAD PASS DEPRESSION

The coal deposit at Costello Creek is about 11 miles west of the Alaska Railroad at Broad Pass, approximately halfway between Anchorage and Fairbanks. The coal is subbituminous and occurs in three minable beds in a sequence of slightly consolidated sandstone, siltstone, and conglomerate. In descending order these beds are the Upper "Billie," averaging 4 feet thick, the Lower "Billie," averaging about 3½ feet thick, and the Dunkle, averaging 5 to 6 feet

thick. They are slightly warped and in places faulted, but dips are low.

A bed of low-rank lignite several feet thick is known at Broad Pass Station on the railroad.

SUSITNA LOWLAND

The Susitna lowland, which extends northward from near the head of Cook Inlet, is a structural depression between the Alaska Range on the north and west and the Talkeetna Mountains on the east. Southward the lowland broadens and merges with the Matanuska Valley. Poorly to moderately consolidated beds of sand, clay, conglomerate,

Poorly to moderately consolidated beds of sand, clay, conglomerate, and coal of Tertiary age are exposed at numerous places throughout the Susitna lowland. These rocks, generally covered by glacial deposits, probably underlie most of the lowland. Where exposed the beds are horizontal or only gently folded; they range from a few inches to several feet in thickness. The coal is of lignitic and subbituminous rank.

The largest coal-bearing areas known are near Tyonek, on the north shore of Cook Inlet, and near the Yentna River. At Tyonek a thick sedimentary sequence is reported to contain minable lignite in several beds, which in the aggregate are about 50 feet thick. Gently dipping beds of high-rank lignite a few feet thick have been mined at Houston, on the railroad, Lignite has been mined for local use in the Peters Hills near the Yentna River.

KENAI PENINSULA

Most of the northwestern half of the Kenai Peninsula, known as the Kenai lowland, is probably underlain by coal-bearing rocks. The lowland is 20 to 40 miles wide and extends 100 miles southwest from Turnagain Arm, a branch of Cook Inlet. Most of its surface is less than 1,000 feet in altitude.

The coal beds are in the Kenai formation, which probably is to be correlated approximately with the coal-bearing Tertiary rocks of the Susitna and Matanuska Valleys. The Kenai formation consists of partly indurated sands, clays, and lignite. The total measured section of these rocks is 1,800 feet, of which 3 to 5 percent is coal. The coal beds are 3 to 7 feet thick and dip 2° to 4°, 13° being the maximum. Where dips have been observed, the beds in general dip toward the center of the area of Tertiary rocks.

SOUTHWESTERN ALASKA

Coal occurs in several small fields in the Alaska Peninsula. Most of it is subbituminous or lignite, but some at Herendeen Bay is bituminous. Lignitic coal is known in many places in the Kuskokwim Basin; none of the deposits, however, is economically significant.

In the Chignik Bay and Herendeen Bay fields the coal is in the Upper Cretaceous Chignik formation. At Herendeen Bay the Chignik formation in ascending order consists of 200 feet of shale, 300 feet of coal-bearing shale and sandstone, and 300 feet or more of conglomerate. At Chignik Bay the formation consists of sandstone,

shale, and some conglomerate, containing thin beds of subbituminous coal near the middle of the section. The beds are broadly folded and are locally faulted.

Thin beds of lignite have been found in gently dipping Tertiary strata on Unga Island, off the south coast of the Alaska Peninsula

and in the eastern part of the Herendeen Bay area.

A little coal has been mined at Mine Creek on Herendeen Bay and at various localities around Chignik Bay and on Unga Island.

COPPER RIVER AND ALASKA GULF REGIONS

The Copper River and Alaska Gulf regions are in south-central Alaska between the Cook Inlet-Susitna region and the Canadian border. The coal fields are in Tertiary rocks, a few patches of which occur along the flanks of the Chugach and Wrangell Mountains. The most-important coal fields, however, are near the Pacific coast between Katalla and Yakutat.

BERING RIVER

The Bering River coal field is about 20 miles north of the head of Controller Bay in a mountainous region, the altitudes of which are as much as 3,500 feet. Most of the known outcrops of coal, however, are less than 2,000 feet in altitude. An area of at least 50 square miles is believed to be underlain by coal. The coal is in the Kushtaka formation, consisting of arkose, shale, and sandstone, in addition to the coal. The thickness of the formation exceeds 2,000 feet.

Numerous coal beds are distributed throughout the Kushtaka formation. Most of them are several feet thick, and one is more than 30 feet thick. The coal is semibituminous in the western part of the field and increases in rank to anthracite in the eastern part. The semibituminous coal is good-quality coking coal. The coal is friable and in places is severely crushed, sheared, and squeezed. The structural complexity of the coal field increases from west to east. The beds are folded and faulted and dip steeply. Small dikes and sills, predominantly of basalt, are common, especially in the eastern part of the field.

SOUTHEASTERN ALASKA

In the vicinity of Kootznahoo Inlet on Admiralty Island an area of about 40 square miles is underlain by poorly consolidated Tertiary conglomerate and sandstone containing some lignite or subbituminous coal in small beds. The beds dip moderately and are faulted and folded.

RESERVES

In 1909 G. C. Martin, of the Geological Survey, estimated the minimum reserves of the known coal fields in Alaska at 15,104,500,000 short tons. In 1913 Martin and A. H. Brooks, also of the Survey, published a revised estimate of 19,593,000,000 metric tons (21,597,000,000 short tons). It was recognized, however, that many times this tonnage ultimately would be found available as the Territory was more thoroughly explored and more detailed information obtained. Reconnaissance work in areas unsurveyed in 1913 and detailed

investigations in areas little known in 1913 have disclosed much larger reserves; they now are estimated at nearly 100 billion short tons, of which perhaps 2 billion tons is coking coal. Table 1 summarizes the reserves regionally. Most of the added reserves are in northern Alaska, although moderate tonnages have been mapped in the Cook Inlet-Susitna region and in the south-central part of the Yukon Basin.

Most of the available information has been obtained from reconnaissance surveys and is adequate for indicating only the order of magnitude of the reserves. It is believed that even these revised estimates are conservative and that future surveys will disclose even larger coal reserves in the Territory.

Table 1.—Coal reserves of Alaska

Region	Lignite and sub- bituminous coal, short tons	Bituminous coal, short tons	Anthracite, short tons
Northern Alaska and Seward Peninsula. Yukon Basin Cook Inlet-Susitna Southwestern Alaska Copper River-Alaska Gulf Southwastern Alaska	60,000,000,000 5,800,000,000 3,000,000,000 600,000,000	22,000,000,000 20,000,000 1,500,000,000 100,000,000 1,100,000,000	3,000,000

SELECTED BIBLIOGRAPHY

General

BROOKS, A. H. Alaska Coal and Its Utilization. Geol. Survey Bull. 442a, 1910, pp. 47–100.

BROOKS, A. H., AND MARTIN, G. C. The Coal Resources of Alaska. The Coal Resources of the World, vol. 2, 12th Internat. Geol. Cong., 1913, pp. 541-552. Dall, W. H. Report on Coal and Lignite of Alaska. Geol. Survey Seventeenth

Ann. Rept., pt. I, 1896, pp. 771-908. Geological Survey. Annual volumes of Mineral Resources of Alaska.

Northern Alaska and Seward Peninsula

Moffit, F. H. Fairhaven Gold Placers, Seward Peninsula, Alaska. Geol.

Survey Bull. 247, 1905, p. 67.
SMITH, P. S., AND EAKIN, H. M. A Geologic Reconnaissance in Southeastern Seward Peninsula and the Norton Bay-Nulato Region, Alaska. Geol.

Survey Bull, 449, 1911, pp. 136-141. Smith, P. S., and Mertie, J. B., Jr. Geology and Mineral Resources of Northwestern Alaska. Geol. Survey Bull. 815, 1930, pp. 290-320.

Yukon Basin

CAPPS, S. R. The Bonnifield Region, Alaska. Geol. Survey Bull. 501, 1912, pp. 54-62.

The Kantishna Region, Alaska. Geol. Survey Bull. 687, 1919,

Geology of the Alaska Railroad Region. Geol. Survey Bull. 907, 1940, pp. 118-122, 193-196.

COLLIER, A. J. The Coal Resources of the Yukon, Alaska. Geol. Survey Bull. 218, 1903, 71 pp.

MARKIN G. C. The Market G. A. France G.

MARTIN, G. C. The Nenana Coal Field, Alaska. Geol, Survey Bull. 664, 1919, 54 pp.

MENTIE, J. B., JR. Mining in the Fortymile District. Geol. Survey Bull. 813c,

1930, pp. 141-142.

The Yukon-Tanana Region, Alaska. Geol. Survey Bull. 872, 1937, pp. 261-263.

Cook Inlet-Susitna region

CAPPS, S. R. The Yentna District, Alaska. Geol. Survey Bull. 534, 1913, pp. 28-33, 73.

Geology of the Upper Matanuska Valley, Alaska. Geol. Survey

Bull. 791, 1927, pp. 73-90.

————. Geology of the Alaska Railroad Region. Geol. Survey Bull. 907, 1940, pp. 61-62, 84-85, 193-196.

MARTIN, G. C., AND KATZ, F. J. Geology and Coal Fields of the Lower Matanuska Valley, Alaska. Geol. Survey Bull. 500, 1912, pp. 75-94.

MARTIN, G. C., JOHNSON, B. L., AND GRANT, U. S. Geology and Mineral Resources of Kenai Peninsula, Alaska. Geol. Survey Bull. 587, 1915, pp. 4411, 87-85, 104-110. 67-85, 104-110.

Tuck, Ralph. The Eska Creek Coal Deposits, Matanuska Valley. Geol. Survey Bull. 880d, 1937, pp. 185-214.

Wahrhaftig, Clyde. Coal Deposits of the Costello Creek Basin, Alaska.

Geol. Survey mimeographed preliminary report, 1944.

Waring, G. A. Geology of the Anthracite Ridge Coal District, Alaska. Geol.

Survey Bull. 861, 1936, 57 pp.

Copper River and Alaska Gulf regions

CAPPS, S. R. The Chisana-White River District, Alaska. Geol. Survey Bull. 630, 1916, pp. 125-126.

MARTIN, G. C. Geology and Mineral Resources of the Controller Bay Region, Alaska. Geol. Survey Bull. 335, 1908, pp. 65-112.

Southwestern Alaska

ATWOOD, W. W. Geology and Mineral Resources of Parts of the Alaska Peninsula. Geol. Survey Bull. 467, 1911, pp. 96-120.

GATES, G. O. Part of the Herendeen Bay Coal Field, Alaska. Geol. Survey

MENTIE, J. B., Jr., AND HARRINGTON, G. L. The Ruby-Kuskokwim Region, Alaska. Geol. Survey Bull. 7974, 1924, pp. 119–120.

SMITH, P. S. Mineral Resources of the Lake Clark-Iditarod Region. Geol. Survey Bull. 622, 1915, pp. 268–270.

Southeastern Alaska

WEIGHT, C. W. A Reconnaissance of Admiralty Island, Alaska. Geol. Survey Bull. 287, 1906, pp. 138–154.

PRODUCTION, DISTRIBUTION, AND USE 1

By C. H. Bell 2 and R. L. Anderson 3

PRODUCTION AND VALUE

Although a small quantity of coal was mined before 1884 from the Cape Lisburne region by crews of whaling vessels and revenue cutters in need of fuel, the first commercial mines worked in Alaska probably were those on the western side of the Kenai Peninsula.

In 1852 the Russian-American Co. undertook the development of mines near Port Graham on Cook Inlet. It abandoned the venture but induced an American company, under Russian charter, to continue the work at Port Chatham. Fuel was supplied for the Russian company's steamers until about the time of the sale of Alaska to the United States in 1867. With the development of the British Columbia, Puget Sound, and other Pacific coast fields, the Alaskan enterprise proved unprofitable and was abandoned.4

During the 30 years following acquisition of Alaska by the United States a number of companies were organized to exploit the coal deposits along Cook Inlet and on the Alaska Peninsula. Some coal was mined near Chignik and at Herendeen Bay, but in general little

was accomplished either in mining or prospecting.⁵

The attention of prospectors was directed to the Bering River field in 1896 and to the Matanuska field about 2 years later, but the importance of these fields was not realized until after the Geological Survey published reports of its investigations between 1904 and 1908.

The gold rush that followed the discovery of the Klondike placers in 1896 caused a greater demand for local fuel and increased the number of steamers plying the Yukon and its tributaries from 1 or 2 to nearly 100.6 Several small coal mines were opened along the banks of the Yukon to meet this demand and to supply fuel for river steamers, but oil from California supplanted coal and the mines were abandoned.

A mine was opened in 1903 on Chicago Creek in the northeastern part of Seward Peninsula to supply fuel for neighboring placer camps, and a second one was opened in 1909. Several thousand tons of coal was mined near Bering Lake in 1906-7 for use in railway construction in the vicinity.7

10

¹Most of the data in this chapter were taken from Mineral Resources of the United States (published annually by the Geological Survey from 1880 to 1923, inclusive, and by the Bureau of Mines from 1924 to 1931, inclusive) and from Minerals Yearbook, published by the Bureau of Mines since 1932.

²Economic analyst, Analysis Section, Coal Economics Division, Bureau of Mines.

³Assistant chief, Bituminous-Coal Section, Coal Economics Division, Bureau of Mines.

⁴Brooks, A. H., The Coal Resources of Alaska: Geol. Survey Twenty-second Annual Report, 1900-1901, pt. III, pp. 566-568.

⁶Brooks, A. H., The Future of Alaska Mining: Geol. Survey Bull. 714a, 1921, pp. 43-51.

⁶Collier, A. J., The Coal Resources of the Yukon, Alaska: Geol. Survey Bull. 218, 1903, pp. 12-18.

⁷Brooks, A. H., Alaska Coal and Its Utilization: Geol. Survey Bull. 442j, 1910, pp.

Brooks, A. H., Alaska Coal and Its Utilization: Geol. Survey Bull. 442j, 1910, pp.

Before 1916 mining in Alaska was confined to the operation of small mines in scattered localities to supply lignite or subbituminous coal for local needs. Two factors retarded development of the most-important coal deposits, the Bering River and Matanuska fields: (1) Advances in the development of the California oil resources and (2) the coal-land laws.

An Alaskan coal-land law, enacted in 1904, and supplementary legislation, passed in 1908, did not encourage coal-mine development. Coal lands were withdrawn from public entry in 1906; the result was confusion and controversies over the legal status of coal-land claims. A new coal-land leasing law was enacted in 1914 (38 Stat. 741), and the Department of the Interior issued pursuant regulations in 1916 to govern the leasing of coal lands.

In the meantime, however, the market for coal had dropped because of the increasing use of petroleum. Unsettled financial conditions prevailed, brought about by World War I. Capital had no desire to make large investments in the development of Alaska coal resources, while on the other hand industrial fuel consumers were reluctant to make commitments with uncertain sources of coal supply. Even private railroad projects were abandoned. As a result the Federal Government was forced to enter the field of railroad construction and to undertake the exploration and development of coal resources.

In 1916 the Alaskan Engineering Commission extended a branch of the Alaska Railroad into the heart of the Matanuska field and later acquired coal properties in the Eska Creek district, which it operated in 1917. In 1918 the coal lands of the Nenana field were offered for lease, and in 1922 the Healy mine became a commercial producer. The Evan Jones mine in the Matanuska field was being developed in 1920 and became a producer in 1921. These two mines have been the principal sources of Alaska coal, although many small mines have been in operation from time to time and the Eska mine of the Alaska Railroad Commission was kept in stand-by condition to assure an adequate fuel supply for the railroad.

Alaska's coal requirements increased markedly after 1941 because of wartime activities. To meet these demands as nearly as feasible with Alaska coal, a military commission was sent to Alaska to investigate its coal resources and to stimulate production. The Moose Creek district of the Matanuska field, which offered great promise, was explored extensively by the Bureau of Mines.

Table 2 shows the annual average production and value of coal produced in Alaska for the periods 1880-90, 1891-95, and 1896-1900 and the production and value by years from 1901 to 1944.

The data on value do not reflect the commercial value of the coal because a large part of the production is purchased under contract by the Alaska Railroad at a lower price than the coal commands in the open market.

660032°—46—2

⁸ U. S. Department of the Interior, Regulations Governing Coal-Land Leases in the Territory of Alaska: 1916,

⁹ Apell, G. A., Moose Creek District of the Matanuska Coal Fields of Alaska: Bureau of Mines Rept. of Investigations 3784, 1944, 36 pp.

TABLE 2.—Production and value of coal, f.o.b. mines, in Alaska

· 2110,3							
Year	Production, net tons	Value	Average value per ton at mines	Year	Production, net tons	Value	Average value per ton at mines
1880-1800 1 1891-1805 1 1891-1900 1 1901 1902 1903 1904 1905 1906 1908 1909 1910 1911 1911 1912 1914 1915 1916 1916 1917 1918	1,010 2,231 2,740 3,052 2,717 1,824 4,334 6,061 10,689 4,066 3,430 2,250 1,205 2,312 1,190 1,629 12,676 54,275 75,816	\$3,720 \$5,762 24,169 29,843 22,568 21,302 8,195 15,070 19,924 55,770 22,665 16,360 11,690 11,690 6,540 6,663 57,412 268,438 413,870	\$6. 12 5. 70 10. 83 10. 89 7. 37 7. 84 4. 49 5. 22 5. 22 5. 87 4. 77 6. 32 5. 57 4. 08 4. 53 4. 53 4. 53 4. 53 5. 40 5. 54	1922 1923 1924 1925 1925 1927 1927 1928 1930 1930 1931 1931 1932 1933 1933 1935 1935 1937 1938 1937 1938 1939	119, 826 99, 663 82, 868 87, 300 104, 300 120, 100 100, 600 120, 100 102, 700 96, 467 107, 508 119, 425 136, 593 131, 657 144, 682 148, 417 173, 844 238, 960 260, 893	\$430, 639 755, 409 559, 980 404, 617 459, 000 622, 000 538, 000 631, 000 556, 000 5514, 000 481, 000 481, 000 574, 000 574, 000 607, 000 944, 000 1, 023, 000	\$5.43 0.30 5.62 4.88 5.25 5.25 5.25 5.25 5.25 5.26 4.90 4.20 4.20 4.20 5.26 2.82 3.49 6.25
1919 1920 1921	61.111	345,617 355,668 496,394	5.68 5.82 6.46	1943	289,232 352,000	1,842,000 2,288,000	6.37 6.50

¹ Yearly average.
² Preliminary.

Table 3 shows data on production, men employed, days active, man-days worked, and output per man per day for the years 1934-44 at coal mines in Alaska.

TABLE 3.-Production, men employed, days active, man-days worked, and output per man per day at coal mines in Alaska, 1934-44
[Exclusive of mines producing less than 1,000 tons]

		F		and promi			-,000		,		
		Disp	position of coal pro	Avera e.	ge num mploye	ber of	Average	Number			
Year of mines	Loaded for shipment by rail	Shipped by truck or wagon and used by mine employees	Used at mine for power and heat	Total	Under- ground	All others	Total	number of days mines were active	man- days worked	tons per man per day	
1934	4 3 4 6 8 3 3 7 5	101,060 112,260 128,397 128,608 151,666 143,549 170,174 235,230 242,725 268,543	5,370 5,971 6,830 4 231 10 8,553 4,108	1,078 1,194 1,386 3,251 2,795 3,305 3,670 3,730 9,615 16,581	107,508 119,425 136,593 131,657 154,682 148,417 173,844 238,960 260,898 289,232 352,000	56 60 64 (2) 100 66 70 110 183 172 (2)	37 35 47 (2) 44 22 28 43 65 79	93 95 111 123 144 88 98 153 248 251 (2)	249 245 207 204 289 322 311 299	20,181 23,615 27,208 25,461 29,413 25,896 31,541 47,617 74,064 80,564	5.33 5.05 5.02 5.16 5.26 5.84 5.51 5.02 3.52 3.52

¹The total production differs from the sum of the items shown by the amount of the changes in inventory.

² Data not available.

³ Preliminary.

PRODUCTION OF MECHANICALLY CLEANED COAL

Table 4 shows the tonnage of mechanically cleaned coal produced in Alaska for the years 1939-43. During 1943 more than one-third of the total production of Alaska coal mines was cleaned, as compared with less than one-fourth of the total output of all bituminouscoal mines in the United States.

For every 100 tons of raw coal cleaned in Alaska during 1943, 70.1 tons of clean merchantable coal was obtained and 29.9 tons of refuse was discarded; comparable 1943 data for all bituminous-coal mines in the United States were 86.5 tons of clean merchantable coal and 18.5 tons of refuse.

TABLE 4.—Production of coal mechanically cleaned in Alaska, 1989 to 1948, inclusive

2000 - 1 - 1 2000	Year		Output mechanically cleaned,	Percent of total production mechanically cleaned				
elicario. Calde			net tons	Alaska	Total United States			
1939 1940 1941: 1942 1943			52,754 64,567 69,665 73,417 100,780	35.5 37.1 29.2 28.1 34.8	20.1 22.2 22.6 24.4 24.7			

USES

Table 5 shows the sources of coal consumed in Alaska from 1899 to 1943, inclusive. After the outbreak of the war in December 1941, Alaska was designated a military area, and there was a large influx of men and material into the Territory. Coal consumption, which approximated 200,000 tons per year before the war, increased notably, and the requirements for the 1943–44 season were estimated as approximately 500,000 tons.

Table 5.—Sources of coal consumed in Alaska, 1899-1943, in net tons

Year	Produced in Alaska	Imported from United States, chiefly from Wash- ington	Total foreign coal, chiefly from British Columbia	Total coal con- sumed	Year	Produced in Alaska	Imported from United States, chiefly from Wash- ington	Total foreign coal, chiefly from British Columbia	Total coal con- sumed
1889	2,264 2,855 2,740 3,052 2,717 1,824 4,384 4,066 8,480 1,850 1,205 2,312 1,100 1,629 12,675 54,275 75,316 60,894 61,111 76,817	10,000 15,048 24,000 64,626 36,689 67,713 69,493 46,246 23,893 33,198 32,255 27,767 69,066 41,509 44,934 58,116 58,116 55,1620 57,166 33,128 24,278	150, 120 156, 623 177, 674 168, 363 160, 605 172, 615 172, 615 147, 590 193, 260 61, 845 68, 316 66, 430 46, 153 29, 457 56, 589 37, 986 48, 708 48, 708	62,384 74,526 104,414 111,415 127,948 115,328 115,328 1150,197 114,363 105,588 95,950 97,288 127,808 88,852 77,415 111,282 166,768 166,768 144,503 134,871	1928 1929 1930 1931 1932 1938 1936 1937 1939 1939 1940 1941	87,300 104,300 126,100 100,600 120,100 105,900 102,700 96,467 107,508 119,425 136,593 131,657 154,682 148,417	28,457 34,082 40,161 37,324 35,620 39,437 38,408 30,772 23,422 21,524 22,524 24,562 22,465 17,587 14,794 21,805 9,812 11,289	34,251 43,205 41,980 57,230 34,254 30,492 32,518 27,073 23,892 17,796 18,959 14,675 10,781 16,707 11,806 10,781 8,163 6,389 9,763 33,349	141,983 197,118 181,804 177,422 157,174 174,229 198,026 181,120 154,468 145,081 132,000 150,500 161,686 176,042 167,000 176,042 167,000 176,042 176,042 176,042 176,042 176,042 176,043 176,04

¹ Fiscal year ending June 30.

The coal industry of Alaska began to expand in 1916 when the Government-owned Alaska Railroad was extended to the coal fields; the railroad has been the principal consumer of coal in Alaska. The mine of the Evan Jones Coal Co., the Healy mine of the Healy River Coal Corporation at Suntrana, and recently the Eska mine of the Alaska Railroad have been the principal sources of fuel for the railroad. Coal from the Healy and Nenana districts is used to generate power for the city of Fairbanks and the extensive nearby dredging operations.

The development of the Alaskan coal industry has been hampered by such difficulties as unfavorable climatic conditions; lack of adequate transportation, storage, and handling facilities; uncertain markets; high development and mining costs; and a scarcity of skilled workers. It is possible that the impetus given the industry by the current increased demands will be sustained and that future growth in population and industrial production will result in a stable and

prosperous coal-mining industry in Alaska.

RELATIONSHIP OF MINE SAMPLES TO COMMERCIAL SHIPMENTS

By N. H. SNYDER 1

Analyses of coal samples have little or no value unless the method of collecting and preparing the samples is clearly understood. Two kinds of samples are in ordinary use-mine or face samples and samples of coal as shipped or delivered. The former are prepared primarily for mine operators and the latter for purchasers and consumers. There is a distinct difference in the method of collecting the two kinds of samples that must be realized to permit interpretation of the resulting analyses. To explain this difference, the method of collecting them will be described briefly. Mine samples are collected according to the standard method adopted by the Bureau of Mines 2 and the Geological Survey, whereas delivered samples 3 are collected according to the American standard method adopted by the American Society for Testing Materials and approved by the American Engineering Standards Committee.

METHOD OF COLLECTING MINE SAMPLES

In mine sampling enough working places must be selected in the mine so that when analyses of all the face samples are determined the resulting average will be a fair measure of the quality of all the coal in that particular mine relatively free of impurities. There is no definite rule as to how many samples should be collected for a mine, as that depends on local conditions, such as variability of the bed, concentration of mine workings, and output. The general rule followed by the Bureau is to collect "from any mine that is shipping coal not less than three samples * * * and the number to be taken should increase with increase in the daily output of the mine-not less than three samples for outputs up to a daily average of 300 tons, four samples for average outputs of 300 to 500 tons, five samples for outputs of 500 to 1,000 tons, six samples for outputs of 1,000 to 1,500 tons." A single face sample of a commercial mine cannot be considered of any great value, as it may have been cut from the best or worst coal in the mine.

At each selected place the face is cleared of powder, dirt, and loose coal; insecure fragments of the roof are taken down; and the floor is cleaned. From this thoroughly cleaned face a channel is cut from roof to floor. The channel should be 2 inches deep and 6 inches wide (or 3 inches deep and 4 inches wide in the softer coals). As the coal is cut it falls on a clean piece of canvas or oilcloth. The sampler

¹ Supervising engineer, Fuel-Inspection Section, Bureau of Mines.

² Holmes, J. A., The Sampling of Coal in the Mine; Bureau of Mines Tech. Paper 1, 1913, 17 pp.

³ Pope, G. S., Directions for Sampling Coal for Shipment or Delivery; Bureau of Mines Tech. Paper 133, 1917, 15 pp. (Revised in 1933 by N. H. Snyder; 8 pp.)

⁴ Holmes, J. A., Work cited

eliminates from the sample partings of shale, bone, and pyrite 3% inch or thicker and lenses or concretions of pyrite or other impurities more than 2 inches in maximum diameter or ½ inch in thickness. The sample is cut to include only those parts of the bed that a reasonably careful miner would load. The coal thus cut from the channel is crushed, mixed, and quartered and placed in a sample container that holds about 3 pounds. This container is completely filled and sealed in the mine.

A mine sample therefore tends to represent the best quality of coal that can be produced. The sampler is much more careful in excluding impurities in the bed of coal than the miner is when he is loading coal. Furthermore, all impurities arising from roof and floor conditions are eliminated from the sample. When the miner loads coal he is not as careful to keep out small pieces of shale that fall from the roof or impurities from a soft or flaky floor. As mine samples usually are collected only from a small proportion of the total number of working places, their analyses represent only a limited part of the coal immediately available for shipment.

If enough face samples are cut according to the rule given and if these cover the area of the mine fairly well, they generally can be considered reliable in showing the quality of the coal in the mine. If one remembers that the purpose of face samples is to show the best quality of coal that a mine can produce under ideal conditions, he can judge the value of the analyses.

METHOD OF SAMPLING COAL FOR SHIPMENT OR DELIVERY

Samples of coal for shipment or delivery are taken after the coal has been mined and has received its customary cleaning. It may be sampled at the mine as it is being loaded into railroad cars or trucks for shipment or at the point of delivery as it is being unloaded. The samples are collected according to the American standard method.⁵ The method of preparing such a sample is to collect for lump or run-of-mine coal not less than 1,000 pounds taken systematically in equal increments at regular intervals throughout the shipment or delivery. For 3/4-inch slack or smaller sizes not less than 500 pounds is required. The coal collected is crushed, mixed, and quartered in successive stages to laboratory size for analysis. The final sample mailed to the laboratory should weigh not less than 5 pounds and should be crushed to less than 4-mesh size. When the increments of run-of-mine coal are collected care should be taken that the percentage of sizes in the sample is the same as the percentage in the shipment. Impurities such as shale, bone, and pyrite, which may be included in the increments as they are collected, should not be thrown out but should be finely crushed and included in the gross sample. Nothing is thrown out of the sample, but care must be taken that no foreign matter, such as cinders and dirt, gets into the coal sample as it is being prepared.

The analysis of a sample so collected is therefore representative of the actual product shipped by the mine when the sample was collected. In using analyses of samples of delivered coal one must recog-

⁵ Pope, G. S., Work cited.

nize that coal is not always of uniform size and that the impurities are not distributed uniformly throughout the mass. Hence, there will be some variation in the results of sampling, and even though the same mass of coal was sampled a number of times the analyses would not agree absolutely except by chance. Only when a large number of analyses representing a considerable tonnage mined over a period of time are available do the average value and range of variation of a particular coal become known with certainty.

The reliability of a sample of coal as shipped or delivered depends entirely on the sampler. If less than the required gross sample is collected, the result is likely to be wrong. If the sampler is prejudiced in favor of either the buyer or the seller, if he does not take the increments to represent the gross tonnage fairly as to size and impurities, or if he does not follow correct instructions explicitly, the analysis

resulting from the sample will be of little value.

COMPARISON OF RESULTS OBTAINED BY TWO METHODS OF SAMPLING

The average or composite analysis of a number of face samples, almost without exception, will show a lower percentage of ash than the analysis of a sample of run-of-mine coal from the same mine. The reason for this difference is that a miner, interested in producing a large tonnage, shovels the coal in a hurry and is likely to load out impurities that a trained sampler would exclude. A sampler excludes any impurities from the roof and floor and certain impurities from the bed because he has no criteria to determine whether or not such impurities will get into the coal and, if so, how great an amount. In the processes of mining, blasting, and loading the coal such impurities do get into the coal. The amount of these impurities removed depends on the method of mining, type of tipple equipment, discipline of loaders, and other factors.

Where a mine has a tipple equipped to prepare and grade the coal into various sizes one or more of the sizes may contain less ash than the average or composite face samples. However, if each size is sampled and a weighted average is computed on the basis of the percentage of each size produced, this weighted average usually will

show a higher percentage of ash than the face samples.

INTERPRETATION OF SAMPLING RESULTS

Face samples measure the coal as it lies in the bed. Samples of coal as shipped or delivered measure the product as mined and commercially shipped. The former are fairly constant and form a permanent record of the quality of coal at the point of sampling, but the latter are variable and change from time to time because of the following

- 1. Development of new areas in the mine of better or poorer coal.
- Development of new beds of different quality.
 Increase or decrease in supervision and discipline of coal loaders.
 Development of more-efficient tipples for cleaning coal, either manually or mechanically.
 - 5. Changes in mining methods.
 - 6. Market demand and price of coal.

The sample of coal as shipped or delivered is of greatest value to the consumer. Both types of samples give valuable information to a coal-mine operator in helping him to determine the quality of coal that a mine can produce and what it is actually producing. The closeness with which the quality of the shipped or delivered coal approaches that of the mine sample is a measure of the efficiency of

preparation.

The analyses of tipple and delivered samples in table 8 (p. 26) indicate more nearly what consumers are likely to receive. In judging these records careful consideration should be given the following

factors:

 Year of delivery.
 Amount of coal sampled. 3. Number of analyses made.

Obviously, a number of analyses made recently on a large tonnage are more valuable than a single analysis made some time ago on a small tonnage. The single analyses made on the tipple samples are

an exception, as they were taken by trained samplers in strict accordance with the "standard method" and can be considered very reliable.

Although information on analyses of shipped or delivered coal for Alaska mines is not complete, it will give purchasers of Alaska coals an idea of the character of coal they are likely to get. If purchase of coal from a given mine for which there are no reliable analyses as to the quality produced is being considered, these tables should aid in forming an opinion; the following information should be available:

1. Location of mine by town and county.

2. Bed being mined.

8. Average section of bed showing impurities and character of roof, draw slate, and floor.
4. Tipple equipment.

If these factors are known, the approximate quality of coal produced can be determined by reference to the table of analyses given in this paper. Mines in the same locality working the same bed generally produce about the same quality of coal, unless conditions are

If those who purchase or sell coal will realize that mine samples are likely to indicate coal of slightly better grade than average commercial shipments, considerable trouble will be avoided in settling for coal delivered on contracts involving a penalty if the coal is below the quality guaranteed. Bids on such contracts should not be based solely upon mine samples but upon samples from shipments of the same size, mined and prepared under conditions that can be maintained during the life of a contract. Published analyses of coal, advertised or reported, that do not indicate plainly whether the samples were mine, shipped, or delivered, what they represent, who collected them, and who analyzed them cannot be regarded as reliable in determining the quality of coal to be shipped. Because of the many conditions that affect the mining and preparation of coal, an allowance based upon experience must be made between the quality of coal in the mine and that as it reaches the consumer.

ANALYSES OF MINE, TIPPLE, AND DELIVERED SAMPLES

and R. J. Swingle 5 By H. M. Cooper, 1 N. H. SNYDER, 2 R. F. ABERNETHY, 8 E. C. TARPLEY, 4

EXPLANATION OF TABLE OF ANALYSES

The analyses in table 8 are arranged geographically with respect to regions 6 and alphabetically with respect to location in the region. The location in the region may be determined by distance and direction from a town, creek, river, mountain, road, or trail. The analyses are grouped as follows:

- 1. Proximate analysis-moisture, volatile matter, fixed carbon, and ash.
- 2. Ultimate analysis—sulfur, hydrogen, carbon, nitrogen, oxygen, and ash.
 3. Softening temperature of ash, when such determinations were made.
- 4. Agglomerating index, when such tests were made.
 5. Mineral-matter-free basis:
- o, mineral-matter-tree basis:
 (a) Dry fixed carbon and B. t. u.
 (b) Moist B. t. u.

The second of the second of the second

Ultimate analyses and B. t. u. for mine samples are given for three conditions, as follows: (1) As-received, (2) moisture-free, and (3) moisture- and ash-free. Proximate analyses and B. t. u. for tipple and delivered samples are given for two conditions: As received and

The as-received condition represents the sample as received at the laboratory and for mine samples may approximate closely the condition of the coal in the mine; the moisture-free condition represents the composition and heating value of the dry coal; the moisture- and ash-free condition approximates the composition and heating value of the dry combustible matter.

The analyses are given to the nearest 0.1 percent and the British thermal units to the nearest 10, although the laboratory determinations are recorded to the nearest 0.01 percent and the nearest British thermal unit.

DIFFERENCES IN VOLATILE-MATTER AND FIXED-CARBON DETERMINATIONS

Before 1913 the methods for determining volatile matter and fixed carbon were not standard with respect to temperature; consequently, determinations made before this date are not comparable because the work was done in three different laboratories under four different sets of temperature conditions.

Group 1, analyzed before April 1907, laboratory Nos. 1 to 5146,

Senior chemist, Central Experiment Station, Bureau of Mines, Pittsburgh, Pa. Supervising engineer, Fuel-Inspection Section, Bureau of Mines, Washington, D. C. Chemist, Central Experiment Station, Bureau of Mines, Pittsburgh, Pa. Associate chemist, Central Experiment Station, Bureau of Mines, Pittsburgh, Pa. Senior scientific aide, Fuel-Inspection Section, Bureau of Mines, Washington, D. C. Smith, P. S., Areal Geology of Alaska: Geol. Survey Prof. Paper 192, 1939, pp. 2-3.

inclusive.—These determinations were made in the St. Louis labora-

tory, where gasoline gas was used for fuel.

Group 2, analyzed between September 1907 and March 1909, laboratory Nos. 5147 to 7100, inclusive.—These determinations were made while the laboratory was in the Carnegie Technical Schools, Pittsburgh, Pa., where natural gas was used as fuel. There is no record of the pressure at which the natural gas was supplied to the burners,

but it probably was about 10 inches of water.

Group 3, analyzed between March and October 1909, laboratory Nos. 7101 to 9120, inclusive.—These determinations were made after removal of the laboratory to Fortieth and Butler Streets, Pittsburgh, Pa., where natural gas was used for fuel. While determinations were being made in this group the pressure of the gas at the burners was low and caused much trouble. It fluctuated between 1½ and 5 inches of water, apparently varying with the demands of certain industrial

establishments that were taking gas from the same main.

Group 4, analyzed between October 1909 and February 1913, laboratory Nos. 9121 to 16100, inclusive.—These determinations were made under the same conditions as those in group 3, except that the pressure of the gas at the burners was kept at 10 to 14 inches of water. By using a Tyrell burner and a polished platinum crucible a temperature of about 880° C. was maintained in the interior of the coke at a point about 2 mm. from the bottom of the crucible.

Since February 1913 all volatile-matter determinations have been

run in an electric furnace at 950° C.

During the fall of 1917 the laboratory was moved from Fortieth and Butler Streets to the present location, 4800 Forbes Street, Pittsburgh, Pa., where the use of the electric volatile furnace at 950° C. is still continued.

Comparison of analyses of various groups.—Comparison of analyses of samples from the same mine show that the volatile-matter and fixed-carbon determinations of groups 1 and 4 agree fairly closely; the variations are both plus and minus and as a rule within 1 percent. The determinations of group 3, however, are distinctly lower in volatile matter and higher in fixed carbon than are those of groups 1 and 4. The differences are about 3 percent for low-volatile bituminous coals and anthracite and decrease gradually, as the volatile matter in the coal increases, to about 1 percent for bituminous coals. The volatile-matter determinations made while the laboratory was in the Carnegie Technical Schools (group 2) fall about midway between the determinations made at the St. Louis laboratory (group 1) and those made with natural gas under low pressure (group 3).

CLASSIFICATION OF COAL BY RANK

The unweathered mine samples have been classified by rank, that is, according to their degree of metamorphism or progressive alteration in the natural series from lignite to anthracite. This classification conforms to the Standard Specifications for Classification of Coals by Rank (D 388-38) of the American Society for Testing Materials.7

⁷ American Society for Testing Materials, Standard Specifications for Classification of Coals by Rank (A. S. T. M. Designation: D 388-38; A. S. A. M20.1-1938): A. S. T. M. Standards, 1999, pt. III, pp. 1-6.

A coal containing more than 69 percent of dry, mineral-matter-free fixed carbon is classified according to fixed carbon; but one containing less than 69 percent is classified according to moist, mineral-matter-free B.t.u. Weathering and agglomerating properties are used to differentiate between certain adjacent groups.

Four different methods were used in determining the volatile matter on samples 1 to 16,100; consequently, the classification will vary and

may be in slight error.

Table 6 shows the several divisions of coal classification.

Table 6.—Classification of coals by rank 1 [Legend: FC = fixed carbon. VM = volatile matter. B. t. u. = British thermal units]

Class	Group	Limits of fixed carbon or B. t.u., mineral-matter-free basis	Requisite physical properties
	(1. Meta-anthracite	Dry FC, 98 percent or more	1
I. Anthracitic	2. Anthracite	(dry VM, 2 percent or less), Dry FC, 92 percent or more and less than 98 percent (dry VM, 8 percent or less and	
er Men i Dali makaban palasis	3. Semianthracite	more than 2 percent or more and less than 92 percent or more and less than 92 percent (dry VM, 14 percent or less and more than 8 percent).	Nonagglomerating, ²
The state of the s	1. Low-volatile bituminous coal.		
Control of the Contro	2. Medium-volatile bi- tuminous coal.	more than 14 percent). Dry FC, 69 percent or more and less than 78 percent (dry VM, 31 percent or less and	
II. Bituminous *	3. High-volatile Abitu- minous coal.	more than 22 percent), Dry FC, less than 69 percent (dry VM, more than 31 percent); and moist 4 B. t. u.,	: : : : : : : : : : : : : : : : : : :
in district of	4. High-volatile B bituminous coal. 5. High-volatile C bi-	14,000 t or more. Moist B. t. u., 13,000 or more and less than 14,000.5 Moist B. t. u., 11,000 or more	Either agglomerating
	tuminous coal. (1. Subbituminous A coal.	and less than 13,000. ⁵ Moist B. t. u., 11,000 or more and less than 13,000. ⁵	or nonweathering. Both weathering and nonagglomerating.
III. Subbituminous	2. Subbituminous B coal. 3. Subbituminous C	Moist B. t. u., 9,500 or more and less than 11,000.5 Moist B. t. u., 8,300 or more	
IV. Lignitic	coal. 1. Lignite 2. Brown coal	and less than 9,500.6 Moist B. t. u., less than 8,300 Moist B. t. u., less than 8,300	Consolidated. Unconsolidated.

¹This classification does not include a few coals that have unusual physical and chemical properties and that come within the limits of fixed carbon or B. t. u. of the high-volatile bituminous and subbituminous ranks. All of these coals either contain less than 48 percent dry, mineral-matter-free fixed carbon or have more than 15,500 moist, mineral-matter-free B. t. u.

² If agglomerating, the coal is classified in low-volatile group of bituminous class,

³ It is recognized that there may be noneaking varieties in each group of the bituminous class,

⁴ Moist B. t. u. refers to coal containing its natural bed moisture but not including visible water on the surface of the coal.

⁵ Coals containing 69 percent or more fixed carbon on the dry, mineral-matter-free basis shall be classified according to fixed carbon, regardless of B.t. u.

⁶ There are three varieties of coal in the high-volatile C bituminous-coal group, namely: (1) Agglomerating and nonweathering; (2) agglomerating and weathering; (3) nonagglomerating and non-weathering.

The method of calculating to mineral-matter-free basis is given

Parr 8 formulas:

Dry, Mm-free FO =
$$\frac{\text{FC} - 0.15 \text{ S}}{100 - (M + 1.08 \text{ A} + 0.55 \text{ S})} \times 100$$
 (1)

⁸ Parr, S. W., The Classification of Coal: Illinois' Eng. Exp. Sta. Bull. 180, 1928, 62 pp.

Moist, Mm-free B. t. u. =
$$\frac{\text{B. t. u.} - 50 \text{ S}}{100 - (1.08 \text{ A} + 0.55 \text{ S})} \times 100$$
 (2)

The as-received analysis, or the analysis of the coal as it is in the coal bed, is used in these formulas.

An information circular 9 on the use of formulas and curves for convenient determination of the classification of coals has been issued by the Bureau of Mines.

AGGLOMERATING INDEX

The agglomerating index is a rough indication of the caking properties of coal. It is determined by visual and physical examination of the residue from the standard volatile-matter determination. All coals analyzed since November 15, 1934 (laboratory No. B300), have been classified according to agglomerating properties in accordance with the following table:

TABLE 7.—Agglomerating properties of coals based upon examination of residue incident to the volatile-matter determination 1

Desig	nation	
Class	Group	Appearance of residue from standard method for determination of volatile matter in coal
Nonagglomerating ² (button shows no swelling or cell structure and will not support a 500-gram weight without pulverizing). Agglomerating ² (button shows swelling or cell structure or will support a 500-gram weightwithout pulverizing).	A—Agglomerate (button dull black, sintered, shows no swelling or cell structure. Will support a 500-gram weight without pulverizing). C—Caking (button shows swelling or cell structure).	NAa—Noncoherent residue. NAb—Coke button shows no swelling or cell structure and after careful removal from the crucible will pulverize under a 500-gram weight carefully lowered on button. Aw—Weak agglomerate (button comes out of crucible in more than 1 piece). Af—Firm agglomerate (button comes out of crucible in 1 piece). Cp—Poor caking (button shows slight swelling, with small cells; has slight gray luster). Cf—Fair caking (button shows medium swelling and good cell structure; has characteristic metallic luster). Cg—Good caking (button shows strong swelling and pronounced cell structure, with numerous large cells and cavities; has characteristic metallic luster).

¹ Based upon Agglomerating and Agglutinating Tests for Classifying Weakly Caking Coals, by R. E. Gilmore, G. P. Connel, and J. H. H. Nicolls: Trans. Am. Inst. Min. and Met. Eng., Coal Div., vol. 108, 1934, pp. 255-265.

² Agglomerating index—coals that in the volatile-matter determination produce either an agglomerate button that will support a 500-gram weight without pulverizing or a button showing swelling or cell structure shall be classified as agglomerating.

⁹Barkley, J. F., and Burdick, L. R., Curves for the Classification of Coal: Bureau of Mines Inf. Cir. 6933, 1937, 6 pp.

SOURCES OF INFORMATION

The analyses in table 8 comprise those taken from Bureau of Mines Bulletins 22, 85, 123, and 193 and later analyses made before April 1. 1945, which are published here for the first time. Most of the analyses credited to Bureau of Mines Bulletin 22 were made under the direction of the Technologic Branch, Geological Survey, at the coal-testing plant, St. Louis, Mo. They were published in various Geological Survey reports and later incorporated in Bulletin 22. The analyses of delivered coal, index numbers 1 to 129, inclusive, and mine samples, laboratory numbers preceded by "X," were made by M. L. Sharp at Anchorage, Alaska. All other analyses were made in the laboratory of the Bureau of Mines at Pittsburgh, Pa.

The samples were taken by representatives of the Geological Survey, Bureau of Mines, Navy Department, and Alaskan Engineering Commission. The name and affiliation of the sampler is given under De-

(or the transfer

 $\ldots : \mathbb{N} \subset \mathbb{N}_{m_{M} \times \mathbb{N}_{m}}$

scription of Mine Samples (p. 70).

Analyses of samples bearing laboratory numbers 1 to 7100 were made in accordance with procedures 10 employed at the coal-testing plant at St. Louis. The remainder of the analyses were made by procedures outlined in Bureau of Mines Technical Paper 8.11

SIZE DESIGNATION OF DELIVERED COAL

The various sizes of delivered coal are specified as follows in Form 1177, Standard Alaska Railroad Purchase Conditions:

Lump-plus-3-inch round-hole screen.

Lump nut—plus-1-inch round-hole screen.

Nut—minus-3-inch and plus-1-inch round-hole screen.

Chestnut—minus-1-inch round-hole, plus-1/4-inch-mesh screen.

Locomotive—not less than 40 percent retained on 1-inch round-hole screen. Steam-through 1-inch round-hole screen, not more than 40 percent through 14-inch-mesh screen.

FUSIBILITY OF ASH

Three critical temperatures are observed in the process of melting the test cone in the fusibility-of-ash determination. The first, or initial deformation temperature, is defined as the temperature at which the apex of the cone begins to round or melt; it is lower than the second critical point, or softening temperature. The softening temperature, often called the fusion temperature, is that temperature at which the cone has fused down to a spherical lump; it is lower than the fluid temperature, the third critical point. The fluid temperature is that temperature at which the molten mass spreads out into a flat layer over the refractory base holding the cone. These temperatures are determined by prescribed methods in a test furnace in which the cones are surrounded by a slightly reducing atmosphere.

The most important of these three temperatures is the second, or

¹⁰ Geological Survey, Report on the Operations of the Coal-Testing Plant of the United States Geological Survey at the Louisiana Purchase Exposition, St. Louis, Mo., 1904: Prof. Paper 48, 1906, pp. 174-192.

¹¹ Stanton, F. M., and Fieldner, A. C., Methods of Analyzing Coal and Coke: Bureau of Mines Tech. Paper 8, 1912, 42 pp. (Revised in 1913, 1926, 1929, and 1938 by F. M. Stanton, A. C. Fieldner, and W. A. Selvig.)

softening, temperature. In general, the softening temperatures of ash range from 1,800° to 3,100° F. and are classified as follows:

Class I. Refractory ash, softening above 2,600° F. Class II. Medium-fusible ash, softening between 2,200° and 2,600° F. Class III. Easily fusible ash, softening below 2,200° F.

The ash from most coals of Alaska falls in class II or class III, softening below 2,600° F.

The actual temperatures observed for individual samples are given in columns 21, 22, and 23 of table 8.

EXPLANATION OF SYMBOLS USED IN TABLE OF ANALYSES

```
Rank (column 3, table 8):
     An—anthracite.
Sa—semianthracite.
Lvb—low-volatile bituminous.
Mvb—medium-volatile bituminous.
      Hvab—high-volatile A bituminous.
Hvbb—high-volatile B bituminous.
      Hycb—high-volatile C bituminous.
Suba—subbituminous A.
      Subb—subbituminous B. Subc—subbituminous C.
      Lig-lignite.
Agglomerating index (column 7, table 8):
      NAa-noncoherent residue.
      NAb-coherent residue.
      Aw-weak agglomerate.
      Af—firm agglomerate.
Cp—poor caking.
Cf—fair caking.
Cg—good caking.
Mineral-matter-free basis (formulas used in calculating values in columns 24,
   25, and 26, table 8):
      Dry, mineral-matter-free fixed carbon = Fixed carbon = 0.15 sulfur
                                        \frac{100 - \text{(moisture} + 1.08 \text{ ash} + 0.55 \text{ sulfur)}}{100} \times 100.
      Moist, mineral-matter-free B. t. u. = \frac{\text{B. t. u.} = 50 \text{ sulfur}}{100 - (1.08 \text{ ash} + 0.55 \text{ sulfur})} \times 100.
      Dry, mineral-matter-free B. t. u. ==
                                                          B. t. u. -50 sulfur
                                        100 — (moisture + 1.08 ash + 0.55 sulfur) \times 100.
```

TABLE 8 .- Analyses of mine,

			TABLI	c 8	-A	nalys	es oj	f mine,
Region, town or district, and mine	Bed	Rank ¹	Size or other description	Kind of sample 2 \$	Condition 4	Agglomerating index ¹	Reference, page in this report	Laboratory No. ⁵ or index No.
1 '	2	3	. 4	5	6	7	8	9
NORTHERN ALASKA REGION								
Ikpikpuk River: Outcrop				М	1		70	A6849
Do				M	1			A6847
Kiana: Outerop	l'''	l .		M	2 1 2		71	A52083
Killik River: Outcrop				М	3 1 2		71	A6848
Kukpowruk River: Outerop				м	1		71	696820
Do				М	1 2		•	96821
Meade River: Meade River				М	1 2	NAa	71	°C27944
Meade River prospect.				М	3 1 2 3	NAa	71	°C27945
Peard Bay: Outerop	*			М	1 2	NAa	71	6C27946
Prospect				М	3 1 2 3	NAa	71	6C27948
Wainwright: Arctic Ocean beach.				М	1 2 3	NAa	72	°C27950
Kuk River out- erop.				M	1 2 3	NAa	72	C27949
Do				M	1 2 3	NAa		6C27947
Do		Subb		M	1 1			696823
Do		Subb		м	2			96822
Mine		Subb		M	1 2		72	626371
REWARD PENINSULA REGION	*				3			
Candle: Kugruk				М	1 2 3		72	619928
Chicago Creek: Chicago Creek				M	1		72	6944
Do	*=========			М	2 3 1 2			6942
Do				М	3 1 2 3			6946
,	I .	I	1		13	1 1		ا'.

See Explanation of Symbols (p. 24).
 M, mine sample; T, tipple sample; D, delivered coal.
 The bold-faced figure indicates the number of deliveries averaged.

tipple, and delivered samples

ex No.	P	roxin perce	nato, ent		U	tima	te, pe	rcent	:	;		sibilit y o	f ash	Mi	neral-m ree bas	atter- is 1
o.5 or ind		tu								ф Ф	rmation	tempera- o F.	temperature,	a, dry	va	orific lue
Laboratory No. ⁵ or index No	Moisture	Volatile matter	Fixed carbon	प	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calorific value,	Initial deformation temperature, ° F.	Softening t	Fluid temp	Fixed carbon, basis, percent	t. u., dry	B.t.u., moist basis
, E	Ĭ	\\ \rac{\sqrt{\sqrt{\chi}}{\sqrt{\chi}}}{\sqrt{\chi}}	E	Ash	Sa	H	ပီ ——	-Z	<u>.</u>	Ö			E	<u>=</u>	B.	<u>m</u> i
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25 ———	26
								,						1		
A6849	8.4	31.2	54.1	6.3	0.6					11,400 12,440	2,000	2,110	2,340			
A 6847	1.5 0	26.0	41.3	$\frac{6.9}{17.7}$.7					8,470	2,750	2,900	2,940]		
A52083	5.1	30.6 31.0	48.5	19.5	.5	4.9	59.0 62.1	1.0	15.1	9,970 $10,320$ $10,870$	2,360	2,560	2,830			
A6848	16.4	$\frac{32.0}{41.1}$	46.9 58.9 41.9	11.8	.5 .7 .3	5.7	78.2	1.3	14.1	13,680 8,450 10,110		2,340	2,360			
⁶ 96820	,				1 1						2,040	2,110	2,390			
96821	3.9	38.6	$56.1 \\ 62.3 \\ 55.5$	12.0	. 5 2					11,910 13,210 13,790	1,990	2,040	2,120			
6C27944	14.4		57.7 47.3	2.1	.2	5.5	60.6			14,000		2,290	2,650	\ 		
©27944 ©27945		$\frac{41.4}{33.8}$	$58.6 \\ 47.0 \\ 56.2$	2.9	76	4.6	$70.8 \\ 74.9 \\ 61.4 \\ 73.3$	1.6 1.7 1.5	16.7 17.8 27.9 16.0	10,330 12,070 12,780 10,470 12,510 12,960	2,100	2,130	2,180			
°C27946	17.8	31.9	58.2 40.5	9.8	.3		76.0 52.0	1.1	31.4	8,780	2,460	2,570	2,850			
C27948	20.2	$\frac{32.6}{40.9}$	51.4	$\frac{6.2}{7.7}$.4	4.7 5.8 5.4	52.0 63.2 71.9 53.8 67.5 73.2	1.5	21.5 32.5 17.3	8,780 10,680 12,140 9,140 11,460 12,410	2,470	2,570	2,840			
°C27950	18.8	32.5	55.7 44.9 55.3	3.8 4.7			58.1 71.6	1.1 1.4	30.6 17.0	10,000 12,320	1,930	2,000	2,090			
C27949	18.9	$\frac{42.0}{34.1}$	$58.0 \\ 43.4$	3.6	.6		175 1	1.5	17.8 31.0	12,920 9,850	2,230	2,590	2,670			
°C27947	19.3	$\frac{44.0}{32.0}$	53.6 56.0 45.7 56.7	3.0 3.7	.5	4.7 5.7 4.5	58.1 71.6 74.9 57.0 70.6	1.5 1.2 1.5	18.4 32.8 19.3	10,000 12,320 12,920 9,850 12,140 12,700 11,850 11,310 9,900 12,730	2,150	2,190	2,290			
96823	22.3	$\frac{41.1}{30.6}$	$58.9 \\ 44.5$	l		4.6	73,3	1.6	20.1	12,310 $9,900$	2,120	2,250	2,360	59.4	13,230	10,19
96822		$\frac{39.4}{29.3}$	$\frac{57.3}{43.7}$	$\begin{bmatrix} 3.3 \\ 5.2 \end{bmatrix}$,4 ,4					0 460	2 090	2,410	2,450	60.3	13,050	10,03
626371	20.7	$\frac{31.8}{40.0}$	56.0	/ 4U	4	$\frac{6.0}{4.7}$	$\frac{57.2}{72.1}$	$\begin{array}{c} 1.1 \\ 1.4 \end{array}$	$\frac{32.2}{17.4}$	12,100 9,760 12,300 12,810				58.4	12,880	10,11
		41.7	58.3		- 5	4.9	75.1	1.5	18.0	12,810						
6 19928	19.7	36.3 45.2	38.8 48.4	5.2 6.4	1.2 1.5	6.3 5.1	54.8 68.3	1.0 1.3	$\frac{31.5}{17.4}$	9,580 11,940	2,350	2,410	2,440			
	:	48.3	51.7 32.2	3.9	1.6	0.4	10.0	1. 2	45 O	12,100						
		$\frac{42.0}{44.8}$	51.8	6.2	$\frac{1.1}{1.1}$	5.0	$41.8 \\ 67.2 \\ 71.7 \\ 38.6$	1.1	19.7 21.0 49.6 20.6							 _
		$42.9 \\ 45.5 \\ 25.4$	$ \begin{array}{r} 29.5 \\ 51.3 \\ 54.5 \\ 31.0 \\ \end{array} $	5.8 3.9	.8 .9 .7	4.6 4.8 7.3	67.1 71.3 39.9 66.2	1.1	$\frac{21.6}{47.6}$				3			
		[42.0]	51.5	6.5	1, 1				20.5 21.8		anh. f=c-			1	1	} .
X pi	mpie ecedi	as re ng lal	borate	a; 2, ory ni odifia	ad ma uried	av 10 : indi thod	cates	analy	sis m	ade at	Anchora	ge, Alask	a.			

TABLE 8.—Analyses of mine, tipple,

			TABLE 8.—A	uuy	868	oj n	une,	tippie,	
Region, town or district, and mine	Bed	Rank ¹	Size or other description	Kind of sample 2 5	Condition 4	Agglomerating index ¹	Reference, page in this report	Laboratory No. ⁵ or index No.	
1	2	3	4	5	6	7	8	9	
SEWARD PENINSULA REGION—con.			`.				1	i	
Chicago Creek—Con. Chicago Creek				М	1 2		72	6941	
Do				М	3 1 2 3 1			6943	
Do				M	3			6940	
Do				м	3 1 2 3			6947	
Do			-	M	3 1 2			6948	
Do				M	1 2 8 1 2 3			6945	
YUKON REGION					8				
Broad Pass field	,								
Broad Pass: " Prospect		Lig		М	1 2	NAa	73	C31318	
Do		Lig		М	2 3 1 2 3 1 2 3 1	NAa		6C31319	
Do		Lig		М	1 2	NAa		C31320	
Do		Lig		М	1 2	NAa		°C31321	
Do		Lig		M	3 1 2	NAa		°C31322	
Charley Creek: Prospect. Chicken:	No. 2			М	2312312		73	5794	
Chicken: Prospect		Sube		М	1		73	6A47661	
Do				M	$\begin{bmatrix} 2\\1\\2 \end{bmatrix}$			A47662	
Colorado Station: Costello Creek	Dunkle	Subb		М	1 2	NAa	73	6C1804	
Do	do	Suba		M	3 1 2 3 1 2	N.Aa		C1806	
Do	Stevens	Subb		M	3 1 2	NAa		*C1805	
Do	Billie	Subb		М	3 1 2 3	NAa		6C1807	
1 Con Tourismetter	of Committee (m. O4)			•	. •	•		•	

See Explanation of Symbols (p. 24).
 M, mine sample; T, tipple sample; D, delivered coal.
 The bold-faced figure indicates the number of deliveries averaged.

and delivered samples-Continued

and o	leuve	erea	sam	pies		J11(11	aued				· ·					
No.	1	roxin perce			Ultimate, percent						Fu	Mineral-matter- free basis ¹				
5 or inde		1								, B. t.u	deformation	tempera-	temperature,	n, dry	Calorific value	
Laboratory No.5 or index	Moisture	Volatile matter	Fixed carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calorific value, B. t. u.	Initial defort	Softening to	Fluid tempe	Fixed carbon, basis, percent	B. t. u., dry basis	B.t.u., moist basis
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
		0.7.0	20.0		0 17	7.0	10 "	0.7	477 1	-						
694	38.5 340.1	$\frac{25.5}{41.1}$ $\frac{44.0}{23.8}$	52.4 56.0 30.5	4.0 6.5 5.6	$1.2 \\ 1.3 \\ .6$	4.4 4.7 7.0	65.8 70.4 40.6	$\begin{vmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 6 \end{vmatrix}$	47.1 21.0 22.4 45.6							
6940	38.3	24.4	50.9 56.2 30.2 49.0	7.1	1.09	4.3 4.7 6.8	40.5 65.8 70.4 40.6 67.9 74.8 37.9 61.4	$1.1 \\ 1.2 \\ .6$	45.6 16.5 18.3 46.7 20.5							
6947	32.3	91 6	55.3	51 B	1.5 1.7 .9 1.3	4.6 5.8 3.3	69.3 31.1 46.0	1.2	$\frac{23.2}{40.2}$ $\frac{17.0}{1}$							
	34.4				$1.9 \\ 1.4 \\ 2.1 \\ 2.7 \\ 1.0$	4.9	67.3	1.0	$\frac{24.9}{42.2}$							
6940	35.9	34.4	25.3 39.5 53.5	16.8 26.1	1.0 1.5 2.0	6.3 3.6 4.8	54.1 68.6 32.5 50.7 68.7	.91	22.5 42.8 17.2 23.3							
		00.0		01.0		0.1	00 7		20 5					19 1	12,110	7 400
*C31318	35.8	28.6 40.9 58.2 29.7	20.7 29.4 41.8 23.9	$\frac{21.0}{29.7}$ $\overline{10.6}$.2	4.0 5.8 6.6	33.7 47.7 67.9 35.6	1.0	46 41	11,670					11,150	6,640
6731390	198.4	27 8	23 0	12 0	.4	4.1	66 4	1.0 5	$22.7 \\ 27.3 \\ 45.2$	9,160 10,980 5,720				47.3	11,300	6,640
6C31321	33.9	53.7 28.9 43.8	$\frac{37.0}{46.3}$ $\frac{21.1}{31.8}$	$16.1 \\ 24.4$.4 .5 .2 .3	4.9 6.3	34.6 53.5 66.8 33.0 49.9	1.0	$\frac{43.9}{20.8}$	8,850 11,060 5,410 8,180						
C31322	21.8	$57.9 \\ 34.5 \\ 44.1$	$\begin{array}{c} 31.8 \\ 42.1 \\ 28.3 \\ 36.2 \end{array}$	$\frac{15.4}{19.7}$.3	$\frac{5.6}{4.1}$	49.9 66.0 41.8 53.5	$\frac{1.0}{6}$	$\frac{27.6}{36.4}$	10,820 7,040 9,000						
1.	1	21.3	[55.1]	23.0	.0	0.1	66.6	 		11,200 11,230 11,470						
A47661	23.1 212.6	30.8 40.0 35.4	35.7 46.5 47.8	$10.4 \\ 13.5 \\ 4.2$.4 .6 .5					8,330 10,830 10,350				54.4	12,700	9,380
10400	ا ا	40.6	54.0	4.8	6	6.1	55.1			11,850	2,470	2,530	2,800	56.5	13,560	10,780
*C180	3 15.9	39.2 44.2 35.9	49.5 55.8 42.2	$\frac{11.3}{6.0}$.8 .8	והח	107 E	1.0	$14.4 \\ 16.4 \\ 26.7$	9,700 11,880 13,380 10,600 12,610 13,580	2,380	2,440	2,510	54.4	13,670	11,340
					.6 .6 .5	5.7 6.3	76.0 59.7 71.0 76.5 57.1 70.3	1.2	16.0 29.0	13,580 10,040 12,360 13,380	2,020	2,090	2,480	55.6	13,490	10,770
6C180	18.2	44.8 34.3 41.9	55.2 39.9 48.8 53.8	7.6 9.3	.6	6.3 5.3	76.1 56.8 69.4 76.5	9:	27.9	13,380 9,970 12,200 13,450	Z 400	2,520	2,800	54.3	13,570	10,870

^{41,} Sample as received; 2, dried at 105° C.; 3, moisture- and ash-free.

5 X preceding laboratory number indicates analysis made at Anchorage, Alaska.

6 Volatile matter by modified method.

Region, town or district, and mine	Bed	Rank ¹	Eize or other description	Kind of sample 2 3	Condition 4	Agglomerating index ¹	Reference, page in this report	Leborstory No. ⁵ or index No.
1	2	3.	4	5	6	7	8	9
YUKON REGION—con. Broad Pass field— Continued Colorado Station— Continued. Costello Creek			Run-of-mine	D	1 2		108	1
Do		Subb Subb	do	D 6 D	l 1			2
Do	~~~~~~~~~~~~~	Subb	do	D	$\frac{1}{2}$			4
Dunkle-Camp Creek.	No. 8	Subb		5 M	2 1 2 1 2 1 2		74	B67785
Eagle: Prospect	No. 3	Lig		м	3		74	5795
Galena: Outcrop			*****	М	2 1 2	NAa	75	6C36293
Iditarod: Prospect		An		М	1 2		75	19347
Innoko district: Prospect		An	************	M	1 2		75	26370
DoKaltag:				М	3 1 2		1	A16716
Adolph Muller prospect				М	1 2 3 1		75	A15869
Prospect				М	1 2		75	Č36295
Mount McKinley National Park: Alaska Road Commission.		Subb		М	1 2 3		75	®16186
Mount McKinley National Park dis- trict: Prospect.				М	1 2 3		75	987352
Mount McKinley Park Station: Prospect. Yanert:		Hvab		М	1 2		75	94109
Yanert			~~~~~	М	1 2		75	94166
Do		Myb		М	2 1 2 1 2 1			94167
Do		Myb	-4	М	î		1	94168
Do			Composite of 94166 to 94168.	М	1 2 3			94169

¹ See Explanation of Symbols (p. 24).

² M, mine sample; T, tipple sample; D, delivered coal.

³ The bold-faced figure indicates the number of deliveries averaged.

and delivered samples-Continued

anu;u	Proximate, percent				Ultimate, percent						Fus	Mineral-matter- free basis ¹				
Laboratory No.5 or index	Moisture		Fixed carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calorific value, B. t. u.	Initial deformation temperature, ° F.	Softening tempera- ture, ° F.	Fluid temperature, F.	Fixed carbon, dry basis, percent		B.t.u., moist and basis
	-									ļ				ļ <u> </u>		
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
	Parent, A. adv. Con. 4															
2	15.8	$\frac{45.1}{38.7}$	37.4 45.4 38.2 45.3 38.6	7.8 9.5 7.3 8.7 8.9	5					9,840 11,950 10,090 11,980 9,960 11,940						
4 B67785	14.3 16.3	$43.0 \\ 35.5 \\ 41.4 \\ 34.6 \\ 41.3 \\ 45.1$	38.6 46.3 36.9 43.1 42.0 50.2	10.7 13.3 15.5 7.1 8.5	.6 .6 .6 .7	5.9 4.9 5.3	58.1 69.3 75.8	0.9 1.1 1.2		9,470 11,050 10,010 11,960 13,070 6,270 7,810 10,170		2,220	2,440	55.4	13,180	10,850
4 ◆B67785 5795 ◆C36293 19347	19.8 8.5 1.4	33.1 41.3 37.0 40.5 6.6	22.7 28.3 51.9 56.7 84.7	24.4 30.4 2.6 2.8 7.3	2 .4 .4 1.1						2,290 2,080	2,370 2,380	2,640 2,570			
26370 A16716	1.5	7.7	85.6 86.9 91.8 50.5	5.2	8	3.4 3.3 3.4	85.9 87.2 92.0	1.6 1.6 1.7	3.1 1.8 2.1	14,300 14,520 15,320 10,470 11,020						
A15869		$\frac{24.3}{26.1}$	47.2 50.8 66.0	$\frac{21.5}{23.1}$		$\frac{4.1}{3.6}$	55.6 59.8 77.9	1.2			2,910+					
C36295 B16186	4.0 21.8	$\begin{array}{c} 33.8 \\ 35.2 \\ 36.9 \\ 47.1 \end{array}$	53.1	$\begin{array}{c c} 9.1 \\ 9.5 \\ 5.7 \end{array}$.3		-,			12,010 12,500 9,050 11,580 12,500	2,080	2,740 2,230	2,910 2,520	49.5	12,580	9,650
687352	21.2	36.6 46.4 52.4	$33.2 \\ 42.2 \\ 47.6$	9.0 11.4			50.0 63.4 71.6			8,530 10,830 12,220	1					
94109	2.6		1	1	.3					13,250 13,600	2,150	2,240	2,340	60.0	15,180	14,740
94166 94167 94168	7.7 4.2 5.9	11.4 12.3 24.2 25.3 18.6 19.7	64.7 70.2 59.7 62.3 56.8 60.4 58.8	16.2 17.5 11.9 12.4 18.7	.7 .8 .4 .4 .4					11,050 11,970 12,180 12,710 10,590 11,260	2,280	2,390 2,510 2,390	2,450 2,510	77.0	14,700 14,350 14,460	13,280
94169	5.0	$21.0 \\ 22.1 \\ 26.4$	73.6	15.2 16.0	.4 .5	3.9 4.6	$ \begin{array}{c} 67.4 \\ 71.0 \\ 84.4 \end{array} $	$1.0 \\ 1.1 \\ 1.3$	$7.6 \\ 9.2$	11,350 11,950 14,220				14.9	14,400	19,090

^{41.} Sample as received; 2, dried at 105°C.; 3, moisture- and ash-free.

*X preceding laboratory number indicates analysis made at Anchorage, Alaska.

*Volatile matter by modified method.

TABLE 8 .- Analyses of mine, tipple,

			TABLE 8.—An	ialy	868	of m	une,:	tippie,
Region, town or district, and mine	Bod	Rank ¹	Sime or other description	Kind of sample ? \$	Cendition 4	Agglomerating index 2	Reference, page in this report	Laboratory No.º or index No.
1	2	3	4	5	6	7	8	9
YUKON REGION—con. Nenana field California Creek:								
Outerop		Lig		M	1 2 3		76	*26359
Do		Lig		M	23123123			¢26360
Do		Lig	*****	М	1 2			°26361
Healy Creek: Outcrop				M	1		76	¢26368
*			4		123123			617794
Do		Lig	A THE PERSON AS A	M	2 3			
Do	~~~~~	Lig	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	M	2			17795
Do		Lig		М	123123			417798
Healy Fork: Outcrop	No. 6 (?)			м	!	NAa	76	4C30893
Do	do			М	1 2	NAa		C30894
Do	No. 3 (?)		**************************************	М	12812312312312	NAa		C30892
Do	do		***********	м	3	NAa	*.	C30895
Roth Property		Sube	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	M	3		77	X10030
outerop.		Subb		M	1			X10031
Do	Morse	Subb	**	M	1 2			X10032
Do	do	Subb		М	1 1			X10035
Do		Subc	~*****************	М	1 2			X10033
Do	Mammoth	Subb	*****************	М	1 2			X10034
Do		Subc	******	М	1 2			X10036
Roth-Taylor	Mammoth			M	1 2 3		77	A11088
Lignito Creek; Alaskan Engi- neering Com-	an and and any are the law page feel for one are set feel feel feel feel	Lig		·M-	3 1 2			¢30846
mission. Do		Lig		M	1 2			430847

¹ See Explanation of Symbols (p. 24).

² M, mine sample; T, tipple sample; D, delivered coal.

aced figure indicates the number of deliveries averaged.

and delivered samples-Continued

<u> </u>														T		
й	P	roxim perce	ate, nt		Ul	timat	е, ре	rcent			Fus	ibility of	ash	Mi	neral-m ree bas	atter- is 1
s or inde		ы								5, B. t. a.	deformation ature, ° F.	tempera- F	temperature, F.	a, dry	Calc va	lue
Laboratory No.s or index No	Moisture	Volatile matter	Fixed carbon	Ash	Şalfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calorific value, B.	Initial deform temperature,	Softening te	Fluid temps	Fixed carbon, basis, percent	B. t. u., dry basis	B.t.u., moist basis
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
	1															-
°26359	38.2	23.8 38.6 51.8	22.2 35.8 48.2	15.8 25.6	0.4 .6	6.5 3.6 4.8	$\begin{array}{c} 31.1 \\ 50.4 \\ 67.7 \\ 27.0 \end{array}$	0.5 .8 1.1	45.7 19.0 25.6	5,260 8,520 11,440				49.6	11,770	6,830
					8234235	4 1	37.9 50.9 68.7 27.4 37.3	.5 .7 1.0	$18.1 \\ 24.3 \\ 34.5$	$ \begin{array}{r} 6,480 \\ 8,710 \\ 11,760 \\ 4.710 \end{array} $					 	
\$26361	20.0	34.2 60.5	22.3 39.5	43.5		5.8	66.0	1.2	20.0	11,040					- 3	
\$26368 \$17794	21.5	41.8 53.3 57.6	30.8 39.2 42.4	5.9 7.5	.3 .4	6.1 4.7 5.0	$\begin{array}{c} 49.2 \\ 62.6 \\ 67.7 \end{array}$.9	20,0	8,580 10,930 11,820 8,740	<u>.</u>		¥			***
617794 617795	25.7	36.4 49.0 51.3	46.5 48.7	3.4 4.5	.4 .2 .2 .1 .1	5.4	51.4 69.2 72.5 48.1	1.0	37.4 19.7 20.6	11,760 12,320 8,090 11,320	2.250	2,570	2.640			,
•17798 •17796	28.5 27.4	48.0 50.5 34.7	47.0 49.5 33.5	5.0 4.4	.1	5.2	70.8 48.5		$\frac{21.8}{22.9}$	11,320 11,920 8,290 11,420 12,160			2,010			
617796			-	1 1	. 2	5.4	66.8					. 100				
*C30893	23.9	$\begin{array}{c} 39.6 \\ 52.1 \\ 58.7 \end{array}$	$28.0 \\ 36.7 \\ 41.3$	8.5 11.2	23332	L # 1	$\frac{47.3}{62.2}$	1.0	20.4 22.9	8,230 10,810 12,180	2,140	2,190 2,330	2,340			
*C30894	25.9	$\begin{array}{c} 31.2 \\ 42.1 \\ 55.6 \\ 37.9 \\ 50.2 \end{array}$	24 9 33 6 44 4	24.3 4.7	3	4.1 5.4 6.5	70.1 38.3 51.7 68.3 49.8	1.0	$18.8 \\ 24.9 \\ 38.2$	10,810 12,180 6,540 8,820 11,650 8,630 11,450	2,420	2,470	2,510			
*C30895	25.6	50.2 53.6 36.3	$\frac{43.6}{46.4}$	$\begin{array}{c} 6.2 \\ -4.1 \\ 5.5 \end{array}$	$\begin{array}{c} 1 \\ 2 \\ 2 \\ 1 \end{array}$	5.4	66.1 70.5 49.1 66.0	1.0 1.7	21.6 22.9 39.6	8,630 11,450 12,200 8,330 11,190	2,520	2,560	2,610			
X10030 X10031	23.8	48.8 51.6 39.5	45.7 48.4 31.3	5.4 7.1 7.1	.1	5.0	69.9	1.0	23.9	11,840 8,410 11,040				1	11,960	
X10031 X10032	21.6	$\frac{39.8}{50.8}$	$31.\overline{5}$ 40.2	$\begin{array}{c} 7.1 \\ 9.0 \end{array}$.2			22		$ \begin{array}{c c} 8,870 \\ 11,310 \\ 10,260 \\ \end{array} $						9,600
1 /		52.3	43.6	4.I	.2					112.670				1	1	10,640 10,370
X10035		$\frac{52.5}{27.0}$	34.5 43.0	L 4 - 15 I	.2		4-44			9,970 12,430 8,390				\	11,820	
X10033	24.2 22.0	50.0 39.6	$\frac{33.4}{44.1}$	5.9	3					11,060 8,670					12,780	
X10036	24.3	50.7 38.5	$\frac{37.2}{33.2}$	12.1 4.0	.3 2					11,110 8,750				1	12,260	
X10034 X10036 A11088	16.2	50.8 41.5	$\frac{43.9}{38.5}$	5.3	.3	6.5	59.0	$\begin{array}{c} 1.1\\1.3\end{array}$	29.5	$ 11,550 \\ 10,500$	2,370	2,410	2,430			
		$\substack{49.6\\51.9}$	$\frac{45.8}{48.1}$	4.6	.1	$\frac{5.5}{5.8}$	70.5 73.8	1.3	$18.0 \\ 18.9$	$12,530 \\ 13,130$		·			· ;	
\$0846		39.0	30.1		.2					8,160 10,310	2,130	2,180	2,360		,	
480847	32.3	$\frac{34.2}{50.5}$	19.5 28.8	$\frac{14.0}{20.7}$.5					9,050	2,130 ash-free	2,190	2,300			

^{41,} Sample as received; 2, dried at 105° C.; 3, moisture- and ash-free.

X preceding laboratory number indicates analysis made at Anchorage, Alaska.

Volatile matter by modified method.

Table 8.—Analyses of mine, tipple,

Region, town or district, and mine	Bed	Rank ¹	Size or other description	Kind of sample 2 3	Condition 4	Agglomerating index ^I	Reference, page in this repor	Laboratory No. ⁵ or index No
1 .	2	3	4	5	6	7	8	9
YUKON REGION—con. Nenana field—Con. Lignite Creek—Con. Alaskan Engineering Commission. Do		Lig Lig		M M	1 2 1			*30848 *30849
Do		Lig		М	2			°30850
Do		Lig		М	2			\$30851
Calderhead		Lig		M,	1 2 1		77	434587
	umu	Lig	4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	M	2 3 1		77	°26362
Outcrop	"B"	Lig		141	2		11. 	2,0002
Do		Lig		M	3 1 2		• ;	¢26363
Do		Lig		M	3 1 2 3			26364
Do		Lig		м	3 1 2 3			¢26365
Do		Lig		м	3			¢26366
		Lig		M	1 2 3		· i	126367
Do					1 2 3			
Do		Lig		M	1 2 3			⁶ 26369
Do	No. 5	Lig		М	1 2 3 1			626588
Do	No. 1	Lig		M	3			6 26589
Nenana River: Out-		Lig	· · · · · · · · · · · · · · · · · · ·	М	2 3 1		78	23042
erop. Nulato: Prospect				м	2 1 2	NAa	78	C36294
Suntrana: New Suntrana (Hill).	"E"	Subb		М	1	NAa.	78	°C9524
(Hill). Do	"C"	Subb		M	2 3 1 2	NAa		C9525
					3			400 800
Do	"B"	Subb		M	2	NAa		*C9526
Do	"F"	Subb		M	2 3 1 2	NAa	·	¢C9527
Do	"D"	Subb	****************	М	3 1 2 3	NAa		°C9530

and delivered samples-Continued

ex No.	P	roxin perce	ate, ent		·WI	tima	e, pe	rcent			Fus	ibility of	ash	M	ineral-n free bas	natter-
Laboratory No.5 or index	Moisture	Volatile matter	Fixed carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calorific value, B. t. u.	Initial deformation temperature, ° F.	Softening tempera- ture, ° F.	Fluid temperature,	Fixed carbon, dry basis, percent	B. t. u., dry	B.t.u., moist only basis
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
													1,1,1		7	
•30848	36.7	32.4	21.0	9.9	0.3					5,880 9,290	2,130	2,190	2,220		1, 12 - 25 22 - 24 24 - 1	
430849	30.2		33.2 20.5		.5					6,080	2,190	2,240	2,300		:	
430849 430850					.5					8,710 6,180	2,130	2,150	2,170			
*30851	38.5	31.0 50.5	$\frac{33.1}{20.8}$	9.7	.6 .4					5,720 9,310	2,140	2,200	2,300			
434587	26.5	35.8 48.7	28.2 38.4	$\frac{9.5}{12.9}$.2	$\frac{6.4}{4.7}$	$\frac{44.0}{59.8}$	0.6	$\frac{39.3}{21.5}$	7,570 10,300						
*30850 *30851 *34587 *26362	20.6	$\begin{array}{c} 55.9 \\ 38.8 \\ 48.9 \end{array}$	$\frac{44.1}{30.0}$	10.6 13.3	.3	$5.4 \\ 5.9 \\ 4.5$	68.6 47.5 59.8	.9 .7	$24.8 \\ 35.1 \\ 21.4$	6,180 9,310 5,310 7,570 10,300 11,820 8,060 11,720 7,760 11,730 11,730 11,820 8,850 11,570 12,250 8,020 11,920						
198983	22 7	25 0	20.3	5.1	.3	$\frac{5.2}{6.7}$	$69.0 \\ 45.8 \\ 64.3$	1.0 .6 .8	$24.5 \\ 41.6 \\ 22.6$	11,720 7,760 10,890						
26364		45.5	38.1	$\frac{12.8}{16.4}$.2	5.3 5.9 4.4	$\frac{69.2}{45.1}$ $\frac{58.0}{6}$.6 .8	$24.4 \\ 35.4 \\ 20.1$	7,690 9,880						
\$2636 5				4.2 5.5	.3	5.3 6.3 4.8	$69.4 \\ 51.5 \\ 67.1$.6 .7	$\frac{24.1}{37.3}$	8,850 11,570					Apr ¹³	
426366	24.3	$\frac{51.8}{38.0}$ $\frac{50.2}{50.2}$	48.2 29.3 38.7	8.4 11.1	.2	6.3	46.8 61.9	.6	$\frac{22.8}{37.7}$	8,020 10,600						'
*26366 *26367 *26369	25.3	36.1 48.3	43.6 32.6 43.7	6,0 8,0	.3	6.4	47.6 63.7	.6	$\frac{20.0}{39.1}$	8,140 10,890						
2 6369	23.8	35.6	28.8	11,8	4	5.6	42.7 56 0	.7	$\frac{24.5}{38.8}$	7,010						
126588	32.5	33.6	27.2	6.7	<u> </u>	4.6 6.3 4.0	$\begin{array}{c} 59.808084432109443321109443211094443211094443211094443211094443211094443211094443211094443211094443211094444311094444410944444109444410944441094444109444410944441094444109444441094444410944444109444441094444410944444109444441094444410944444444$	1.0	27.6 46.4 25.9	10,880 6,640 9,830	1,980	2,140	2,200			
2 6589	27.9	55.3 35.8	$\frac{44.7}{29.3}$	7.0	.1	6.5	65.6 45.0	1.0	$\frac{28.8}{40.9}$	7,990						
123042	28.2	$55.1 \\ 34.5$	$\frac{44.9}{33.7}$	3.6	.2	5.2	69.2	.8	24.6	12,280 8,080	2,200	2,370	2,600			
C36294	2.8	48.1 22.5	46.8 69.8	5.1 4.9 5.0	9 9					11,240 13,350 13,730	2,230	2,360	2,760			
400mg		0= 0	0 + 1	10.0	ارا	6.4	49.7 63.6	.8		10,100		2,300	2,500	47.4	13,120	9,860
°C9525 °C9526	20.0	53.2 36.9	46.8 30.4	12.7 15.8	45623332	5.9 6.3 5.1	49.7 63.6 73.8 49.6 62.0 73.7	1.2	$18.5 \\ 30.5 \\ 15.9$	8,710 11,160 12,950 8,760 10,950 13,010	2,380	2,430	2,580	45.9	13,220	10,150
C9526	23.1	54.8 37.0 48.1	$\frac{45.2}{34.7}$	5.2	3323	6.0 6.7 5.4	73.7 53.6 69.8	1.1 .8 1.1	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	13,010 9,440 12,280	2,130	2,180	2,230	48.8	13,250	10,000
°C9527	21.7	51.6 36.4 46.5	$\frac{48.4}{32.5}$	9.4 12.0	.3	5.8 6.4 5.1	74.9 50.2 64.1	$\frac{1.2}{.8}$	$17.8 \\ 33.0 \\ 17.4$	13,180 8,830 11,280	2,280	2,350	2,530	47.8	12,930	0,830
*C9527 *C9527	21.1	$52.9 \\ 34.9 \\ 44.2$	$\frac{47.1}{31.0}$	13.0 16.5	.3 .3 .4	5.8 6.2 4.9	$72.9 \\ 48.6 \\ 61.6 \\ 73.9$	1.2 .8 1.0	19.8 31.1 15.6	12,830 8,530 10,800	2,280 2,360	2,400	2,710	47,9	13,160	0,920
11, Sa	mple	as re	ceive	1; 2,	dried	nt 10	5° C.	3, n	ioistu	re- and	ash-free	ge, Alask) (1)	· ; •	,
Vola	ecedi tile m	ng la latter	by n	ory n iodific	umpe ed me	thod	cates	апац	n Elev	aue at .	viionotai	ge, Alask	u.			

TABLE 8.—Analyses of mine, tipple,

				TABLE 8.—A	navy	868	oj n	une,	uppue,
Region town or di and mi	n, strict, ne	Bed	Rank ¹	Size or other description	Kind of sample 2 :	Condition 4	Agglomerating index ¹	Reference, page in this report	Laboratory No. s or index No.
1		2	3	4	5	6	7	8	9
YUKON REGIO Nenana field Suntrana—C Old Sun Do Prospect	—Con. on. trana	No. 4	Subc Subb Subc		M M M	123123123	NAa NAa NAa	78 80	°C9528 °C9529 °C31323
Do. Do.			Subo		M M	1 2 3 1	NAa NAa		°C31324 °C31325
					M M	2 3 1 2 3 1 2	NAa NAa		°C31326
Suntran	a	Donaldson (No. 3).	Sube		М	3	NAa	81	B80608
Do		do	Subc		M	2 3 1 2 3 1	NAa.		B80609
:		do	Subc	D	M	1 2 3 1	NAa	100	\$B80610
			Subc	Run-of-mine	D D 8	$\begin{bmatrix} 1\\2\\1\\2 \end{bmatrix}$		108	5 6
1			Sube Sube	do	8 D 3 D 5	1 2 1 2 1			8
i		do	Sube Sube	Nutdo	D 62 D 11	$\begin{bmatrix} 1\\2\\1\\2\\1 \end{bmatrix}$			10
		do	Subc Subc	do	D 14 D 13	1 2 1 2 1			11
Do.		do	Subc Subc	do	D 12 D 12	1 2 1 2			13
Do.		do	Subc	do	D 7 D 2 D 3 D 4 D 3 D 4	1 2 1 2			16
Do.		do	Subc Subc	Nut and chestnut	3 D 4	2 1 2 1 2 1 2 1 2 1 2 1 2			17
Do.		of Symbols (p. 24).	Subc Subc	do	3 D 4	$\begin{vmatrix} 1\\2\\1\\2\end{vmatrix}$			19 20

¹ See Explanation of Symbols (p. 24).
2 M, mine sample; T, tipple sample; D, delivered coal.
3 The bold-faced figure indicates the number of deliveries averaged.

and delivered samples-Continued

Z No.	P	roxin	nate,		יט	ltima	te, pe	rcent			Fus	sibility of	ash	M	ineral-m free bas	atter-
o. s or inde		Fig.		'						le, B. t. u.	deformation	tempera-	temperature,	on, dry	Va.	orific lue
Laboratory No.* or index No	Moisture	Volatile matter	Fixed carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calorific value, B. t. u.	Initial defort temperature,	Softening ture,	Fluid tem	Fixed carbon, basis, percent	B. t. u., dry basis	B.t.u., moist basis
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
												·			1. K	
6C9528	26 0	34.8	30.6	8.6	0.2	6.4	46.3 62.6	0.7	37.8	7,920	2,130	2,160	2,370	47.4	12,240	8,730
•C9528	18,6	53.2	46.8 30.2	7.5	.3	1 5.4	70.8 52.6 64.7 71.2	1.0	$\begin{array}{c} 22.5 \\ 32.6 \\ 19.7 \end{array}$	7,920 10,710 12,110 9,290	2,180	2,270	2,400		12,680	
C31323	1 1		$\frac{31.2}{40.9}$ $\frac{34.2}{46.1}$		1 + I	6.0 6.5 4.8	48.8	ğ	21.8	12.570				49.5	12,030	8,760
C31324	22.5	[50.9]	$\begin{vmatrix} 49.1 \\ 34.3 \end{vmatrix}$	4.4	.1 .2 .2 .2 .2 .2	$\frac{5.1}{6.4}$	$ 70.1 \\ 51.1$	1.0	$ \begin{array}{c} 23.6 \\ 37.2 \\ 22.1 \end{array} $	11,970				47.2	12 ,0 90	9,230
C31325	24.4	EO A	177 O		33 22 33 33 33	6.5	66.0 69.9 48.9 64.6	.9 .7	$\frac{23.5}{37.9}$	12,020						
C31326	29:1	$53.3 \\ 34.7 \\ 48.9$	32.6 43.2 46.7 29.9 42.2 46.4	6.3	.3 .3 .4	5.4	$70.0 \\ 44.6 \\ 62.9$	1.0 7 1.0	$ \begin{array}{c} 23.3 \\ 41.6 \\ 22.1 \end{array} $	11,950 $7,540$ $10,630$						
C31327	29 3	35.8 50.6	27.8 39.3	10.1	.5	5.1 6.6	$\frac{69.0}{43.3}$	1.1	$24.3 \\ 42.4 \\ 23.1$	$11,670 \\ 7,290 \\ 10,300$	-					
B80608	22.3	41.9	40,1	8.4	.2 .1 .1	$\begin{bmatrix} 5.2 \\ 6.4 \\ 5.1 \end{bmatrix}$	61.2 68.1 50.7 65.3	.8 .6 .8	$\begin{array}{c} 25.7 \\ 35.7 \end{array}$	11,460 8,640 11,130	2,080	2,140	2,310	48.1	12,230	9,290
B80609	25.4	$52.3 \\ 36.5 \\ 48.9$	47.7 33.8 45.4	4.3 5.7	.2 .2 .3	$\begin{array}{c c} 5.5 \\ 6.6 \\ 5.1 \end{array}$	71.2 49.7 66.6 70.7	.9 .6	$ \begin{array}{c} 22.2 \\ 38.6 \\ 21.4 \end{array} $	$12,150 \\ 8,440 \\ 11.330$	2,360	2,420	2,530	48.4	12,070	8,850
B80610	25,1	48.4	$\frac{35.2}{46.9}$	3.5	.3	5.1	67.8	I . X	$\frac{22.7}{38.5}$	12,020 8,580 11 460	2,570	2,610	2,690	49.5	12,070	8,920
5	22.5	$\begin{bmatrix} 50.8 \\ 38.1 \\ 49.2 \end{bmatrix}$	122 2	11.2 14.4	.1	b.4	71.1	.8	22.6	12,020 8,190 10,560					2	
6	22.5	$\frac{49.2}{37.7}$	36.4 30.1 38.8	$14.4 \\ 9.7 \\ 12.5$	2					8,240 10,630						
7	22.1	40.0	29.0	$\frac{8.9}{11.4}$.2					8,410 10,800						
8	19.2	40.2	$\begin{vmatrix} 29 & 0 \\ 37 & 2 \\ 30 & 2 \\ 37 & 4 \end{vmatrix}$	$\frac{10.4}{12.9}$.2					8,680 10,740						
9	19.3	44.9	29.2	6.6	ij					9,440						
. 10	20.4	45.6	27.6	6.4	:į					8 940						
11	19:7		$ \begin{array}{r} 34.6 \\ 28.7 \\ 35.7 \end{array} $	8.1 7.2 9.0	: : <u>i</u>					11,230 8,890						
12	21.1	42.4	29,0	117.5	.1					$11,070 \\ 8,730$						
13	20:6		$\frac{36.8}{29.5}$	9.5	.2					$11,060 \\ 8,840$						
14	21.4	$\begin{bmatrix} 53.8 \\ 41.3 \end{bmatrix}$	$\begin{vmatrix} 37.2 \\ 28.6 \end{vmatrix}$	9.0 8.7	3					$11,130 \\ 8,620$						
15	22.4		29.5 37.2 28.6 36.3 30.2 38.9	$\begin{array}{c} 11.1 \\ 9.3 \end{array}$	$\begin{bmatrix} .3 \\ .2 \end{bmatrix}$					$10,970 \\ 8,310 \\ 10,710$						
16	20,4	$\frac{49.1}{43.5}$			$\begin{vmatrix} .3 \\ .2 \end{vmatrix}$					9.170			i-i			
17	20.7	54.7	$\frac{37.5}{28.5}$	6.8	.2					$ 11,520 \\ 8,920$						
18	18 2	155.5	35.9	8.6	.2					$11.250 \\ 9,170$				[]		
19	20.6	54.3 41.0	$ 37.3 \\ 30.1$	8.4 8.3 10.5	.3					11,210 8,620						
20	22.1	39.3	29.4	0.0	, 2					10,860 8,430						
1	1	150.8	38.1	11.1	.3	l <u>.</u>	I	l	l	10,900		l				,

Table 8.—Analyses of mine, tipple,

				7.6	1		- L	
, dominio	!		. 97				report	No
enset a							37.	Laboratory No. 6 or index
· · · · · · · · · · · · · · · · ·						ex.	this	19
Region,				64		Agglomerating index	.H.	0
town or district,	Bed	Rank 1	Size or other description	ple		gu	page	S.
and mine			tteson pwon,	Kind of sample	4	ati	Ω	l b
. 1	1.1			¥.	Condition	ner	Reference,	2
		-		ğ	ig	iof.	e e	o d
		٠.		N N	ő	Agi	Be	1
: 1								
1	2	3	4	5	6	7	8	9
UKON REGION—con.							1	
Venana field—Con.							;	
untrana—Con.		1					. !	
	Donaldson (No. 3)	Subc	Nut and chestnut	D	1		108	
	do	Subc	Chestnut	D	$\frac{2}{1}$		1	. .
Do		1		8	Į			
Do	do	Subc	do	8 D 48	2			
Do	do	Subc	do	1)	1 0			[;
Do	do	Subc	do	14 D 10	1		1	, -
1.1		Subc	do	10 D	2 1			ľί
Do	do			D3090909	2			[':
Do	do	Subc	do	9	2			
Do.,.,.	do	Subc	do	Ď	1			
Do	do	Subc	do	Ď	1		. "	
		Subc	do	D 9	2			
\$	do			6	2	'		R+100
atlanika Creek: Outerop.		Lig		M			81	6177
nalakleet:								
Prospect.				M	1	NAb	82	6C362
. Do				M	$\frac{\hat{2}}{1}$	NAa		6B648
					2			
USKOKWIM REGION	•	1						
	* *,	1						
elson Island: Mine				M	1.	Cf		C294
	, .	1			1 2 3 1			
Do				M	1	Cg	-	C294
1				_	3		L.,	
Do				M	1 2	Af		C294
•					23123123			dan
Do				M	$\frac{1}{2}$	Af		C294
1				11.47	3			X + EC
Prospect				M	1 2	~	82	A158
					3			
leitmut: Prospect		Peat		M	1	NAb	82	6B919
i rospeoullill					3			
Do		do		M	1 2	NAb	1	B919
					3	1		1.
1 See Explanation	of Symbols (p. 24).	1		•	•		٠.	
M, mine sample;	of Symbols (p. 24). T, tipple sample; D, gure indicates the nu	delivere	ed coal, deliveries averaged					
- The nord-raced Di	are marowice me ma	TINOT OI	Corri arron Mi oragoni					:
i			A Company of the Comp					,

and delivered samples-Continued

ex No.	P	roxin perce	nate, ent		Ü	ltima	te, pe	rcent			Fus	ibility of	ash		neral-m free bas	
o.5 or index	:	er i		:		, , , , ,				е, В. t. п	ormation e, ° F.	tempera- o F.	temperature, o F.	n, dry	Cale va	orific lue
Laboratory No.5 or index	Moisture	Volatile matter	Fixed carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Охудеп	Calorific value, B. t. u.	Initial deformation temperature, ° F.	Softening t	Fluid temi	Fixed carbon, basis, percent	B. t. u., dry basis	B.t.u., moist besis
. 10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
	:														a s	
21	20.0	$\frac{43.2}{54.0}$	31.2 39.0	5.6 7.0 6.7	0.2					8,880 11,100						
		$ 55.9 \\ 45.0$	35.6 35.6 38.9	8.5	.2					8,980 11,410 9,250						
24	19.5	$\frac{55.6}{46.0}$	35.7 27.9 34.6	8.7 6.6 8.2	.1					11,440 9,310 11,570						
25	20.4 19.0	$ \begin{array}{r} 45.1 \\ 56.6 \\ 45.4 \end{array} $	27.9 34.6 28.0 35.2 28.0 34.6	6.5 8.2 7.6	.1 .1					8,880 11,150 8,950						
27	20.7	56.0 43.1 54.3	37.1		1 1					11,050 8,840 11,150 8,790						
					3 2					111,070						
30		isii u	39.8 37.8 30.0 38.4 24.6	1101.7						11,060 8,520 10,890						
17797	19.7	$\frac{37.6}{46.6}$	$24.6 \\ 30.8 \\ 39.8$	$18.1 \\ 22.6$,3 ,3 ,4	5.7 4.4 5.6	$\frac{42.8}{53.2}$ 68.7	0.6 .7 .9	$\frac{32.5}{18.8}$ 24.4	7,290 9,070 11,720					202444	
C36296	10.7	45.9	39.2	4.2	.3					10,670	1	2,160	2,480		-	,
B64867	18.0	51.0	$\frac{33.5}{40.8}$	4.7 6.7 8.2	.4 .4 .5	5.4	$53.3 \\ 65.0 \\ 70.8$.7 .9 1.0	$\frac{32.5}{20.0}$	9,430 $11,500$ $12,530$	2,060	2,140	2,180		 -:	
1			22.0			0.0	,,,,,	1.0		12,000				,		ι
C29496	2.3	19.1 19.5	$\frac{47.1}{48.2}$	$\frac{31.5}{32.3}$.5	3.4	57.0 58.4	.9	6.5 4.4	9,910 10,150	2,330	2,520	2,710			
C29497	1.6	$\frac{24.3}{24.7}$	$ \begin{array}{r} 71.1 \\ 52.6 \\ 53.5 \\ \hline \end{array} $	$ \begin{bmatrix} 21.5 \\ 21.8 \end{bmatrix} $. 5 . 5	3.9	86.2 65.5 66.6	$\frac{1.4}{1.2}$	7.3 6.0	10,150 15,000 11,330 11,510 14,720	2,150	2,210	2,330			
C29498			68.5 54.1 56.3 69.5 54.2			5.0 4.3 4.0	85.2 66.1 68.8 84.9	$\frac{1.6}{1.2}$	6.5	11,900	2,620	2,710	2,910			
C29499						$\frac{5.0}{4.3}$	84.9 66.2 68.8 84.8 73.3	$1.5 \\ 1.2 \\ 1.2$				2,570	2,770			
A15868	2.3	$\begin{array}{c} 30.4 \\ 20.8 \\ 21.3 \\ 25.0 \end{array}$	$69.6 \\ 62.7 \\ 64.1 \\ 75.0$	$14.2 \\ 14.6$.5 .5 .6	4.0	84.8 73.3 75.0 87.8	1.2	8.3 6.8 4.7 5.7	11,410 11,870 14,640 12,640 12,930 15,130	2,240	2,300	2,490			
B91995		$\frac{31.6}{62.6}$	$\frac{14.9}{29.6}$	4.0 7.8	1 !	8.1 5.2	$\frac{27.2}{53.9}$	$\frac{1.4}{2.7}$						32.2	10,050	4,840
B91996	38.0	$\begin{bmatrix} 68.0 \\ 39.0 \\ 62.9 \end{bmatrix}$	132.0	4.8 7.8	.3 .7 .4 .7 .8	5.2 5.7 7.5 5.2 5.7	$58.5 \\ 33.2 \\ 53.1 \\ 58.6$	$egin{array}{c c} 3.0 \\ 1.7 \\ 2.8 \\ 3.0 \end{array}$	59.0 29.7 32.1 52.4 29.9 32.4	9,970 5,650 9,110 9,880				32.0	9,950	5,950

^{| 168.2|31.8|}___| .8| 5.7|58.6| 3.0|32.4| 9,880| | 41,8ample as received; 2, dried at 105° C.; 3, moisture- and ash-free.

X preceding laboratory number indicates analysis made at Anchorage, Alaska.

Volatile matter by modified method.

TABLE 8.—Analyses of mine, tipple,

	•		I ABLE O. A	wy	008	oj u	ww,	uppie,
Region, town or district, and mine	Bed	Rank ¹	Size or other description	Kind of sample 2 3	Condition 4	Agglomerating index ¹	Reference, page in this report	Laboratory No.5 or index No.
1	2	3	4	5	6	7	8	9
SOUTHWESTERN ALASKA REGION								
Chignik Bay: Alaska Packers' Association.		Hveb		M	1 2 3		82	6953
Hook Bay		Hyab		M	1 2 3 1		82	6952
Thompson Valley prospect.		Hyeb		M	1 2		82	6956
Whalers Creek		Hybb		M	2 3 1 2 3		83	6955
Herendeen Bay: Johnson tunnel		Hveb		м	1		83	6951
Lower tunnel		Hveb		M	3 1 2 3		84	6957
Prospect on Mine Creek, Do				M M	3 1 2 1 2		84	X1 X2
Do				M	1 2		,	Х3
Do				M	1 2 1 2 1		,	X4
Do				M M	2			X5 X6
Do				м	2 1 2 1			X7
Do				м	1 2			X8
Do				М	1			X9
Do		Hyeb		M	$\begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \end{bmatrix}$			X10
Do		Hveb		M	1			X11
Unga Island: Coal Harbor		Lig		М	1 2 1 2		85	6954
COOK INLET REGION					3			
Cook Inlet field								
Bluff Point: Bluff Point	Cooper	Sube		м	1		85	68160 6
Do	do	Subc		М	1 2 1 2 1			⁶ 81607
Do	do	Subc		м	1			681608
Do	do	Subc	Composite of 81606 to 81608.	М	2 1 2 3			⁶ 81609
		l	I I		ı	1 1		, ,

and delivered samples—Continued

x No.	P	roxin perce	nate, ent		Ul	timat	te, pe	rcent			Fus	ibility of	ash	M	ineral-m free bas	atter- is i
Laboratory No.* or index No	Moisture	Volatile matter	Fixed carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calorific value, B.t.u.	Initial deformation temperature, ° F.	Softening tempera- ture, ° F.	Fluid temperature, F.	Fixed carbon, dry basis, percent	B. t. u., dry	B.t.u., moist enit
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
6953 6952 6956	5,1 10.8	27.2 28.7 39.1 30.3 34.0 40.8 34.3 36.1	39.6 42.7 55.8 42.4 44.7 60.9 44.0 359.2 45.4 47.8 57.0	25.3 26.6 14.9 16.7 15.3 16.1	2.3 2.4 3.2 .7	4.2 5.1 4.9 4.5	55.1 59.3 77.5 55.7 580.1 561.9 62.0 65.3 77.8	79668678	10.8 14.1 11.6 7.5 10.2 23.5 15.7 18.9 15.4 11.7	9,850 10,600 13,840 10,110 14,530 9,640 10,800 12,960 11,240 11,840 14,100				63.3 60.4	14,260 15,070 13,210 14,390	14,00 11,50
6951 6957 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11	7.5 2.7 4.5 5.6 4.6 4.3 5.6 4.2 1.8 5.0 6.7	33.55 39.56 39.51 34.77 39.29.23 30.00 38.64 40.49 40.49 39.11 38.33 40.00 35.23 37.14 38.33 40.00 35.23 37.16 35.76 35.96	51 4 55 8 60 5 48 8 52 7 60 3 30 4 49 9 48 5 50 7 47 2 47 8 49 9 23 6 52 0 52 0	7.17 7.77 11.66 37.78 9.07 9.05 5.39 12.07 110.14 49.43 77.76 6.56	45568444555554455544468899555	5.49 45.31 45.31 45.31 45.31 45.31	66.4 72.2 78.3 63.5 68.6 68.6 68.6 68.6 68.6 68.8	.88.99.99.99.1011.1	19.9 13.8 15.0 18.6 12.9 14.7	11,790 12,810 11,280 12,170 13,920 13,920 11,430 11,970 11,850 11,430 11,970 11,150 11,150 11,150 11,740 11,740 11,740 11,740 11,550 11,550 11,550 11,430 11,970 11,970 11,970 11,970 11,970 11,970				59.1	13,990 14,090 	12,48
\$1606 \$1607 \$1608 \$1609	99 4	47.5 37.7 48.6 36.0 45.7 38.1 48.7	39.5	13.0 8.4 10.8 9.2 11.6 9.1 11.8	.4	6.3 5.0 5.7	48.4 61.8 69.9	1.2		8,350 10,570 8,340 10,750 8,490 10,760 10,690 10,690 12,100	890 1,990 1,970	1,910 2,010 1,990	1,990 2,030 2,040	45.9 48.8	12,310 12,180 12,320 12,230	9,40 9,17 9,48 9,29

^{4 1,} Sample as received; 2, dried at 105° C.; 3, moisture- and ash-free.

* X preceding laboratory number indicates analysis made at Anchorage, Alaska.

* Volatile matter by modified method.

TABLE 8.—Analyses of mine, tipple,

			LABIN C. 71			ΟJ. 11		
Region, town or district, and mine	Bed	Rank 1	Size or other description	Kind of sample 2 3	Condition 4	Agglomerating index ¹	Reference, page in this report	Laboratory No.5 or index No.
1	2	3	4	5	6	7	8	9
COOK INLET RE-								
GION—continued Cook Inlet field—	-	}					i	
Continued Kachemak Bay:		<u> </u>		7.5			00	44 277
Outerop				М	2 3		86	4457
Do	***********			М	2			4429
Do		 		М	123123123123			4426
Do				м	3			4432
Port Graham:					ł ·			
Outerop				M	1 2		86	4458
Do				M	3 1 2			¢17489
Tyonek: Outcrop				м	1		87	4425
Do				M.	3			4464
Do.				М	2 3 1 2 3 1	!		4465
Do					2 3 1			
Do				M	1 2 3			4434
Do				М	1 2			4456
Matanuska field				i.	3			
Anthracite Ridge: Outcrop		An		м	1		87	2222
Do				М	1			4754
Do				м	2 3 1			17792
		1		М	2 3 1	·		19748
Do		An	/		3			12746
Do		Sa		М	1 2 3			12757
D o.:	No. 2	An		М	1 2			A3538
Do	No. 3	An	**********	М	1 3 1 2 3 1			A3539
Do	No. 4	An		м	3			A3540
	of Symbols (p. 24)	!			3	1		

See Explanation of Symbols (p. 24).
 M, mine sample: T, tipple sample; D, delivered coal.
 The hold-faced figure indicates the number of deliveries averaged.

and delivered samples-Continued

ana	177			<u> </u>						·	ı ——			γ		
ex No.	P	roxin perce	ate, ent		נט	ltima	te, pe	rcent			Fus	ibility o	f ash	ĺ	ineral-m free bas	atter-
Laboratory No. ⁵ or index No	Moisture	Volatile matter	Fixed carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calorific value, B. t. u.	Initial deformation temperature, ° F.	Softening tempera- ture, ° F.	Fluid temperature,	Fixed carbon, dry basis, percent		B.t.u., moist
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
						-										
					:						<u>'</u>					, ' _j
4457	18.1	42.8	23.6	15.5 18.9	0.4	5.5	44.8 54.7	0.9	32.9	7,900				36.2	12,130	9,490
4429	18.6	$64.4 \\ 36.1$	35.6 34.9	10.4	.5			1.3	25, 2 33, 3	11,890		 	 	49.7	12,190	9,630
4426	28.1	50.9 33.5	$\frac{49.1}{32.8}$	5.6	.5	5.3	69.1 45.6	1.6	23.5 41.3	12,030 7,810		 		4 9.9	11,860	8,310
4432	20.0	$\frac{50.5}{35.9}$	$\frac{45.6}{49.5}$	15.0	.3	5.0	49.1 60.3 69.1 45.6 63.4 68.8 44.5 55.7	1.3 1.0	$24.6 \\ 33.3$	7,900 9,640 11,890 8,550 10,500 12,030 7,810 10,860 11,780 8,050 10,060 12,380				45.6	12,630	9,610
		55,2	44.8		.6	0.0	00.0	l		}	ļ					
4458	20.0	$38.7 \\ 48.4 \\ 54.4$	$\frac{32.5}{40.5}$	8.8	.5 7	5.8 4.5 5.0	$\frac{49.5}{61.9}$	112	123 4	8,790 10,990 12,350)			1	12,480	
617489		,	i		.8 1.1					1	['	2,520	2,730+			
4425	27.6	$\begin{array}{c} 31.5 \\ 43.5 \\ 45.8 \end{array}$	$\frac{37.2}{51.3}$	3.7 5.2	.4 6	6.5 4.8 5.1	48.0 66.3 69.9 45.7	$egin{array}{c} .9 \ 1.1 \ 1.2 \end{array}$	$\frac{40.5}{22.0}$	8,350 11,530 12,160 7,990 10,080				41.3	11,500	
4464	20.7	$\frac{41.8}{52.7}$	$ \begin{array}{c} 29.1 \\ 36.7 \\ 41.1 \end{array} $	8.4 10.6	.3 .4 .5	6.1 4.8 5.4	45.7 57.6 64.4 44.2	$ \begin{array}{c} .8 \\ 1.0 \\ 1.1 \end{array}$	$\begin{array}{c} 38.7 \\ 25.6 \\ 28.6 \end{array}$	7,990 10,080 11,270		*****		41.4	11,380	8,790
4465	22.3	40.5 52.1	28.0 36.0	$\frac{9.2}{11.9}$	3 4	6.2 4.8 5.4	56.9	1.1	$ \begin{array}{r} 39.3 \\ 24.9 \\ 28.4 \end{array} $	7,790 10,020				41.3	11,500	8,650
4434	19.4	$34.4 \\ 42.7 \\ 62.6$	29.8 37.0	$\frac{16.4}{20.3}$	6345344233	5.5	44.7 55.5 69.7 45.3	1.0	32.4 18.8	10,080 11,270 7,790 10,020 11,370 7,990 9,900 12,420				47.5	12,710	9,710
4465 4434 4456	17.4	33.3 46.3	28.9 35.0	$15.4 \\ 18.7$	1.6 2.0 2.4	$ \begin{array}{c} 5.6 \\ 4.4 \end{array} $	45.3 54.8 67.4			8,250 9,990 12,280				44.1	12,550	9,900
		01.0	43.0		2.4	0,0	01.4	•••	40.0	,200	-1					
2222	2.6	7.1 7.3	84.3 86.5 58.0	6.0 6.2 9.2	.6 .6			ı	l i	13,710 14,070				92.9	15,1 0 0	14,680
4754						4.8 4.7 5.2	71.4 73.0 80.5 71.8	$\begin{bmatrix} 1.5 \\ 1.5 \\ 1.7 \end{bmatrix}$	$12.4 \\ 10.7 \\ 11.8$	13,130 $13,440$ $14,830$	2,730+					
17792	4.7	$34.9 \\ 36.6 \\ 39.8$	$\begin{bmatrix} 52.8 \\ 55.4 \\ 60.2 \end{bmatrix}$	7.6 8.0 12.0 12.4	.5 .5	5.5 5.2 5.7	$71.8 \\ 75.4 \\ 81.9$	$ \begin{array}{c c} 1.3 \\ 1.4 \\ 1.5 \end{array}$						 		
12746	2.9	7.8 8.0 9.1	77.3 79.6 90.9	$12.0 \\ 12.4$.6	2.4	75.4 81.9 78.4 80.7 92.1	$1.3 \\ 1.3 \\ 1.4$		14,550 $12,730$ $13,110$ $14,960$						
12757	3.1	$10.0 \\ 10.4 \\ 12.4$	71.0 73.2 87.6	15.9 16.4 6.2 6.5 4.1 4.2	.4	2.5	74.0 76.4	8	$\begin{array}{c} 6.4 \\ 3.7 \\ 4.6 \end{array}$	11,930 12,310 14,720 13,410 13,970 14,940				89.2	14,980	14,420
A3538	4.0	8.5	81.3 84.7	6.2	. 4 . 5 . 6	3,1	$82.7 \\ 86.2$	$\frac{1.3}{1.3}$	6.2	13,410 13,970	2,250	2,330	2,420		-	
A3539	3,2	8.0	84.7 87.6	$\frac{4.1}{4.2}$.8	2.5	190.5	.7	i s	14.210	2,200	2,280	2,330			
A3540	4.7	9.1	80.0 84.0	6.2	.6	3.2	$ \begin{array}{r} 94.5 \\ 81.3 \\ 85.4 \\ 91.3 \end{array} $	1.3 1.4	7.4	14,840 13,050 13,690	2,240	2,320	2,680			
4 1 So		10.2	89.8	l					[3,6]	14,650	II.	I	l		! ,	Ţ

TABLE 8 .- Analyses of mine, tipple,

Region, town or district, and mine	Bed .	Rank ¹	Size or other description	Kind of sample 2 s	Condition 4	Agglomerating index ¹	Reference, page in this report	Laboratory No.5 or index No.
1	2	3	4	5	6	7	8	9 '
	No. 1	Sa Sa Sa Sa Sa Sa Sa Sa Lvb Lvb Lvb Lvb Lvb	Composite of 85745 to 85747.	M M M M M M M M M M M M M M M M M M M	1212121212121212121212121212121212 12312312121212		89	X4488 X4809 X4484 X4490 X4444 X4486 X4445 X4446 X4391 X4466 X4483 X4482 X4489 X4481 X4808 83981 83982 83174 85745 85745 85745
Do	do	Lvb		М	1 2 3			85284
1 See Explanation	of Symbols (p. 24).	1	1	1.	13			' 1

See Explanation of Symbols (p. 24).
 M, mine sample; T, tipple sample; D, delivered coal.
 The bold-faced figure indicates the number of deliveries averaged.

and delivered samples-Continued

and de				poca)11 L L L				1	T			1		
ex No.	P	roxin perce	ate, ent		U	tima	te, pe	rcent			Fu	sibility of	ash	Mi	ineral-m free ba	atter-
o. or ind		er								ю, В. t. t	ormation e, ° F.	tempera- o F.	temperature, ° F.	n, dry	Calc va	orific lue
Laboratory No. or index No	Moisture.	Volatile matter	Fixed carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calorific value, B. t. u.	Initial deformation temperature, F.	Softening ture,	Fluid temi	Fixed carbon, basis, percent	B. t. u., dry	B.t.u., moist basis
10	11	12	13	14	15	16	17	18	19	20	21	.22	23	24	- 25	26
		:			:											-:
									-							
77.400		16.0	78.0	3.8	0.6					14;130						-140
X4488 X4809	6.4	16.4 8.6	78.0 79.7 66.5	$\frac{3.9}{18.5}$.6					14,450 10,800						
X4484	7.2	26.3	$\frac{71.0}{57.7}$	8.8	.3					$11,540 \\ 11,580$						
X4480	4.9	28.4	$62.1 \\ 71.8 \\ 75.5$	$\frac{9.5}{15.2}$. <u>8</u> .7					$12,490 \\ 11,690$						
X4490	4.5	9.4	70.9	$16.0 \\ 15.2 \\ 16.0$.3					$12,300 \\ 11,770 \\ 10,220$						
X4444	7.2	9.1	70.9 74.2 75.4 81.3	8.3 8.9	.2					12,330 12,530 13,510						
X4486	3,1	9.3	เซบ. ๒	I 7.U	.7					$13,510 \\ 13,430 \\ 13,860$						
X4485	5,0	$\frac{14.4}{15.2}$	$83.2 \\ 71.5 \\ 75.2$	9.1	7					12,670 13,340						
X4443	3.5	10.5 10.9	$67.2 \\ 69.6$	9.6 18.8 19.5 15.3	.2					11,340 11,750						
X4445	4.1	$\frac{9.6}{10.0}$	$71.0 \\ 74.0$	15.3 16.0	.5					11,850 12,360						
X4446	5.0	$10.0 \\ 10.5$	$65.3 \\ 68.8$	$16.0 \\ 19.7 \\ 20.7$.5 .5					10,870 11,450		- 				
X4391	7,5	9.2	$72.6 \\ 78.5$	$11.4 \\ 12.3$.5					$ 11,870 \\ 12,830$	 				- -	
X4466	3,9	$\frac{31.5}{32.8}$	47.4 49.3	$\begin{array}{c} 17.2 \\ 17.9 \end{array}$	6. 6.					$\begin{bmatrix} 11,300 \\ 11,770 \end{bmatrix}$						
X4483	4.0	$\frac{29.2}{30.4}$	44.2 46.1	22.6 23.5 14.9 15.6	6. 6.					$10,120 \\ 10,550$						
X4482	4.7	29.0	55.4	14.9 15.6	.6					11,480						
X4489	3.0	$\frac{22.9}{23.7}$	66.3	10.0	.5					$ 12,860 \ 13,340 \ 11.510$:
X4481 X4808	[32.1	54.1 58.0	9.2 9.9 7.5	7					12,350 13,850						
24.4000			$74.2 \\ 75.6$	7.6	,7					14,110						
83981	2,0	$\frac{17.8}{18.2}$	$62.1 \\ 63.3$	18.1 18.5	.7 .7	4.2 4.1	170.7	1.7 1.7 2.1	6.0 4.3	$12,090 \\ 12,340$	2,690	2,800	2,850	79.4	15,440	15,060
83982	1	10.2	100.0	18.1 18.5 13.6 13.8	.7 .9 .6	4.4	$ \begin{array}{r} 86.7 \\ 74.7 \\ 76.1 \end{array} $	$\frac{1.6}{1.6}$	5.3 5.1 3.6	18,140 13,060 13,300		2,850	2,900	80.1	15,660	15,330
83174	1.5	$\substack{21.1\\18.6}$	$\begin{array}{c} 78.9 \\ 65.9 \end{array}$	14.0	.6 .7	5.0	88.3	1.9	4.1	$15,430 \\ 12,900$	2,150	2,450	2,570	79.2	15,500	15,220
85745	8,1	17.0	66.6	$\begin{array}{c c} 14.2 \\ 14.6 \end{array}$.6					$13,100 \\ 12,900$	2,180	2,390	2,450		15,680	
85746	1.4	18.4	72.2	14.9 8.0						13,140 $14,020$	2,040	2,200	2,340		15,610	
85747	1.8	19.3	64.7	8.0 8.1 14.2 14.5 13.2	:7					14,220 12,770	1,960	2,210	2,310	78.3	15,440	15,110
85748	1.6	18.3	66.9	$13.2 \\ 13.4$:7	4.3	$\frac{76.1}{77.3}$	1.4	4.3	$12,990 \\ 13,190 \\ 13,400$				79.8	15,710	15,410
85283	1.9	21.4 18 2	78.6	9.1	8	4.8	89.3	1.4 1.5 1.7 1.5 1.5	3.4	13,400 15,480 13,750	1.920	2,130	2,250	80.6	15,480	15 990
	1.2	18.5	72.3 79.7	9.2	7	$\begin{vmatrix} \vec{4} & \vec{3} \\ 4 & 7 \end{vmatrix}$	80.5	1.5	3.8	13,920 15,330 13,260	,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2,200	30.0	20,200	10,200
85284	1.9	20.8 21.2	66.9 68.2	9.1 9.2 10.4 10.6	.77.77.77.77.77.77.77.88.777.77.88	$\begin{vmatrix} \bar{4} & 3 \\ 4 & 2 \end{vmatrix}$	77.0 78.5	1.5	6.1 4.5	13,400 15,480 13,750 13,920 15,330 13,260 13,510	1,990	2,060	2,180	77.2	15,290	14,960
1 11 9		23.7	76.8				187.9	11.7	4.9	15,120	ssh-free.	1	i .	J	ا ب	١.

^{1.} Sample as received; 2, dried at 105° C; 3, moisture and ash-free.

X preceding laboratory number indicates analysis made at Anchorage, Alaska.

TABLE 8.—Analyses of mine, tipple,

			TABLE 8.—A	·~ • •	000	0,		****
Region, town or district, and mine	Bed	Rank ¹	Size or other description	Kind of sample 2 3	Condition 4	Agglomerating index $^{\mathrm{1}}$	Reference, page in this report	Laboratory No.5 or index No.
1	2	3	4	5	6	7	8	9
COOK INLET RE-								
Matanuska field—								
Continued Chicksloon—Con. Chicksloon	N- 4	7	·	3.4			88	83983
(Navy).	No. 4	Lvb		M	2 3		. 80	80980
Do	No. 5	Lvb		М	1 2			83173
Do	Upper No. 5	Lvb		M	1 2			85749
Do	do	Lvb		M	$\frac{1}{2}$			85750
Do	do	Lvb		M	$\frac{\tilde{1}}{2}$			85751
Do	do	Lvb		M	1 2			85752
Do	do	Lvb		M	1 2			85753
Do	do	Lvb	Composite of 85749 to 85753	M	1 2 3 1 2 1 2 1 2 1 2 1 2 1 2 3			85754
Do	No. 6	Lvb		М	3 1 2 3 1 2 1 2 1			85285
Do	No. 8	Lvb		M	$\begin{vmatrix} 3 \\ 1 \end{vmatrix}$			85740
Do	do	Lvb		M	$\frac{2}{1}$			85741
Do	' do	Lvb		м	$\frac{2}{1}$			85742
Do	do	Lvb		·M	$\frac{2}{1}$			85743
Do	do	Lvb	Composite of 85740	M	1			85744
Do	No. 10	Lvb	to 85743.	М	3			83984
Do	do	Lvb		м	3			85755
Coal Creek (Navy).	Bardin	Myb		М	3 1		91	85282
Do	North Spaulding	Mvb		м	3 1 2			83985
Do	do	Mvb		M.	3 1 2			85277
Do	do	Mvb		м	212123123123123123123123123123			85278
Do	do	Lvb		М	3 1 2			85279
Do	North Tierney	Lvb		M	3 1 2			83986
Do	do	Lvb		М	3			83987

See Explanation of Symbols (p. 24).
 M, mine sample; T, tipple sample; D, delivered coal.
 The hold-faced figure indicates the number of deliveries averaged.

and delivered samples—Continued

ex No.	I	roxin	nate, ent		U	ltima	te, pe	rcent			Fus	ibility of	ash	ji	neral-m free bas	atter-
Laboratory No.s or index	Moisture	Volatile matter	Fixed carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calorific value, B. t. u.	Initial deformation temperature, ° F.	Softening tempera- ture, ° F.	Fluid temperature, P.	Fixed carbon, dry basis, percent	B. t. u., dry	B.t.u., moist and
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
83983	1.7	15.0	56.0	27.3 27.8	0.5	3.7	61.8	1.2	5.5	10,740 10,930	2,660	2,830	2,880	81.6	15,630	15,25
		$\frac{15.3}{21.2}$	$\frac{56.9}{78.8}$	27.8	7	3.6 5.0	$61.8 \\ 62.9 \\ 87.1$	$\frac{1.2}{1.7}$	4.0 5.5	10,930 $15,140$ $10,270$	0 740	0.050	0.000	00.7	15 400	15 15
83173	1.5	15.3 15.5	$\begin{bmatrix} 53.5 \\ 54.4 \\ 0.00 \end{bmatrix}$	29.7 30.1 15.3	.5					10.420		2,850 2,240	2,900	1 1	15,490 15,380	
85749	1.2	19.6	64.6	15.5	.6					12,780	1,910 2,710	2,760	2,390 2,870		15,680	
85750	1.3	17.4 17.7	66.9	15.4	.6					13,050	2,690	2,800	2,850		15,730	
85751	1.2	18.0	68.8	13.2	.6				~	113.440	2,720	2,830	2,880		15,670	
85752 85753	1 2	17.7	63.1	19.2	.5					12,390	2,120	2,370	2,520		15,430	
85754	1.3	19.5	60.8	19.7	.5	4.3	$\bar{72.1}$	1.4	5.3	$12,120 \\ 12,590$,		1	15,570	
00101	٦.٠	$\frac{18.7}{22.4}$	$\frac{64.7}{77.6}$	15.3 15.5 15.2 15.4 13.1 13.2 19.0 19.5 19.7 16.4 16.6	.5		$73.1 \\ 87.6 \\ 76.6$	$\frac{1.5}{1.7}$	$\frac{4.1}{5.1}$	$12,750 \\ 15.300$						
85285	3.5	$\begin{array}{c} 19.6 \\ 20.3 \end{array}$	$\frac{67.2}{69.6}$	$\frac{9.7}{10.1}$.5 .6 .8 .8	4.7	76.6 79.3 88.2	$\frac{1.4}{1.4}$	6.8	$13,420 \\ 13,910$	2,240	2,340	2,390	78.4	15,630	15,02
85740	1.3	$\substack{22.5\\16.2}$	$\frac{77.5}{66.4}$	16.1	.9 .6 .6	5.0	88.2	1.6	4.3	12,690	2,200	2,390	2,620	81.9	15,630	15,39
85741	2.0	18.8	60.2	19.0	.5					12,850 12,150	2,180	2,390	2,510	77.8	15,710	15,31
85742	1.7	$\frac{19.2}{19.2}$	62.5	16.6	.5					12,390 12,450	2,200	2,390	2,570	78.0	15,520	15,19
85743	2.2	18.5	62.8	16.5	. 6 5					12,670 12,530	2,200	2,450	2,630	78.7	15,690	15,27
85744	1.8	18.1	63.0	17.1	.5	$\frac{4.2}{4.1}$	$\frac{71.4}{72.7}$	$\frac{1.3}{1.4}$	5.5	12,800 12,440 12,670				79.2	15,630	15,28
83984	2.3	$ \begin{array}{c} 18.4 \\ 22.3 \\ 20.4 \\ 20.9 \end{array} $	77.7 65.1 66.6	16.6 -9.7 10.1 16.1 16.3 19.0 19.4 16.6 17.0 17.1 17.1 17.4 	.6 .7	4.9 4.4 4.2	88.0 74.8 76.6	1.6 1.5 1.5	$\frac{4.9}{6.4}$	15,340 13,090 13,400	2,200	2,280	2,390	77.3	15,520	15,10
857 55	1.0	23.9	76.1	$\frac{1}{23.8}$ 24.0	.8	3.9	87.5 65.6	$\frac{1.7}{1.3}$	$\frac{5.2}{4.8}$	15,310 11,350 11,460	2,740	2,850	2,900	81.1	15,510	15,30
85282	1.5	10.1 21.2 19.3 19.6	78.8 56.3	24.0 22.9 23.3	56778668888 10	5.8 5.0 4.2 4.0	72.7 88.0 74.8 76.6 87.5 66.3 87.2 64.3 65.3	1377773	$\begin{array}{c} 5.3 \\ 6.1 \\ 4.9 \end{array}$	15,090 11,400 11,580	2,720	2,830	2,880	76.6	15,490	15,18
83985	1.6	$25.6 \\ 22.9 \\ 23.3$	$74.4 \\ 69.7 \\ 70.8$	5.8 5.9 17.5 18.0	1.0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$81.7 \\ 83.0$	2.0	$\frac{6.3}{5.1}$	$15,090 \\ 14,380 \\ 14,610$	2,340	2,450	2,570	75.8	15,630	15,36
85277	2.7	$\frac{24.8}{20.7}$	75.2 59.1	17.5	.6	$\frac{5.0}{4.6}$	69.6	$\frac{2.1}{1.6}$	6.1	15,530 12,180 12,510	2,340	2,510	2,570	75.6	15,560	15,04
85278	2.0	$\frac{22.3}{22.8}$	60.5 61.7	15.2 15.5	.6	4.5	71.6 87.2 72.1 73.6	1.6 2.0 1.7 1.7	$\frac{4.6}{5.9}$	15,250 12,620 12,880	1,910	2,200	2,280	74.8	15,500	15,12
85279	4.1	$13.8 \\ 14.4$	73.0 70.5 73.6	$\frac{11.6}{12.0}$.6	5.1 3.9 3.6	$\begin{array}{c} 87.1 \\ 74.0 \\ 77.2 \end{array}$	$\frac{2.0}{1.9}$	8.0 4.6	15,240 12,600 13,140	2,060	2,240	2,390	84.8	15,140	14,48
83986	3.2	18.6	66.0	$12.2 \\ 12.6$.7 .6	4.6	$87.8 \\ 74.3 \\ 76.8$	$\frac{2.3}{1.7}$ $\frac{1.8}{1.8}$	6.6	$14,940 \\ 12,970 \\ 13,400$	2,600	2,770	2,830	79.1	15,540	14,9
83987	2.9	122 0	78.0 68.7 70.7	1	.6 .6	$\frac{4.9}{4.9}$	87.9 80.0 82.4	$\frac{2.1}{1.8}$	6.3	15,330 14,020 14,440	2,280	2,390	2,450	76.3	15,570	15,0

^{1,} Sample as received; 2, dried at 105° C.; 3, moisture- and ash-free,
X preceding laboratory number indicates analysis made at Anchorage, Alaska.

TABLE 8.—Analyses of mine, tipple,

				,					
town a	Region, or district, ad mine	Bed	Rank ¹	Size or other description	Kind of sample 2 3	Condition 4	Agglomerating index ¹ .	Reference, page in this report	Laboratory No. ⁵ or index No.
	. 1	2	3	4	5	6	7	8	9
COOL	CINLET RE-					-			
Co	nuska field— Intinued								
Chicka C	loon—Con. o al Creek (Navy).	Olson	Myb		м	1 2		91	80608
	Do	do	Myb		М	3 1 2			85640
	Do	Spaulding	Mvb		м	1 2 3 1 2 3 1 2 3 1			80607
	Do	-		Run-of-mine	D	3 1		108	31
	Do			Smithing	D 2 D 2 D	î			32
	Do	.Olson		do	D	1 2			33
	Do			Run-of-mine	D D	2 1 2 1 2 1 2			34
Eska: Es	ka,	David	Hybb		м	1		93	28733
	Do	Emery	Hvbb		М	3 1 2			28735
÷	Do	Eska (Upper)	Hybb	,	м	1231231231231		i	28734
	Do	Maitland (Kelly) (upper bench).	Hybb	- 	М	3 1 2			28731
1	Do	Maitland (Kelly) (lower bench).	Hybb		М	3. 1 2		İ	28732
1 * 1	Do	Upper Shaw	Hvab		M	231281212121212121212121212	Cf		B67588
	Do			Run-of-mine	D	3		109	35
	Do			do	3 D	1			36
	Do			do	D	$\frac{2}{1}$			37
	Do			do	D 3	2		,	38
	Do			do	6 D 3 D 7 D	2			39
	Do			do	ii D	2			40
	Do			do	12	2			{ : {
	Do			do	D 8 D 7 D 3 D	2			41
					7	2			42
	Do			Lump	3 3	1 2		,	43
,	Do			Lump and nut	D 2 D	$\frac{1}{2}$		ĺ .	44
	Do		I	Nut (washed)	1 5	7	- 1		45

See Explanation of Symbols (p. 24).
 M, mine sample; T, tipple sample; D, delivered coal.
 The bold-faced figure indicates the number of deliveries averaged.

and delivered samples-Continued

ana a			own								····					<u> </u>
ex No.	·	roxin perce	nate, ent		UI	tima	te, pe	rcent			ľ	sibility o	f ash	М	ineral-n free bas	atter-
.s or ind		, H								e, B.t.u	deformation ature, ° F.	tempera-	temperature,	1, dry		orifio lue
Laboratory No. ⁵ or index No	Moisture	Volatile matter	Fixed carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calorific value, B. t. u.	Initial defort temperature,	Softening to	Fluid temp	Fixed carbon, basis, percent	B. t. u., dry	B.t.u.; moist basis
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
													-			۸.
80608	1.4	$20.5 \\ 20.8 \\ 25.5 \\ 21.7$	59.7 60.6 74.5	18.4 18.6 17.5 17.7	0.5 .6	445445445	70.6 71.6 87.9	1.6 1.7 2.0 1.6 1.7	4.5 3.3 4.2	12,410 12,580 15,460 12,410 12,550 15,250 12,700 12,890	9 440	2 600	0.740			15,510
85640		$\frac{21.9}{26.7}$	$60.4 \\ 73.3$.7	4.4	87.9 70.8 71.5 86.9	$\frac{1.7}{2.0}$	4.1 5.0	12,550 15,250	2,440	2,620	2,740		15,540	
80607	1.5	$\begin{array}{c} 21.2 \\ 21.5 \\ 25.7 \end{array}$	$\begin{array}{c} 61.0 \\ 62.0 \\ 74.3 \end{array}$	16.3 16.5	.4 .4 .5	4.5 4.4 5.3	72.0 73.0 87.5	$\begin{array}{c} 2.0 \\ 1.7 \\ 1.7 \\ 2.1 \end{array}$		15.430	2,390	2,740		75.5	15,720	15,430
31	2.4	$\frac{21.9}{22.4}$	68.4 70.1	7.3	.6					14,240 14,590 18,650						
33	2.9	$\frac{21.4}{21.8}$	69.3 68.7	8.9 7.9	.5					$ 13,950 \\ 13.880$						
34	1.6	$\frac{21.1}{22.0}$	66.6 67.6	8.9 7.9 8.1 9.8 10.0	.6 .5					14,300 13,640 13,860					~~~~	
28733	4.9		48.0 50.5		.5	5 7	$71.9 \\ 75.6$	$\frac{1.6}{1.7}$	$14.5 \\ 10.6$	13,030 13,710 14,550 12,370				53.9	14,630	13,870
28735	5.4	$\frac{46.4}{39.1}$	53.6 45.8	l 1	.6 .3 .4	5.7	75.6 80.3 68.5 72.5	1.6 1.7 1.8 1.5	$11.3 \\ 14.3 \\ 9.9$	14,550 12,370 13,080				54.4	14,720	13,830
28734	4.9	$\frac{46.1}{38.0}$	39.6 $ 41.6 $	17.5 18.4	.4	6.0 5.4 5.1	72.5 80.7 62.0 65.2	1.6 1.8 1.4 1.5 1.6	$11.1 \\ 13.3 \\ 9.4$	$14,580 \\ 11,150 \\ 11,730$				52.0	14,650	13,760
28731	4.8	$\frac{49.0}{41.6}$	51.0 46.7 48.9 52.8 44.1	6.9	.5	$\frac{6.3}{5.9}$	62.0 65.2 79.9 71.2 74.8	1.8 1.6 1.7	$11.5 \\ 13.9 \\ 9.9 \\ 10.7$	14,370 12,890 13,550 14,610				53.3	14,710	13,950
28732	5.1	$47.2 \\ 42.0 \\ 44.3$	$52.8 \\ 44.1 \\ 46.4$	8.8 9.3	.6 .4 .4	5.4	72.7		11/1					51.7	14,480	13,660
B67588	3.7	$\frac{48.8}{41.0}$ $\frac{42.6}{48.0}$	$51.2 \\ 44.4 \\ 46.1 \\ 52.0$	$10.9 \\ 11.3$.5 .5	5.9	80.1 69.2 71.8 81.0	1,8 1.5 1.5 1.7	10.6 11.7 12.2 9.4	13,020 13,720 12,410 12,890 14,540	2,400	2,570	2,890	52.6	14,700	14,080
35	4.8	39.8 41.8	$\frac{41.5}{43.6}$	$13.9 \\ 14.6 \\ 16.8$.3					11,580 12,160						
36 37	3.9	39.8 41.8 40.1 41.7 37.7 39.7	$\begin{vmatrix} 39.2 \\ 40.8 \\ 39.9 \end{vmatrix}$	$16.8 \\ 17.5 \\ 17.4$.4					11,310 11,770 11,090						
38	4 7	XX. Y	140 h	$\frac{18.3}{15.8}$.4					$11,670 \\ 11,460$						
39	4.9	40.8 35.8 37.6	$35.9 \\ 37.8$	$16.6 \\ 23.4 \\ 24.6$	40000					12,030 10,290 10,820						
40 41	4.5	$34.3 \\ 35.9 \\ 34.9$	$\frac{33.6}{35.2}$	24.8 26.2 24.8 26.2 21.1	.3					9,630 10,080						
1	4.5 5.2	$36.5 \\ 34.3$	$36.3 \\ 35.7$	$\frac{27.0}{27.2}$.4					10,110 10,590 10,130						
43	3.7	36.2 39.3	37.6 35.9	$\frac{26.2}{21.1}$	3 3				 	10,690 10,630						
44	2.7	$\begin{array}{c} 10.8 \\ 42.0 \\ 43.2 \end{array}$	37.8 38.8	24.8 26.2 21.1 21.9 17.5 18.0 22.6 23.8	.5					$ 11,400 \\ 11,720$						
		00.0	36.2 38.2	120.0	.3 .3 ried	 at 10				$ 10,350 \\ 10,910$						

^{41,} Sample as received; 2, dried at 105° C; 3, moisture- and ash-free.

* X preceding laboratory number indicates analysis made at Anchorage, Alaska.

TABLE 8.—Analyses of mine, tipple,

			TABLE 8,—A7	U CO V LD	000	0, 11	,	ouppyo,
Region, town or district, and mine	Bed	Rank ¹	Size or other description	Kind of sample 2 \$	Condition 4	Agglomerating index ¹	Reference, page in this report	Laboratory No. 5 or index No
i	2	3	4	5	6	7	8	9
COOK INLET RE- GION—continued Matanuska field— Continued					,——			1
Eska—Continued. Eska—Continued. Do McCauley prospect. EskaCreek:Outcrop_	MoCauley		Engine (washed)	D 3 D 5 M	1 2 1 2 1 2 3 1 2		109 94 94	46 47 28836 29362
Jonesville: Evan Jones	No. 00	Hvbb Hvbb		M	2 3 1 2 3 1 2		94	A11087
Do	No. 2	Hvbb		м	2 3 1 2 3			89706
Do Do	No. 3	Hvbb Hvbb		M M	1 2 1 2		: *	89705 A11084
Do Do	No. 4 do No. 5	Hvbb Hvbb		M M M	3 1 2			89707 89708 A11086
Do	No. 6	Hybb		м	1 2 1 2 3 1 2 3			A11085
Do	No. 8do	Hvbb Hvbb		M	1 2 3 1 2 3 1	Cf		A98201 B25076
Do	do	Hvbb		М	3 1 2 3	Cf		B25077
Do	No. 10	Hvbb	D. 6	M	1 2 3 1	Ср		B56287
Do Do			Run-of-mine Lump (washed)	D 2 D 2 D	1 2 1 2 1 2		109	48 49 50
Do	of Symbols (p. 24)		Lump	D 2 D	1 2 1 2			51 52

¹ See Explanation of Symbols (p. 24).

² M, mine sample; T, tipple sample; D, delivered coal.

³ The bold-faced figure indicates the number of deliveries averaged.

and delivered samples-Continued

and de		<i>n eu</i>	8011	pico		711 (.11	rueu			T					· · · · · · · · · · · · ·	
»x No	P	roxin perce	nate, ent		; U	ltima	te, pe	ercent	i		Fu	sibility o	f ash	M	ineral-m free bas	atter- is ¹
° or ind		Н								, B. t. u	mation, o F.	tempera- o F.	temperature, o F.	a, dry	Cal va	orific lue
Laboratory No.5 or index No	Moisture	Volatile matter	Fixed carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calorific value, B. t. u.	Initial deformation temperature, ° F.	Softening te	Fluid temps	Fixed carbon, basis, percent	B. t. u., dry	B.t.u., moist basis
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
46 47 28836 29362	6.8	$\begin{array}{c} 42.0 \\ 37.1 \\ 39.8 \\ 44.2 \\ 37.9 \end{array}$	$\frac{40.8}{46.8}$ $\frac{50.2}{55.8}$	20.3 21.7 16.7 17.4 9.3 10.0 16.6 17.6	5 6 6	5.8 5.4 6.0 5.4 5.0	66.5 71.3 79.2 61.0 64.8 78.6	1.6	16.7 11.4 12.8 15.2 10.7	10,590 11,310 11,320 11,890 12,760 14,170 11,090 11,770 14,290						
Å11087 Å11083	3.6 3.5	35.5	39,3	21.6 22.5	.5	4,0	58.6 60.9 78.5 57.4 59.5	1.2 1.3 1.6 1.3 1.3	13.4 10.4 13.6 12.4 9.7	10,440 10,830 13,970 10,290 10,650 14,120		2,310 2,740	2,470 2,800		14,310 14,530	
89706 89705	4.2	48.6 37.0 38.6 49.0 38.9	$51.4\\38.5\\40.2\\51.0\\43.0$	$ \begin{bmatrix} \bar{20.3} \\ 21.2 \\ \bar{14.2} \end{bmatrix} $.5 .4 .4 .5	6.1	78.8	1.7	12.9	10,620 11,090 14,060 11,650					14,390 14,440	
A11084 89707	3.5	40.5 37.3 38.7 48.2 38.5	$ \begin{array}{r} 44.8 \\ 40.2 \\ 41.6 \\ 51.8 \\ 41.7 \\ \end{array} $	21.2 14.2 14.7 19.0 19.7	.4	4.9	$\begin{array}{c} 6\overline{1.1} \\ 63.3 \\ 78.8 \end{array}$	$1.2 \\ 1.3 \\ 1.6$	$13.3 \\ 10.5 \\ 13.1$	12,120 10,990 11,380 14,170 11,210	2,400	2,580	2,680		14,480 14,210	
89708	4.5	$\frac{40.2}{38.2}$	$\frac{43}{42}.5$	15.6 16.3 14.7 15.4	.3 .4					11,700 $11,490$				i	14,450	
A11086	3.5	$\frac{40.0}{36.8}$	$\frac{44.6}{38.4}$	$15.4 \\ 21.3 \\ 22.1$.3	4.8	58.7	1.3	110.8	$12,030 \\ 10,450 \\ 10.830$	2,150	2,370	2,460	52.3	14,230	13,580
A1108 5	3.8	48.9 37.9 39.4	$\frac{51.1}{43.3}$	$15.0 \\ 15.6$.3	0.0	58.7 60.9 78.1 64.4 66.9	1.7 1.5 1.6		10,830 13,900 11,540 12,000	2,680	2,740		54.1	14,440	13,780
A98201	5.2	$\frac{46.6}{34.7}$ $\frac{36.6}{3}$	$ \begin{array}{r} 63.4 \\ 41.4 \\ 43.6 \end{array} $	18.7 19.8	.3 .4 .5	5.9 5.2 4.9	$79.3 \\ 60.6 \\ 64.0 \\ 79.7$	1.8 1.3 1.3	$12.7 \\ 13.8 \\ 9.5$	10,860 11,460	2,960+			55.5	14,570	13,620
B25076	3.4	$\frac{45.7}{38.7}$ $\frac{40.1}{40.1}$	$54.3 \\ 46.1 \\ 47.7$	19.8 11.8 12.2	.6 .5	$\frac{5.4}{5.2}$	$ \begin{array}{c} 79.7 \\ 66.6 \\ 69.0 \end{array} $	$\begin{array}{ c c } 1.7 \\ 1.2 \\ 1.3 \end{array}$	$11.9 \\ 14.5 \\ 11.8$	$14,280 \\ 11,890 \\ 12,320 \\ 14,030$	2,450	2,680	2,830	55.0	14,200	13,640
B25077	i i	$\frac{45.6}{35.9}$	$ \begin{array}{r} 54.4 \\ 40.2 \\ 42.0 \\ \end{array} $	$\frac{19.7}{20.5}$.6 .4 .4	5.9 5.0 4.8	$78.6 \\ 61.0 \\ 63.6$	1.5 1.2 1.2	$13.4 \\ 12.7 \\ 9.5$	14,280 11,890 12,320 14,030 10,850 11,320 14,250 10,550 11,110 14,400 11,450	2,840	2,900	2,920+	54.0	14,580	13,800
B56287	5.0	$\begin{vmatrix} 47.2 \\ 33.7 \\ 35.4 \end{vmatrix}$	$ \begin{array}{r} 52.8 \\ 39.6 \\ 41.8 \end{array} $	$\frac{21.7}{22.8}$.6 .4 .4	5.1 4.8	80.0 58.9 62.0 80.3	1.5 1.3 1.3	$11.9 \\ 12.6 \\ 8.7 \\ 11.9$	14,250 10,550 11,110	2,910+			55.4	14,760	13,790
48	7.6	137.4	$\frac{54.1}{43.4}$	111.6	.6 .3	0.2				11,450 $12,390$						
4.9	6.5	137.9	144.1	$12.6 \\ 11.5 \\ 12.2$.3					11,920 12,750	~~~~~					
. 50	7.0	37.2	44.5	$\frac{12.3}{11.3}$.3					11,680 12,560						
51	8.4	41.0	45.0	$12.2 \\ 10.6 \\ 11.0$.3					12,080 12,080 12,490			,			
. 52		40.8	48.0	177.0	3					12,490 12,420 12,670						

^{41,} Sample as received; 2, dried at 105° C.; 3, moisture- and ash-free.

5 X preceding laboratory number indicates analysis made at Anchorage, Alaska.

TABLE 8 .- Analyses of mine, tipple,

Region, town or district, and mine 1 COOK INLET RE- GION—continued	Bed	Rank 1	Size or other description	cr Kind of sample 2 8	9 Condition 4	Agglomerating index ¹	æ Reference, page in this repor	6 Laboratory No.5 or index No
Matanuska field—Continued Jonesville—Con. Evan Jones Do		Lump (washed)	D D2D D3D27D D5D4D6D33D6D170	1212121212121212121212121		109	53 54 55 56 57 58 59 60 61 62 63 64	
			do	D3D3D4D7D9D D10D3D6D2D D4D10D7D D				66 67 68 69 70 71 72 73 74 75 76 77 78 80

See Explanation of Symbols (p. 24).
M, mine sample; T, tipple sample; D, delivered coal.
The bold-faced figure indicates the number of deliveries averaged.

and delivered samples-Continued

lex No	P	roxin perce	nate, ent	i	U.	ltima	te, pe	rcent			Fus	sibility of	f ash	Mi	neral-m ree bas	atte is 1
or ind	:	ų	.:							3, B. t. u	rmstion	tempera-	temperature, ° F.	a, dry	Cal va	orific
Laboratory No. or index No	Moisture	Volatile matter	Fixed carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calorific value, B. t. u.	Initial deformation temperature, ° F.	Softening to	Fluid temp	Fixed carbon, basis, percent	B. t. u., dry basis	B.t.u., moist
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	20
								-		***					-	in the second
53	4.1	$\frac{39.2}{40.9}$	$\frac{46.8}{48.8}$	$9.9 \\ 10.3 \\ 9.6$	0					12,220 $12,740$ $12,070$						
. 54 . 55	1	$\frac{42.6}{39.2}$	47.2	10.2	.3					$12,790 \\ 12,040$						
56		$\frac{41.4}{37.6}$	$\frac{49.3}{43.9}$	$\frac{9.3}{14.3}$.3					$12,730 \\ 11,670 \\ 12.180$						
57	3.3	$39.2 \\ 39.4 \\ 40.7$	$\frac{45.8}{46.9}$ $\frac{48.5}{48.5}$	10.4	.3					$12,180 \ 12,230 \ 12,650$	-:					
_. 58		$\frac{41.0}{43.2}$	$\frac{43.8}{46.2}$	$\frac{10.0}{10.6}$.3					12,390 13,070						
. 59		$\frac{40.7}{42.7}$	$\frac{46.4}{48.8}$	8.1	.4					$12,400 \\ 13,030$						
60	- i	$\frac{40.7}{42.8}$	$\frac{46.3}{48.8}$	$\frac{8.0}{8.4}$.3					$ 12,440 \\ 13,090 \\ 12,050$						
61	5.1 6.1	$\frac{40.4}{42.6}$ $\frac{38.4}{42.6}$	$45.0 \\ 47.4 \\ 44.4$	9.5	.3					12,700 $12,700$ $11,710$						
62	5.4	40.9	$\frac{17}{47}$.3	$\frac{11.8}{10.1}$.3					$12,470 \\ 12,000$:			
64	- ($\frac{40.6}{38.8}$	48.7	$\substack{10.7\\11.3}$.3					$12,690 \\ 12,030$						
65	- 4	$\frac{40.9}{37.9}$		$\substack{11.9\\16.5}$.3					12,680 $11,210$						-
66	4.5	40.0 38.1		19,3	.3 .5					$11,820 \\ 10,940 \\ 11.460$						
67	4,2	$\frac{39.9}{38.3}$	$\frac{39.9}{38.1}$	19.4	3					10,810			:			
68	4.8		$\frac{45.0}{47.2}$	8.9 9.4	.3					12,280 12,900						
69	6.5	$\frac{39.0}{41.7}$	$\frac{43.9}{47.0}$	10.6	.3					$\begin{vmatrix} 11,760 \\ 12,580 \end{vmatrix}$						
70	5.2	$\frac{38.8}{40.9}$	$\frac{46.0}{48.5}$	$\frac{10.0}{10.6}$.3					$12,080 \\ 12,740$						
71	-	$\frac{39.7}{41.7}$	$\begin{array}{c} 46.5 \\ 48.9 \end{array}$	8.9	.3		-,		====	$12,270 \\ 12,910 \\ 12,910$						
72		38.6 40.5	$ \frac{41.1}{43.0}$	15.7 16.5	8.					$11,320 \\ 11,870 \\ 10,490$						
73 74		$\begin{array}{c} 36.6 \\ 38.6 \\ 37.4 \end{array}$	39.7	$\begin{array}{c} 20.6 \\ 21.7 \\ 19.3 \end{array}$.3					11,050 10.820						
75		39.2 37.7		20.2	.3					11,330 11,510						
76		40.6	$\frac{46.8}{43.8}$	12.6	3					$12,390 \\ 11,380$						
77	÷	$ 40.0 \\ 36.4$	48.0	12.0 16.6	.3					12,490 11,000						
78		$39.1 \\ 37.4$	$ \frac{43.1}{47.4}$	9.7	1 .4	 				$11,830 \\ 12.260$						
79	5.2	39.0	$\frac{50.1}{46.4}$	9.4	.3					12,970 $12,260$						
80	6.5	36.7	49.0 44.5	12.3	3				====	12,930 $11,490$ $12,300$						
81	5,1	37.9	$47.6 \\ 46.5 \\ 49.0$	10.5	$\frac{2}{2}$	8777			,55	12,030 $12,680$						
82	6,3	36.8	46.2 49.3	10.7						11,970 12,780						

Table 8.—Analyses of mine, tipple,

			TABLE O.—A7	iary	060	Oj III	une,	uppue,
Region, town or district, and mine	Bed	Rank ¹	Size or other description	Kind of sample 2 s	Condition 4	Agglomerating index ¹	Reference, page in this report	Laboratory No. sor index No.
. 1	· 2	8	4	5	6	7	8	9
COOK INLET RE- GION—continued Matanuska field— Continued:		. 1						
Jonesville—Con. Evan Jones			Pea	D	1 2		109	83
Do	;		T	D	1 2			84
Do			Locomotive	10	1 2 1	}		85 86
Do			Steam (washed)	12 D	2 1			87
Do			steamdo	D	1 2			88
Do			do	69 D	1 2 1 2 1 2 1 2 1 2 1			89
Do			do	ii D	2	[90
Do Do			do	12 D	2			91
			do	15 D	2			92
Do			do	19 D	2			93
Do			do	12 D	$\frac{1}{2}$			94
Do			do	31 D	2			95
			do	17	1 2 1			96
Do				D 17	1 2			
Kings River: Outerop				М	1 2		96	2218
Do	No. 1	Mvb		М	1	[<u>-</u>		18137
Do	do	Myb	,	м	3	1		18319
	do	Coke ⁷		M	2			18136
Do	uo	Coke		147	2			10,100
Do	do	do7_		M	1			18147
Do	No. 2	Mvb		М	1 2 3 1 2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 3 1 2 3 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 3 3			18151
Matanuska River: Outcrop.				м	1 2 3		98	18144
MooseCreek(Station): Baxter	"Big":	Hvbb		М			98	85511
Do	_	Hybb		М	1 2 1 2 1			85512
Do	do	Hybb		м	$\frac{2}{1}$			85513
Do	do	Hybb	Composite of 85511 to 85513.	М	1 2 3		,	85514
1 See Evolunation	of Symbols (p. 24).				, •		'	,

See Explanation of Symbols (p. 24).
 M, mine sample; T, tipple sample; D, delivered coal.
 The bold-faced figure indicates the number of deliveries averaged.

and delivered samples-Continued

er No.	P	roxin perce	ate,		U	tima	te, pe	rcent			Fus	ibility o	f ash		neral-m free bas	
.s or inde	; ;			`						, B. t. u	mation, F.	tempera- o F.	temperature,	1, dry		orifio lue
Laboratory No.5 or index No.	Moisture	Volatile matter	Fixed carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calorific value, B. t. u.	Initial deformation temperature, ° F.	Softening to	Fluid temps	Fixed carbon, basis, percent	B. t. u., dry basis	B.t.u., moist basis
10.	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
:															,	
83	r 0	37.6	47 Q	8.9	0.3					12.260						
84		39.8	150.8	19.4	.3					12,260 12,990 12,090						
85	6.9	$\frac{41.7}{37.3}$	$\frac{47.1}{44.6}$	$10.8 \\ 11.2 \\ 11.2 \\ 12.0$,3 ,3					12,590 11,630						
86	7.0	$\substack{40.1\\37.2}$	$\frac{47.9}{44.5}$	$\begin{array}{c} 12.0 \\ 11.3 \end{array}$.3					12,490 11,710						
87	6.3	$\frac{40.0}{38.9}$	$\frac{47.9}{44.7}$	11.3 12.1 10.1 10.8	.2					12,590 11,940 12,740						
88	7.1	$\frac{41.5}{37.3}$	43.2	10.8 12.4 13.3 11.8 12.7 12.0 12.9 12.3 13.5 12.9 14.1 13.6 14.8	.3					11,500 12,380						******
89	7.0	37.4 40.2	43.8	$\frac{13.3}{11.8}$.3					$11,470 \\ 12,330$						
90	7.2	38.6 41.6	$\frac{42.2}{45.5}$	12.0 12.9	.3					$11,430 \\ 12,320$						
91	8.9	36.3 39.9	$\frac{42.5}{46.6}$	$\frac{12.3}{13.5}$	3					$11,180 \\ 12,270$						
92	8.5	$\frac{36.1}{39.5}$	$\frac{42.5}{46.4}$	$12.9 \\ 14.1$	3					12,210 $12,250$						
93	8.3	$\frac{36.0}{39.3}$	$\frac{42.1}{45.9}$	13.6 14.8	.3 3					$11,100 \\ 12,110$						
94	1	39.6	43.6	16.8	.3					10,850 11,820						
95	7.3	$36.8 \\ 39.7$	$\frac{40.3}{43.5}$	16.8	.3 ,3					11,020 11,890						~====
96	7.4	136 7	i#.1 ∴∩	14.9 16.1	.3					11,100 11,990						
2218	2.9	$\frac{21.9}{21.9}$	63.1	$\frac{12.1}{12.5}$.6					13,350 13,760						
18137	2.4	123.6	63.1	10.9	.5	4.7	$\frac{76.8}{78.6}$	1.1	6.0	13,420	2,420	2,570	2,740	73.6	15,660	15,230
10010	, , <u>,</u>	27.2	72.8	11.2	.6 .6		88.5	$\frac{1.2}{1.3}$	4.4	15,470 13,950	2.270	2,310	2,450	74.8	15,710	15,400
18319	1.8	23.6	67.7	8.6 8.7		2 2	75.9		9.0	13,350 13,760 13,420 13,740 15,470 13,950 14,200 11,690 12,510 14,340 12,250	1,950	2,610	2,730			
18136	0.0	5.7	81.5	11.9 12.8 12.3	2	1.6	$81.2 \\ 93.1$	1.0	3.3	12,510 14,340	,	,				
18147	1.8	3.8	82.1 83.4	$\frac{12.3}{12.5}$	1.1	$\frac{1.0}{1.1}$	82.3 83.8	.7	3.4	12,250 12,480	2,710+					
18151				16.0	1 .1	1.2	195.9	1.1	2.0 6.8	$14,270 \\ 12,460$	2,400	2,620	2,670	73.4	15,630	15,080
10101	4.8	23.2	$\frac{60.3}{72.2}$	10.0	.5	4.4 5.2	$71.1 \\ 73.3 \\ 87.7$	$\frac{1.2}{1.4}$	4.1 5.0	12,460 12,830 15,360						
18144	10.2	i i	l				56.7			9,670		2,700	2,750+		-,	~~~~
	10.0	[27.6]		20.7	.3	4.0	63.2	1.8	10.0	10,780 13,600						
85511	5.2	39.7		7.8	.3					12,450	2,150	2,200	2,240	54.8	14,420	13,600
85512		$\frac{41.9}{39.6}$	$\frac{49.8}{47.8}$	8.3	.3					$13,120 \\ 12,500$	2,130	2,200	2,240	55.1	14,420	13,660
85513		41.6 40.6	50.2 49.0	8.2 5.8	.3					$13,140 \\ 12,790$	2,130	2,200	2,280	55.0	14,360	13,650
85514		$\frac{42.5}{40.1}$	$\frac{51.4}{47.8}$	$\begin{array}{ c c c c } 6.1 \\ 7.2 \\ \end{array}$.3	5.6	$\frac{70.7}{74.3}$	1.3		$13,410 \\ 12,590 \\ 13,230$	ł .			54.7	14,430	13,660
		$ ^{42.1}_{45.6}$	$[50.3]{54.4}$	7.6	1.3	5.7	180.3	11.5	12.2	114,310	ash-free	l	l .	}	۱ .	

^{41,} Sample as received; 2, dried at 105° C.; 3, moisture- and ash-free.

5 X preeding laboratory number indicates analysis made at Anchorage, Alaska.

7 Natural.

'TABLE 8 .- Analyses of mine, tipple,

			TABLE 8.—A1	uuiy	se s	oj m	une,	upple,
Region, town or district, and mine	Bed	Rank ¹	Size or other description	Kind of sample 2 3	Condition 4	Agglomerating index ¹	Reference, page in this report	Laboratory No.5 or index No.
· 1	2	3	4	5	6	7	8	9
COOK INLET RE-	-							,
Matanuska field— Continued			: :	:				
Moose Creek (Station)—Con. Buffalo	No. 1	Hvbb		М	1 2	Ср	98	B98926
Do	No. 2	Hybb		М	3 1 2	Ср	:	B98928
Ď ₀	do	Hvbb		М	3 1 2	Ср		B98927
Do	No. 3	Hybb		М	3 1 2	Ср		B98929
Do	No. 4	Hvbb		М	3 1 2	Сp		B98931
Do	No. 5	Hybb		M	3 1 2	Ср		B98933
Do	do	Hybb		M	3 1 2	Сp		B98932
Do	No. 6	Hybb		М	3 1 2	Af		B98935
Do	No.7(upper bench)	Hybb		M	12312312312312312312312312312	Af		B98937
Do	No.7 (lower bench)	Hvbb		М	3 1 2	Cp	ř.	B98936
Do			Run-of-mine	D	3 1 2	 -	110	97
Do			do	D	1 2			98
Do			do	2 D 8	1 2 1 2 1			99
Do			Nut and steam	8 D	$\frac{1}{2}$			100
Do			do	D	$egin{array}{c} 2 \\ 1 \\ 2 \\ 1 \end{array}$			101
Dougherty			Nut (washed)	D	$\tilde{1}_{2}$		110	102
Do			Steam (washed)	D	$\frac{1}{2}$			103
Howard & Jesson (LeRoy).	No. 3	Hvbb		M	2 3		99	A1963
Do	No. 4	Hybb		M	1 2			A1964
Do	No. 5	Hvbb		M	212312312312		•	A1965
New Black Dia- mond (Raw-	No. 3			M	1 2		99	82919
son) Do	do			M	1 2		:	82920

¹ See Explanation of Symbols (p. 24).

M, mine sample; T, tipple sample; D, delivered coal.

The bold-faced figure indicates the number of deliveries averaged.

and delivered samples-Continued

ex No.	P	roxim perce	ate, nt		Ul	timat	te, pe	rcent		ند	Fus	sibility of	ash	Mi	neral-m free bas	atter- is 1
o.s or ind		er		-,						le, B. t. u	deformation ature, ° F.	tempera-	temperature, F.	on, dry	Va	orific lue
Laboratory No. ⁵ or index	Moisture	Volatile matter	Fixed carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calorific value, B. t. u.	Initial defor temperature	Softening ture, °	Fluid tem	Fixed carbon, basis, percent	B. t. u., dry basis	B.t.u., moist basis
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
			1							· · ·						5 5
B98926	5.1	36.7 38.7	45.9 48.3	$\frac{12.3}{13.0}$	9.5	5.2	65.5 69.0	1.3	15.2 11.3	11,670 12,300	2,720 2,520 2,730 2,640 2,310 2,720 2,710 2,860 2,910+ 2,910+	2,800	2,910+	56.3	14,320	13,470
B98928	3.9	$\frac{44.4}{40.0}$	55.6 49.7 51.8	6.4 6.6	.5 .2 .3 .4 .4	5.6	65.5 69.0 79.4 72.2 75.2 80.5 70.9 74.3 80.0 73.0 75.6 80.3 75.5 80.2 75.2	1.3	$14.3 \\ 11.2 \\ 12.0$	12,920 13,440	2,520	2,660	2,860	55.8	14,490	13,880
B98927	4.7	$\frac{39.8}{41.8}$	48.8 51.1	$\frac{6.7}{7.1}$.4	5.6	70.9	1.2	15.2 11.6	12,670	2,730	2,800	2,910+	55.4	14,400	13,670
B98929	4.6	$\frac{44.9}{40.0}$	$51.0 \\ 53.5$	4.4 4.6	.4	5.8 5.7 5.5	73.0 76.6	$1.4 \\ 1.2 \\ 1.3$	$12.4 \\ 15.3 \\ 11.6$	13,070 13,700	2,640	2,710	2,880	56.3	14,430	13,730
B98931	4.8	$ \begin{array}{r} 44.0 \\ 39.0 \\ 41.0 \end{array} $	51.55.81.10.50.6.25.9.2.5.8.77.4.55.55.55.55.55.44.4.7.7.4.7.5.2.5.55.55.55.55.55.55.55.55.55.55.55.	5.6 5.8	44004000000000000000	5.7 5.6 5.3	$\frac{80.3}{71.9}$	1.4 1.1 1.1	$12.2 \\ 15.5 \\ 12.0$	14,370 $12,860$ $13,510$	2,310	2,340	2,660	56.9	14,440	13,700
B98933	4.2	$ \begin{array}{r} 43.5 \\ 38.6 \\ 40.2 \end{array} $	$56.5 \\ 49.9 \\ 52.2$	7.3 7.6	.4 3 3	5.7 5.5 5.3	$71.0 \\ 74.1$	$1.2 \\ 1.2 \\ 1.2$	$12.5 \\ 14.7 \\ 11.5$	14,340 $12,690$ $13,240$	2,720	2,780	2,880	56.9	14,440	13,780
B98932	4.3	$\begin{vmatrix} 43.5 \\ 37.0 \\ 38.7 \end{vmatrix}$	$ \begin{array}{c} 56.5 \\ 44.8 \\ 46.7 \end{array} $	$13.9 \\ 14.6$.3 .3	$5.7 \\ 5.2 \\ 4.9$	$64.7 \\ 67.6$	$1.3 \\ 1.0 \\ 1.1$	$12.5 \\ 14.9 \\ 11.5$	$14,320 \\ 11,540 \\ 12,060$	2,710	2,780	2,880	55.6	14,310	13,590
B98935	3.9	$\frac{45.3}{30.7}$	$\begin{bmatrix} 54.7 \\ 31.4 \\ 32.7 \end{bmatrix}$	$34.0 \\ 35.4$.3 .3	5.8 4.2 3.9	$ 79.1 \\ 47.3 \\ 49.3$	1.3 .9	$13.5 \\ 13.3 \\ 10.2$	$\begin{bmatrix} 14,120 \\ 8,420 \\ 8,770 \end{bmatrix}$	2,860	2,910+		53.0	14,200	13,320
B98937	3.2	$\frac{49.4}{34.0}$	$50.6 \\ 35.6 \\ 36.8$	$\frac{1}{27.2}$ $\frac{1}{28.1}$.5 .2	$\frac{6.1}{4.7}$	$ \begin{array}{r} 76.2 \\ 54.2 \\ 56.0 \\ \end{array} $	$ \begin{array}{c c} 1.4 \\ 1.1 \\ 1.1 \end{array} $	$15.8 \\ 12.6 \\ 10.0$	13,560 9,760 10,080	2,910+			52.9	14,490	13,830
B98936	3.8	48.9 39.9 41.5	31.43.05.66.81.99.65.81.99.99.65.81.99.99.65.81.99.99.99.99.99.99.99.99.99.99.99.99.99	$\frac{12.4}{12.9}$.4 .3 :3	$\frac{6.2}{5.5}$	80.2 71.0 74.1 80.2 64.7 67.6 79.1 47.3 49.3 76.2 56.0 96.1 77.9	$1.6 \\ 1.3 \\ 1.3$	$13.9 \\ 14.1 \\ 11.1$	$14,020 \\ 11,940 \\ 12,410$	2,910+		 	53.1	14,430	13,800
97	5.5	$\frac{47.7}{40.1}$	52.3 45.8	8.6	.4	6.0	79.8	1.5	12.8	$14,260 \\ 12,200 \\ 12,910$			- -			
98	6.0	38.3	40.8	14.9	.4				1	111.180						
99	5.7	38.9	42.2	13.2	.4 .3 .3					11,890 $11,420$					2	
100	4.7	39.5	44.1	11.7	.6					12,110 11,830 12,410 11,850						
.101	4.8	41.5	44.8	8.9	.4					11,890						
102	4.3	34.1	$ \frac{41.8}{41.8} $	19.8	5					12,490 10,780					4]-	
103	7.1	31.6	$\begin{array}{c} 43.7 \\ 41.0 \end{array}$	20.7	.5					11,260 10,460						
A1963	5.5	$34.1 \\ 39.4 \\ 41.7$	$44.1 \\ 45.6 \\ 48.3$	$\frac{21.8}{9.5}$.5 .2 .2	5.6	$ \begin{array}{r} 67.6 \\ 71.5 \\ 79.5 \end{array} $	$\begin{array}{c} \bar{1}.\bar{0} \\ 1.1 \end{array}$	16.1 11.9	11,260 $11,960$ $12,660$	2,450	2,510	2,530	54.2	14,200	13,830
A1964	5.3	$\begin{vmatrix} 46.4 \\ 38.0 \\ 40.1 \end{vmatrix}$	48.3 53.6 41.7 44.1 52.4 39.4 41.9 52.5 46.7 50.6	15.0 15.8	55223223 1.011 1.14	5.9 5.2 4.8	67.6 71.5 79.5 62.4 65.9 78.2 59.4 63.1	$\begin{bmatrix} 1.2 \\ .9 \\ 1.0 \end{bmatrix}$	$13.1 \\ 16.3 \\ 12.3$	11,260 10,460 11,260 11,960 12,660 14,070 10,930 11,540 13,710 10,590 11,240	2,560	2,580	2,590	53.2	13,930	13,050
A1965	5,8	$\begin{vmatrix} 47.6 \\ 35.8 \\ 38.0 \end{vmatrix}$	$52.4 \\ 39.4 \\ 41.9$	$ \begin{array}{c} 19.0 \\ 20.1 \end{array} $	$\begin{array}{c c} 3 \\ 1.0 \\ 1.1 \end{array}$	5.7 5.1 4.7	$ \begin{array}{r} 78.2 \\ 59.4 \\ \hline 63.1 \\ \end{array} $	$1.2 \\ 1.0 \\ 1.0$	$14.6 \\ 14.5 \\ 10.0$	13,710 $10,590$ $11,240$	2,340	2,510	2,530	53.6	14,410	13,850
82919	7.6	$ \begin{array}{c} 47.5 \\ 37.6 \\ 40.7 \end{array} $	$52.5 \\ 46.7 \\ 50.6$	8.1 8.7	1.4 .4 .5	5.9	79.0	1.3	12.4	14,070 11,970 12,960	2,390	2,450	2,510			
82920			46.3 50.6		.4					11,870 12,980		2,390	2,450			

 ^{1,} Sample as received; 2, dried at 105° C.; 3, moisture- and ash-free.
 X preceding laboratory number indicates analysis made at Anchorage, Alaska.

Table 8.—Analyses of mine, tipple,

						~, ,,		T. Free'
Region, town or district, and mine	Bed	Rank 1	Size or other description	Kind of sample 2 s	Condition 4	Agglomerating index ¹	Reference, page in this report	Laboratory No.5 or index No.
1	2	3	4	5	6	7	8	9
GOOK INLET RE- GION—continued Matanuska field— Continued								
Moose Creek (Sta- tion)—Con. New Black Dia- mond (Raw-	No. 3		Composite of 82919 and 82920.	м	1 2		99	82921
son), Do	do		Run-of-mine	D 14	1 2 3 1 2 1 2 1		110	1,04
Do	do		Lump	Ď	ī		,	105
Do	do		Nut (washed)	D 14	1 2			106
Do	do		Nut	14 D 14	1 2			107
Do	do		do	D 2 D	1 2			108
Do	do		Steam	Ď	1			109
Do	do		do	37 D 5	1 2			110
Do	do		do	Ď	1 2 1			111
Premier	No. 2	Hvþb		М	1 2 3		100	A1962
Do	do	Hybb	Run-of-mine	D	1		110	112
Do	do	Hybb	do	D	2 1 2			113
Do	do	Hybb	Lump	3 D 2 D	1 2 1			114
Do	do	Hybb	Lump nut	ñ	1 2			115
Do	do	Hvbb	Nut	6 D	1 2			116
Do	do	Hybb	Nut and steam	D D	1			117
Do	go	Hybb	Locomotive	D	1 2 1 2 1			118
Do	do	Hybb	Steam	D D	1			119
Do	do	Hybb	do	D	1			120
Prospect				М	2 1 2	NAa	100	°C31928
Do		Hycb		М	3 1 2	Af		C31929
Do		Hveb		М	3 1 2 3	NAa		¢C31930
Young Creek: Outcrop				м	1		100	2223
Do				M	1 2 3		200	11382
	1	l	1		13	Ι.		

and delivered samples-Continued

ex No.	P	roxin perce			U	ltima	te, pe	rcent	,) .	sibility o	f ash	Mi	ineral-m free bas	atter-
Laboratory No.5 or index No	;	ы								Calorific value, B. t. u.	deformation rature, ° F.	tempers-	temperature,	n, dry	Cal.	orific lue
story No	ıre	Volatile matter	Fixed carbon			uado	d	re.		ific value	Į 🥱	Softening to		ed carbon, basis, percent	t. u., dry basis	B.t.u., moist basis
Labor	Moisture	Volati	Fixed	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calori	Initial	Soften	Fluid	Fixed	B.t.,	B.t.u.
10	11.	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
	-															
82921		40.9	$\frac{46.4}{50.5}$	7.9 8.6	0.4	5.7 5.2	$67.2 \\ 73.3 \\ 80.1$	$\frac{1.1}{1.2}$	$^{17.7}_{11.2}$	11,910 12,970 14,200						
104	5.7	$\frac{44.8}{39.5}$	$55.2 \\ 43.2 \\ 45.8$	11.6	.5	5.7	80.1	1.3		11,500						
105	3.7	$\frac{41.9}{40.3}$	$\frac{45.8}{32.6}$	$\frac{12.3}{23.4}$	33322					12,190 10,030						
106	4.2	$\frac{41.8}{41.6}$	$32.6 \\ 33.9 \\ 43.4$	$\frac{24.8}{10.8}$.3					10,410						
107			45.3		.2					12,480 11,780	-					
108	5.2	$\frac{43.0}{41.4}$	45.6 43.5 45.9 42.9	9.9	.2					$12,440 \\ 11,970 \\ 12,630$						
109	6.2	39.5	42.9 45.7 44.1	$11.4 \\ 12.2$.2				 	11.630						
110	5.7	42.1 40.4	44.1	9.8	.22.22.23					12,400 11,870 12,590						
111	5.9	$\frac{42.8}{39.5}$ $\frac{42.0}{42.0}$	$\frac{46.8}{37.1}$ $\frac{39.4}{}$	17.5 18.6	.3					10.460						
A1962	5.8	$\frac{38.8}{41.2}$	$\frac{49.1}{52.1}$	6.3	333322	5.8	70.9 75.3 80.6	1.3	$\frac{15.4}{11.0}$	11,110 12,580 13,360 14,310	2,800	2,910	2,960	56.2	14,400	13,510
112	4.2	38.6	$41.0 \\ 42.8 \\ 40.8$	16.2	.2			1.4		11,200 11,690				- 		
113	5.1	37.6	40.8	16.5	.3					11,090 11,690						-
114	4.3	$\frac{41.0}{42.8}$	$\frac{43.0}{45.8}$ $\frac{47.9}{47.9}$	8.9						12,330 12,880						
115	4.6	38.4	$\frac{46.7}{49.0}$	10.3	,3					$\frac{12,130}{12,720}$					-,	
116	4.5	39.0	$\frac{41.3}{43.3}$	15.2	.3					III.3bU						
117	4.4	39.1	43.0	13.5	.3					11,880 11,720 12,260						
118	4.5	38.7	45.0 45.5 47.7	11.3	.3 .2 .2					$11,900 \\ 12,450$						-
119	5.6	38.9	44.1	11.4	.4					11,600 12,280						
120	4.7	37.6	$\frac{13.8}{45.9}$	$13.9 \\ 14.6$	3					11,610						
C31928	12.9	$\frac{33.7}{38.7}$	43.4	10.0	3	5,2 4.3	$\frac{57.3}{65.7}$	1.0	17.2	12,180 9,690 11,130	l .	2,760	2,880			
120 C31928 C31929	5.6	$\frac{43.7}{34.6}$	56.3 43.1 45.6 55.5	16.7 17.7	400000000000000000000000000000000000000	$\frac{4.9}{5.0}$	74.3 60.3	1.1	$\frac{19.4}{16.9}$	$12,570 \\ 10.560$	2,910+			56.5	13,840	12,890
C31930	7.4	44.5 35.8	$55.5 \\ 47.4$	9.4	.3	$\frac{4.7}{5.7}$	$63.9 \\ 77.7 \\ 64.3$	1 4.11	19.0	11,190 13,600 11,230	2,800	2,910+		57.6	13,630	12,510
1		38.6 43.0	$\frac{47.4}{51.2}$	10.2	.3	$\begin{array}{c} 5.4 \\ 4.9 \\ 5.5 \end{array}$	$\frac{69.4}{77.2}$	$\begin{bmatrix} 1.1\\1.3\end{bmatrix}$	$14.1 \\ 15.7$	12,130 13,500	-,	-,			,	,
2223	2.5	28.3	58.8	10.4	.6				1	13,090						
11382	1	20 N	I60 4	l10. 6	l G	5.4 4.7	$\frac{65.2}{72.9}$	1.1 1.2		13,430 11,230 12,550 13,300						

^{41,} Sample as received; 2, dried at 106° C; 3, moisture- and ash-free.

5 X preceding laboratory number indicates analysis made at Anchorage, Alaska.

6 Volatile matter by modified method.

TABLE 8 .- Analyses of mine, tipple,

			TABLE 8.—Ar	ialy.	ses	of m	une,	tipple,
Region, town or district, and mine	Bed	Rank ¹	Size or other description	Kind of sample ? :	Condition 4	Agglomerating index ¹	Reference, page in this report	Laboratory No. 5 or index No.
1	2	3	4	5	6	7	8	9
COOK INLET RE- GION—continued Susitna field								
Houston: Houston			Run-of-mine	D	1		110	121
Do			Lump	D	1 2 1 2			122
Do			Lump nut	D	1 2			123
Do			do	D	1 2			124
Do			Lump nut and steam.	D D	1 2 1			125
. Do			Locomotive	D 3	1 2			126
Do			do	Ď 4	$\frac{1}{2}$			127
Do			do	D 3 D 4 D 2 D	2 1 2 1 2 1			128
Do			Steam	Ď	1 2			129
ALASKA GULF REGION			i i					
Bering River field			1.					
Barrett Creek: Cunningham claim outerop.		Lvb		М	1 2 3 1 2	1	101	12716
Do		Lyb	************	М	1 2			12709
Do		Lyb	***************	M	3 1 2 3			12707
Do		Lvb		M	1 2			12708
Do	*****	Lvb		M	3 1 2		-	12714
Do	******	Lvb		М	3 1 2			12710
Do	************	Lvb		м	2 3 1 2			12718
Do		Lvb		м	2 3 1 2 3 1 2			12712
Do		Lvb		М	3 1 2 3			12711
Bering Lake: Tunnel.		Lvb		М	1 2 3		101	4427

1 See Explanation of Symbols (p. 24).
2 M, mine sample; T, tipple sample; D, delivered coal.
5 The bold-faced figure indicates the number of deliveries averaged.

and delivered samples-Continued

1	è l		roxin	sam		1		te, pe	roent	· · · · · · · · · · · · · · · · · · ·		Fus	sibility of	f ash	Mi	neral-m	atter-
contra continues con	or index				_ _						B.t.u.	deformation	tempera-	temperature,	dry	Cal	orifie Jue
	Laboratory No.5 or index	Moisture	Volatile matter	Fixed carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calorific value, B. t. u.	Initial defor temperature,	Softening te	Fluid tempe	Fixed carbon, basis, percent	B. t. u., dry	B.t.u., moist basis
	10	11	12	13	14	15	16	. 17	18	19	20	21	22	23	24	25	26
														·			
	121 122	13.9 18.7	35.0 40.7 33.6 41.3	34.2 39.7 34.3 42.2 31.2 37.4 30.3 36.2 27.6	16.9 19.6 13.4 16.5	0.1					8,880 10,310 8,260 10,150 8,600						
	123 124 125	16.7 16.1 18.5	45.4 39.3 46.8 39.9	37.4 30.3 36.2 27.6	14.3 17.2 14.3 17.0 14.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					10,320 9,000 10,730 8,570 10,520						
	126 127	15.5 17.1	37.9 44.9 33.9 40.9	27,6 33.9 32.2 38.0 34.2 41.3 27.4 33.3 27.6	14.4 17.1 14.8 17.8	.1 .1 .2 .2 .2					9,070 10,730 8,550 10,310 8,520 10,370		******				
	129	18.5	49.5 39.9 48.9	33.3 27.6 33.9	17.2 14.0 17.2	.2					10,370 8,570 10,520						
	-5.		ı	•													•
	12716		10.0	70.7 82.8	$\frac{7.1}{7.3}$	$\begin{array}{c c} 1.2 \\ 1.2 \\ 1.3 \end{array}$	3.8 3.6 3.9	$77.9 \\ 80.8 \\ 87.2$	1.6 1.7 1.8	5.4	13,120 13,610 14,690					14,830	
	12709	2.1	14.1 14.4	82.8 72.5 74.1 83.7 65.0	11.3 11.5	1.0	3 6 9 8 6 1 5 4 5 5	80.8 87.2 77.6 79.2 89.5	1.4 1.5 1.7	3.2	13,240 $13,520$				84.9	15,490	15,120
:	12707	1.6	$12.7 \\ 12.9 \\ 16.3$	65.0 66.0		$\begin{vmatrix} 1.1 \\ 1.2 \\ 1.5 \end{vmatrix}$	3.5	69.5 70.6	1.4 1.4 1.7	3.8 2.3 3.0	11,840 12,020 15,240				85.9	15,620	15,300
	12708	1.8	14.1 14.3 14.7 14.2 14.7	66.0 83.7 81.7 83.2 85.3 72.8	2.4	1.2 1.3 1.0 1.0 1.2 1.1 1.2 1.5 1.1 2.7	3.4 4.3 4.1 3.9 4.0 3.5	86.7 88.3 90.5	1.7 1.7 1.7	$\frac{4.0}{2.4}$	11,280 11,840 12,020 15,240 14,860 15,130 15,500 12,980 13,360						15,290
	12714	2.9	16 4	23.6	10.0	7.7	3.7	69.5 70.6 89.5 86.7 88.3 90.5 76.5 78.8	1.6 1.7 1.9	7.4 5.0 5.5	12,980 13,360 14,900				84.7	15,090	14,590
	12710		10.9	29.4	വജന വ	333	3.22.1	$\begin{vmatrix} 31.9 \\ 32.5 \end{vmatrix}$	9.9	6.7	5.590				82.6	15,460	14,750
:	12718	2.7	13.8 14.2	73.1 58.1 59.7 80.8 78.2 79.9 85.3	$\begin{array}{c} 25.4 \\ 26.1 \end{array}$.8 .8 .8 .8 1.1 .7	3.1	63.3	2.3 1.4 1.4	12.8 7.6 5.3 7.3	10,440 10,740 14,530				83.5	14,980	14,420
	12712	2.1	13.5 13.8 14.7	78.2 79.9	$\frac{6.2}{6.3}$	7	4.1 4.0 3.8 4.1	84.7 90.4	1.9 1.7 1.8	2.5	14,180 $14,490$				86.0	15,580	15,220
	12711	1.5	13.0	110.1	9.0	1.4	3.8	81.0 82.2 90.4	1.9 1.6 1.7 1.8	1.91	15,470 13,850 14,060 15,470	,			86.9	15,660	15,390
	4427	5.1	13.9	76.0 80.0	5.0 5.3	1.2		80.7 85.0 89.8			14,070 14,830 15,650				85.3	15,770	14,910

 ^{1,} Sample as received; 2, dried at 105° C.; 3, moisture- and ash-free.
 X preceding laboratory number indicates analysis made at Anchorage, Alaska.

Table 8.—Analyses of mine, tipple,

			TABLE 8.—A1	iaiy	868	oj m	iine,	uppie,
Region, town or district, and mine	Bed	Rank 1	Size or other description	Kind of sample 3.8	Condition 4	Agglomerating index ¹	Reference, page in this report	Laboratory No.5 or index No.
1	2	3	4	5	6	7	8	9
ALASKA GULF RE- GION—continued Bering River field— Continued								
Canyon Creek: Prospect		An		М	1 2		101	4433
Do		An		M	3 1 2			4461
Carbon Creek: Prospect tunnel.		Lvb		M	3 1 2		101	2492
Carbon Mountain (east side): Prospect Do		An An An		M M M	1 2 1 2 1 2		101	2480 2483; 2487
Carbon Mountain (west side): Outcrop Do Prospect Do		An An An Sa		M M M	1212123123		102 102	2482 2496 4459
Clear Creek: Outcrop		Coke ⁷		м	1		102	12713
Do		Sa		M	2 3 1 2			12715
Do		Sa		M	3 1 2			12717
Do		Sa (?)		M	2 3 1 2			4430
Do		Sa (?)		M	3 1 2 3			4460
Prospect		Sa (?)		M	3		102	4431
Do		Sa (?)		M	1231231			4435
Do		Sa (?)	na en ar an	М	3123			4451
1 See Explanation of	of Symbols (p. 24).				81	Ļ	ļ	

See Explanation of Symbols (p. 24).
M, mine sample; T, tipple sample; D, delivered coal.
The bold-faced figure indicates the number of deliveries averaged.

and delivered samples-Continued

ox No		roxin perce			, UI	tima	te, pe	rcent	i !		Fus	sibility of	f ash	M	ineral-m free bas	atter is 1
Laboratory No.5 or index	Moisture	Volatile matter	Fixed carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calorific value, B. t. u.	Initial deformation temperature, ° F.	Softening tempera- ture, ° F.	Fluid temperature,	Fixed carbon, dry basis, percent	B. t. u., dry basis	B.t.u., moist
10	11	12	13	14	15	16	17.	18	19	20	21	22	23	24	25	26
	-		:	,											4 2 3	
4433 4461	7.4	$ \begin{array}{c c} 7.4 \\ 8.8 \\ 7.4 \\ \end{array} $	$77.1 \\ 91.2 \\ 75.6$	14.4 15.5	0.6 .6 .7	3.7 3.1 3.7 4.1	70.1 75.7 89.6 74.0	1.5 1.6 1.9 1.4	$9.7 \\ 3.5 \\ 4.1 \\ 10.6 \\ 4.1$	11,890 12,850 15,200 12,570 13,630 15,150				ļ	15,460 15,310	
2492	4.2	$\frac{8.9}{13.4}$	91.1 78.8 82.2	3.6 3.8	1.6 1.6	3.9	89.2	1.7	4.4	15,150			 	85.9		(.,9) F3
2480 2483 2487		6.9 5.0 5.8 6.6	175.9	3.6	1.0 1.3					12,140 14,100				93.5 94.8	i J	13,1
2482 2496	8.3 5.9	7.8	82.5 89.9 81.5	2.3	$1.1 \\ 1.2 \\ .8 \\ .9$									93.1		
4459 4462	3.0 7.6	10.6	75.7 78.1 91.7 76.4 82.6 88.6	6.2 14.5 14.9 6.2 6.8	1.1 1.3 .6 .6	$\frac{3.5}{4.1}$	74.1 76.3 89.8 77.3 83.7 89.7	1.2 1.4 1.5 1.6 1.7	$\frac{3.4}{10.0}$	12,790 13,180 15,490 13,060 14,140 15,160					15,770 15,260	
12713 12715		110.1	84.5 85.5 89.4 84.7	1 4.4	1.6 1.6 1.7 1.0	3.2 3.1 3.3 3.8	86.4 87.4 91.4 88.7	$1.5 \\ 1.5 \\ 1.5 \\ 1.4$	$\begin{array}{c} 2.0 \\ 2.1 \\ 3.4 \end{array}$	14,340 14,520 15,180 15,020				88.0	15,590	15,3
12717	1.8	$12.1 \\ 12.4 \\ 13.6 \\ 13.6$	86.1 87.6 80.0	4.6	$1.0 \\ 1.0 \\ 1.2$	3.8	88.7 90.1 91.7 84.6 86.1	1.4	$2.0 \\ 2.0 \\ 4.2 \\ 2.7$	15,260 15,540 14,400 14,660 15,390				36.2	15,490	15,2
4430 4460	5.9	$14.6 \\ 10.9 \\ 11.5 \\ 12.6$	85.4 83.4	4.8 5.1	1.3 2.5 2.7 2.8 .6	4.0 4.3 3.9 4.1	84.6 86.1 90.4 78.2 83.1 87.6	$1.6 \\ 1.3 \\ 1.4 \\ 1.5$	8.9	13,5700 14.420				89.1	15,360	14,3
4460	:	11.4	88.6	10.0		0.0	$72.4 \\ 77.6$	$\frac{1.3}{1.4}$	3,1	15,200 12,350 13,220 15,290			:		15,530	
4431	5.7	$\frac{9.3}{9.8}$	80.9 85.8 90.2	4.9	$1.2 \\ 1.3 \\ 1.4$	$\frac{4.3}{3.9}$	81.5 86.5 91.0	$1.3 \\ 1.4 \\ 1.4 \\ 1$	$\begin{array}{c} 7.0 \\ 2.0 \\ 2.1 \\ 6.2 \end{array}$	14,190 $15,050$ $15,830$ $14,560$					15,960 15,690	
4435	3.7	$9.1 \\ 9.3 \\ 13.2 \\ 13.7$	$84.6 \\ 88.3 \\ 90.7 \\ 77.1 \\ 80.0$	2.6	1.5 1.5 3.1 8.2	4.1 4.2 4.2 3.9	87.7 90.0 80.0 83.1	1.5 1.6 1.4	2.6 2.7 5.3 2.0	15,290 14,190 15,050 15,830 14,560 15,200 15,610 15,490 14,490 15,460					15,660	

Table 8.—Analyses of mine, tipple,

							report	Š.
Region, town or district, and mine	Bed	Rank ¹	Size or other description	Kind of sample 1 \$	Condition 4	Agglomerating index 1	Reference, page in this re	Laboratory No.5 or index
1	2	3	4	5	6	7	8	9
ALASKA GULF RE- GION—continued	;							!
Bering River field— Continued		!				٠,		
Falls Creek: Christopher prospect.		Sa (?)		M M	1 2 1		103 103	2488 4454
Fourth Berg Lake:		An		м	2312		103	2478
Katalla: Carbon	No. 16	Lyb	Run-of-mine	Ť	1	· .	104	86751
Do	do	Lvb	2½-inch lump	т	ಬಹ-ಗಬಹ		: .	86750
Do	do	Lvb	2 ½ - by 1 - inch (washed).	Т	$\frac{1}{2}$			86745
		Lyb	2½-inch slack	T	31231		:	86743
Dő	do	Lvb	1-inch slack	т	123123			86744
DoShield's pros-	No. 18	Lvb	1-inch slack (washed)	M	1		104	86748 79356
pect tunnel. Do	do	Lvb		M	2 1 2		101	79357
Do	do	Lvb	Composite of 79356 and 79357.	М	1 2 3			79358
Kushtaka Ridge (east side): Outcrop		Sa		м	1 2		104	4455
Do	· 	Sa		M	23122			4428
Tunnel		Sa	,	M	3123		104	4463
Leeper Creek: Out-	· 	Sa		M	1 2 3		104	4453
Mount Ann: Outerop	~	Sa	au au anna de de an gante archi Mell Mell grup da da an	м	1 2 3		104	12719
							t	

See Explanation of Symbols (p. 24).
 M, mine sample; T, tipple sample; D, delivered coal.
 The bold-faced figure indicates the number of deliveries averaged.

and delivered samples—Continued

2478 7.7 2478 7.7 86751 5.0 86750 2.4 86745 2.4 86743 3.3 86744 5.5 86748 5.8	13.8 12.9 13.6 16.7 5.8 6.3 13.7 14.4 15.0 13.9 14.3	77.5 81.6 85.0 81.9	2.8 17.3 18.3 20.5 22.2 3.8 4.0	3.7 2.9 3.1 .9 .9 1.0 1.0	4.6	17 166.0 69.9 85.6 82.3 80.2 85.3 87.3 87.3	1.4	7.0 2.7 2.8 4.2 2.1	20 20 11,720 12,410 11,720 12,190 14,930 15,550 14,930 15,050	2,180	La Softening temperature, of 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2,510 2,510	95.7 85.6		14,83
2488 6.0 4454 5.5 2478 7.7 86751 5.0 86750 2.4 86745 2.4 86745 2.4 86745 5.5	13.0 13.8 13.6 16.7 5.8 6.3 13.7 14.4 15.0 14.3 14.3	78.44 83.44 388.1 83.3 66.0 71.5 77.5 81.6 88.0 88.0 81.9	2.6 2.8 17.3 18.3 20.5 22.2 3.8 4.0	0.7 7.7 2.8 3.0 3.7 2.9 3.1 .9 .9 1.0 1.0 0.8	4.0 3.6 4.4	17 66.0 69.9 85.6 	1.0	7.0 2.7 2.8 4.2 2.1	20 71,720 12,410 15,190 14,190 14,930 15,550 14,690	21 21 2,180	2,240	23	24 86.2 86.0 95.7	25 15,590 15,650	14,83
2488 6.0 4454 5.5 2478 7.7 86751 5.0 86750 2.4 86745 2.4 86743 3.3 86744 5.5	13.0 13.8 12.9 13.6 16.7 5.8 6.3 13.7 14.4 15.0 14.3	78.4 83.4 64.3 88.1 77.5 81.6 85.0 81.9	2.6 2.8 17.3 18.3 20.5 22.2 3.8 4.0	0.77 2.83 3.77 2.31 9.99 1.00 1.00 1.08	4.0	66.0 69.9 85.6	1.0 1.0 1.2	8.9 4.2 5.1 7.0 2.7 2.8 4.2 2.1	11,720 12,410 15,190 14,930 15,550 14,690 14,690	2,180	2,240	2,510	86.2 86.0 95.7 85.6	15,590 15,650	14,5
2488 6.0 4454 5.5 2478 7.7 86751 5.0 86750 2.4 86745 2.4 86745 3.3 86744 5.5 86748 5.8	13.8 12.9 13.6 16.7 5.8 6.3 13.7 14.4 15.0 13.9 14.3	83.4 64.3 88.1 83.3 66.0 71.5 77.5 81.6 85.0 81.9	18.3 20.5 22.2 3.8 4.0 3.7 3.8	3.7 2.9 3.1 .9 .9 1.0 1.0	4.6	82.3	1.4	7.0 2.7 2.8 4.2 2.1	12,410 15,190 14,190 14,930 15,550 14,690 15,050	2,180		' :	86.0 95.7 85.6	15,650	14,81
2478 7.7 86751 5.0 86750 2.4 86745 2.4 86743 3.3 86744 5.5 86748 5.8	13.8 12.9 13.6 16.7 5.8 6.3 13.7 14.4 15.0 13.9 14.3	83.4 64.3 88.1 83.3 66.0 71.5 77.5 81.6 85.0 81.9	18.3 20.5 22.2 3.8 4.0 3.7 3.8	3.7 2.9 3.1 .9 .9 1.0 1.0	4.6	82.3	1.4	7.0 2.7 2.8 4.2 2.1	12,410 15,190 14,190 14,930 15,550 14,690 15,050	2,180		' :	86.0 95.7 85.6	15,650	14,8
2478 7.7 86751 5.0 86750 2.4 86745 2.4 86743 3.3 86744 5.5 86748 5.8	13.6 16.7 5.8 6.3 13.7 14.4 15.0 13.9 14.3	88.1 83.3 66.0 71.5 77.5 81.6 85.0 81.9	18.3 20.5 22.2 3.8 4.0 3.7 3.8	3.7 2.9 3.1 .9 .9 1.0 1.0	4.6	82.3	1.4	7.0 2.7 2.8 4.2 2.1	12,410 15,190 14,190 14,930 15,550 14,690 15,050	2,180		' :	95.7 85.6	15,650	14,8
2478 7.7 86751 5.0 86750 2.4 86745 2.4 86743 3.3 86744 5.5	13.6 16.7 5.8 6.3 13.7 14.4 15.0 13.9 14.3	88.1 83.3 66.0 71.5 77.5 81.6 85.0 81.9	18.3 20.5 22.2 3.8 4.0 3.7 3.8	3.7 2.9 3.1 .9 .9 1.0 1.0	4.6	82.3	1.4	7.0 2.7 2.8 4.2 2.1	14,190 14,190 14,930 15,550 14,690 15,050			' :	85.6	15,650	14,8
86751 5.0 86750 2.4 86745 2.4 86743 3.3 86744 5.5 86748 5.8	6.3 13.7 14.4 15.0 13.9 14.3	77.5 81.6 85.0 80.0 81.9	3.8 4.0 3.7 3.7	3.1 .9 .9 .9 1.0 1.0	4.6	82.3	1.4	7.0 2.7 2.8 4.2 2.1	$16,550 \\ 14,690 \\ 15,050$			' :	85.6	15,650	14,8
86750 2.4 86745 2.4 86743 3.3 86744 5.5 86748 5.8	$15.0 \\ 13.9 \\ 14.3$	85.0 80.0 81.9	3.7 3.8	1.0 1.0 1.0 1.0	4 0	00 0	1 4 E	$\begin{array}{c c} 2.8 \\ 4.2 \\ 2.1 \end{array}$	$16,550 \\ 14,690 \\ 15,050$			' :			
86750 2.4 86745 2.4 86743 3.3 86744 5.5 86748 5.8	$15.0 \\ 13.9 \\ 14.3$	85.0 80.0 81.9	3.7 3.8	1.0 1.0 1.0 1.0	4.5 4.4 4.2 4.4 4.5	90.2 85.3 87.4 90.8	1.6 1.4 1.5	$\begin{array}{c c} 2.8 \\ 4.2 \\ 2.1 \end{array}$	$16,550 \\ 14,690 \\ 15,050$		2,240	2,510	85.8	15,730	15,3
86745 2.4 86743 3.3 86744 5.5 86748 5.8	14.3 14.9 13.9 14.2 14.7 13.1	81.9 85.1 80.7 82.8 85.3	3.8	1.0	4.2 4.4 4.5	90.8	$\begin{array}{c c} 1.5 \\ 1.5 \end{array}$	$\frac{2.1}{2.3}$	115,050	1	1		1 1	1	1
86748 5.8 70356 2.0	13.9 14.2 14.7 13.1	80.7 82.8 85.3	3.0	اق، ا	4.0		1 1	2.0	15,650	1	9 900	2 750	85.8	15,750	15 8
86748 5.8 70356 2.0	$14.7 \\ 13.1$	85.3		1 .5	4.4	87.3	$\frac{1.5}{1.5}$	2.9	14,830 15,200	2,180	2,390	2,450	00.8	10,100	10,0
86748 5.8 79356 2.0		149.1	4.5	.9 .8	4.5	$ \begin{array}{c} 90.0 \\ 83.0 \\ 85.8 \end{array} $	1.4	3.0	15,680 14,360 14,860	2 160	2,340	2,450	86.4	15,670	15,1
86748 5.8 70356 2.0	$14.2 \\ 13.7$	85.8 77.2	3.6	8	1 5	വ വ	1 1 6	8.1	15,580 14,120 14,950	2,200	2,450	2,630	85.5	15,610	14,7
70356 2 0	$14.5 \\ 15.1$	84.9	$\frac{3.8}{2.1}$,9	4.4	81.4 86.2 89.6 83.3 88.4	1.5	1 3.5	115.540	1	2,390	2,620	86.0	15,730	14.79
79356 2.0	$13.3 \\ 14.1$	83.7	2.2	.8	4.3	88.4	1.5	2.7	14,430 15,320 15,670		2,000			,	
	$\frac{14.4}{14.7}$	85.6 79.5	3.8	.97 .77 .77 .77 .77	.4.4	90.4	1.6		114.790	2.280	2,390	2,440	84,9	15,780	15,4
79357 2.5	$\begin{bmatrix} 15.0 \\ 14.5 \end{bmatrix}$	81 .1 79 .6	3.9	17					15,100 14,840 15,220	2,130	2,390	2,680	85.1	15,840	15,4
,	$14.9 \\ 15.0$	$\frac{81.6}{79.1}$	3.5	7	4.5	85.9 87.8	1.6	3.6	14,800				84.6	15,810	15,4
	15.3	81.0 84.1	3.7	:7	4.5	$\frac{87.8}{91.2}$	$\frac{1.6}{1.7}$	$\begin{bmatrix} 1.8 \\ 1.9 \end{bmatrix}$	$ 15,140 \\ 15,720 \\$						
		į.	1	ا ِ			ĺ						86.2	15,620	14 7
4455 5.4	13.9	$79.7 \\ 84.2$	1.9	.7 .7	4.2	88.0	1 1.5	3.7	14,450 15,280 15,570					10,020	**,''
4428 9.4	$\begin{bmatrix} 14.1 \\ 13.0 \end{bmatrix}$	$ \begin{array}{c} 85.9 \\ 74.0 \end{array} $	3.6	6	4.9	89.8	$1.5 \\ 1.2$	12.5	113,300				85.6	15,430	13,9
	$\begin{array}{c} 14.3 \\ 14.9 \end{array}$	$\begin{vmatrix} 81.7 \\ 85.1 \end{vmatrix}$	$\frac{3.6}{4.0}$	4.7 4.1	4.4	85.2 88.7 70.1 72.2 85.4	1.4	4.8	14,750 15,360				80 0	15.440	14 80
4463 2.9	11.0	73.5	119.0	0,0	3.5	$\frac{70.1}{72.2}$	1.1	3.4	12,350 12,720				. 00.0	-0,440	,0
4453 4.0	112 1	86.9 77.4 80.7	I	$\begin{vmatrix} 1.1 \\ 1.1 \end{vmatrix}$	$\begin{array}{c c} 4.1 \\ 4.3 \\ 4.1 \end{array}$	119.9	1 1.0	$\begin{array}{c c} 4.1 \\ 7.3 \\ 3.9 \end{array}$	15,040 14,170 14,760 15,760				86.9	15,900	15,2
	13.9	86.1		1.2	4.4	88.8	1.5	l .	ľ	l			-		
12719 3.4	9.3	76.0	$\frac{11.3}{11.7}$		3.0	77.9 80.7	1.0	6.3	12,710 13,160 14,900				90.2	15,080	14,49
	10.9	78.7 89.1	11.7	.6	3.0	91.4	$\begin{bmatrix} 1.1 \\ 1.2 \end{bmatrix}$	3.8	14,900						

⁴ 1, Sample as received; 2, dried at 105° C.; 3, moisture- and ash-free. X preceding laboratory number indicates analysis made at Anchorage, Alaska.

TABLE 8.—Analyses of mine, tipple,

			TABLE 8.—A	naly	868	of n	vine,	tippie,
Region, town or district, and mine	Bed	Rank ¹	Size or other description	Kind of sample 2 8	Condition 4	Agglomerating index ¹	Reference, page in this report	Laboratory No. 5 or index No.
1	2	3	4	5	6	7	8	9
ALASKA GULF RE- GION—continued Bering River field— Continued								
Mount Ann—Con. Outcrop		Sa	**************************************	М	1		104	12720
Do	 	Sa		M	23 1 2 3			12733
Mount Hamilton: McDonald	Unnamed	Lvb		M	1 2		104	12722
Do	do	Lvb		M	3 1 2		:	12730
Do	do	Lvb		М	3		14	12731
Outerop	Unnamed (upper bench).	Lvb		М	3 1 2		104	4437
Do	do		***************	M	2 3 1 2			4452
Do	Unnamed (lower bench).			М	3 1 2			4436
Nevada Creek: Pros-	do	Sa		M	3 1 2		105	2491
pect tunnel. Powers Creek: Prospect tunnel. Queen Creek:	do	Sa		M	1 2		105	2493
Queen Creek: Outcrop		Lyb		М	1		105	2486
Do		Lvb		M	1		,	2495
Do		Sa		М	2 1 2			2494
Second Berg Lake:	Unnamed	An		M	1 2		106	2485
Outerop. Tokun Creek; Pros-	do	Sa		М	1 2		106	2490
pect tunnel. Trout Creek: Cunningham prospecttun- nel No.		Lvb		M	1 2		106	15355
nel No Do		Lvb		M	3 1 2 3			15356
Do		Lvb		М	3 1 2 3			15357
Do		Lyb		М	3 1 2 3			15358

See Explanation of Symbols (p. 24).

M, mine sample; T, tipple sample; D, delivered coal.

The bold-faced figure indicates the number of deliveries averaged.

and delivered samples-Continued

ax No.	P	rokin perc		j	U	ltima	te, pe	rcent			1	sibility of	nsh	M	ineral-n free ba	natter-
o. ⁵ or inde		:								e, B. t. u.	deformation	tempera-	temperature, o F.	n, dry	Cal v	
Laboratory No.5 or index No	Moisture	Volatile matter	Fixed carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calorific value, B. t.	Initial defor temperature,	Softening t	Fluid temp	Fixed carbon, c	B. t. u., dry basis	B.t.u., moist basis
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
							,								and and and the and the and the plant	.45 .5. :
12720	5.1	9.2 9.7	60.9 64.1	$24.8 \\ 26.2 \\ -2.6$	0.5 .5 .7	2.6	61.9 65.2	1.0 1.0 1.4	9.2	9,880 10,410 14,110				89.6	14,530	13,510
12733	3.7	9.5	84.5 87.8 90.2	2.1	6 6	3.2 2.9 3.0	61.9 65.2 88.4 86.5 89.8 92.2	$1.1 \\ 1.1 \\ 1.2$	2.9	14,180 14,720 15,120				90.6	15,190	14,610
12722	1.0	4.0				4.0	76.4 77.2	1.4	3.9	13,460 13,590			. : 	82.0	15,900	15,710
12730	8.6	19.4 13.5 14.8 16.4	80.6 68.9 75.8 83.6	13.0 13.1 9.0 9.9 18.0 18.2 8.6 9.6	1.6 6	4.0 3.3 3.6	76.4 77.2 88.8 66.6 72.8 80.8 72.2 73.0 89.2 76.8 85.0	1.6 1.3 1.4	18.5 12.0 13.3	15,640 11,000 12,040 13,350	#÷			84.6	13,480	12,200
12731	1.0	16,0 16.1 19.7	65.0 65.7 80.3	18.0 18.2	$ \begin{array}{c c} 2.4 \\ 2.4 \\ 2.9 \\ \end{array} $	3.6 3.5 4.3	$72.2 \\ 73.0 \\ 89.2$	1.4 1.6 1.2 1.5 1.5 1.3	$\begin{array}{c} 2.6 \\ 1.7 \\ 2.1 \end{array}$	11,000 12,040 13,350 12,530 12,650 15,460 13,600 15,400 18,390 8,890 13,950 9,070 9,070 94,430					arinen a	15,660
4437	5.7	15.6 16.9 18.7	67.8 73.5 81.3 47.1	$\begin{array}{c} 8.6 \\ 9.6 \\ \hline 34.2 \\ 36.2 \end{array}$	1 0 6 5	4.6 4.0 4.4 3.3	70.9 76.8 85.0	1.2 1.3 1.4	7.4 8.2 8.2	13,600 15,040 8,390				82.0	15,140	18,850
4436	6.1	13.8 21.7 11.7 12.5	50.0 78.3 51.1	36.2 31.1 33.1	6.9 10.8 5.2	2.9 4.5 3.6	76.8 85.0 47.0 49.8 78.1 51.2 54.6	1.3 1.0 1.0	3.3 5.3 7.9	8,890 13,950 9,070		~~~~~				
2491	6.0	$12.5 \\ 18.7 \\ 13.0 $	54.4 81.3 76.1	$\begin{bmatrix} 33.1 \\ -4.9 \\ 5.2 \\ 22.2 \\ 23.6 \end{bmatrix}$	5.6 8.4	3.1 4.7	54.6 81.5	1.0 1.5	2.6 3.9	9,660 14,430				86.0	Lababb	<u> </u>
2493					3.4 3.6									87.5		
2486 2495	4.2	$14.0 \\ 14.6 \\ 13.7$	79.8 83.3	$\frac{2.0}{2.1}$	1.0 1.0 .8		2422		 					85.5 85.5		
2494	4.9	14.5 13.3 14.0	81.4 77.3	4.1	.8									86.0		
2485	3.7	5.4	86.0	4.7 4.9 5.1	$1.1 \\ 1.1 \\ 1.1$									94.9		
2490	4.4	$12.0 \\ 12.5$	73.3 76.7	4.9 5.1 10.3 10.8	1.1						+ 4 4 4 4 4 4 4			87.2		
15355		$17.4 \\ 17.6 \\ 18.2$	$79.3 \\ 81.8$	3.1	.7	$4.5 \\ 4.4 \\ 4.5$	86.6 87.7 90.4 79.7	1.8 1.8 1.9	$\frac{3.4}{2.3}$	15,000 15,180 15,660					,	15,530
15356		16.4	$\frac{72.3}{73.0}$	$10.3 \\ 10.4$.6 .6	$\begin{array}{ c c c } 4.2 \\ 4.1 \\ 4.6 \end{array}$	79.7 80.5 89.8	$1.6 \\ 1.7 \\ 1.9$	$\frac{3.6}{2.7}$	$13,870 \\ 14,010 \\ 15.630$						15,630
15357	2.7	18.5 16.2 16.7 17.6	$76.3 \\ 78.4 \\ 82.4$	4.8 4.9	.6 .7	4.5 4.3 4.5	80.5 89.8 83.8 86.2 90.6	1.7 1.7 1.8	$\frac{4.6}{2.2}$	$14,560 \\ 14,960 \\ 15,730$					15,830	
15358	1.5	17.6 16.3 16.6 71.6	76.3 77.4 82.4	5.9 6.0	.6 .7 .7 .7	$\frac{4.3}{4.2}$	84.0 85.3 90.8	1.8	$\begin{array}{c} .34 \\ 2.0 \\ 2.2 \end{array}$	14,510 14,730 15,670				83.1	15,780	15,520

^{41,} Sample as received; 2, dried at 105° C.; 3, moisture- and ash-free.

X preceding laboratory number indicates analysis made at Anchorage, Alaska.

TABLE 8 .- Analyses of mine, tipple,

Region, town or district, and mine	Bed	Rank 1	Size or other description	Kind of sample 2 3	Condition 4	Agglomerating index ¹	Reference, page in this report	Laboratory No. ⁵ or index No.
1	2	3	4	5	6	7	8	9
ALASKA GULF RE- GOOM—continued Bering River field— Continued Trout Creek—Con. Cunning ham prospecttun— nel No. 5. Do Wardall Ridge: Outerop Yakataga: Outerop SOUTHBASTERN ALASKA REGION	Unnameddodo		•	M M M M	12312212		106 107	15359 15360 22932 22933 19345
Admiralty Island: Harkrader		Hvbb		M M	1 2 3 1 2 3		107	A43506
Murder Cove: Prospect.				М	1 2		107	5796

See Explanation of Symbols (p. 24).
 M, mine sample; T, tipple sample; D, delivered coal.
 The bold-faced figure indicates the number of deliveries averaged.

and delivered samples-Continued

ex No.	P	roxin perce	ate,		יי וער	tima	te, pe	rcent		نہ	Fus	ibility of	ash	Mi	ineral-m free basi	atter-
Laboratory No.5 or index No	Moisture	Volatile matter	Fixed carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calorific value, B. t. u.	Initial deformation temperature, ° F.	Softening tempera- ture, ° F.	Fluid temperature, P.	Fixed carbon, dry basis, percent	B. t. u., dry basis	B.t.u., moist onic
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
15359 15360 22932 22933 19345	1.4 5.3 3.1	17.4 16.5 16.7 17.4 17.5 18.5 15.6 16.1	77.9 78.9 82.6 78.3 79.5 82.6 70.3 74.2 80.1 82.6 64.7	3.8 3.8 6.9 7.3 1.3	.7		85.6 86.7 90.8 85.1 86.3 89.7	1.8	2.1 2.2 4.2 3.0 3.2	14,770 14,960 15,670 14,880 15,690 12,360 12,360 14,220 14,680	2,600	2,730+ 2,400			15,750 15,770	
A43506 A43507 5796	3.8 6.4 5.7	$\frac{48.6}{30.3}$	39.6 41.2 52.9 36.3 38.7 51.4 46.9 49.8	$\bar{1}\bar{7}.\bar{1}$	1.3 1.7 1.0 1.3 1.3	5.1 4.9 6.3 5.0 4.6 6.0	58.9 61.3 78.7 55.2 59.0 78.2	1.0 1.3 1.0 1.1 1.4	12.3 9.3 12.0 14.9 9.7 13.1	10,630 11,050 14,210 9,930 10,610 14,070 11,200 11,880	2,160 2,180	2,250 2,270	2,470		14,600 14,600	

⁴ 1, Sample as received; 2, dried at 105° C.; 3, moisture- and ash-free.
⁵ X preceding laboratory number indicates analysis made at Anchorage, Alaska.

DESCRIPTION OF MINE SAMPLES

Compiled by H. M. Cooper, 1 R. F. Abernethy, 2 and E. C. Tarpley 3

The brief descriptions that follow have been compiled from notes made by the men who took the samples. They give information regarding the thickness, composition, and geology of the beds in the mine, prospect, or outcrop and, for the operating mines, the method of mining and preparation. The letters in parentheses following the sampler's name indicate the organization with which he was associated when the samples were taken, as follows: USBM, Bureau of Mines, USCS. Cookerical Survey, USMC, United States Marine. Mines; USGS, Geological Survey; USMC, United States Marine Corps; AEC, Alaskan Engineering Commission; ADM, Alaska Department of Mines.

NORTHERN ALASKA REGION

IKPIKPUK RIVER. OUTCROPS

Analysis A6849 (p. 26). Weathered coal from outcrop on west bank of Chipp River, 7 miles from its junction with lower East Fork. The bed was measured and sampled at one point, after the weathered face was cut back about 1 foot, by J. B. Mertie (USGS), August 7, 1924, as described below:

Section of outcrop on Chipp River

Laboratory No	A6849	Laboratory No	A6849		
Roof, shale: Coal Shale Coal	Ft. in. a 6 a 2 0 1 3	Floor, sandstone: Thickness of bed Thickness of sample	Ft. in.		

a Not included in sample.

Carry St.

Geologic relations are given in Geological Survey Bulletin 815 (p. 812).

Analysis A6847 (p. 26). Weathered coal from outcrop opposite camp site of August 1 on Ikpikpuk River. The bed was measured and sampled at one point, after the weathered face was cut back 10 inches, by P. S. Smith (USGS), August 2, 1924, as described below:

Section of outcrop on Ikpikpuk River

Laboratory No	A6847	Laboratory No	A6847
Roof, sandstone: Coal	Ft. in. 2 1½ ½8	CoalFloor, not stated: Thickness of bed and sample	Ft. in 2 1½ 4 25

Senior chemist, Central Experiment Station, Bureau of Mines, Pittsburgh, Pa.
 Chemist, Central Experiment Station, Bureau of Mines, Pittsburgh, Pa.
 Associate chemist, Central Experiment Station, Bureau of Mines, Pittsburgh, Pa.

Geologic relations are given in Geological Survey Bulletin 815 (p. 812).

KIANA. OUTCROP

Analysis A52083 (p. 26). Weathered coal from district at foot of Waring Mountains, Brooks Range; latitude 67° N., longitude 160° W. The bed was 16 to 26 inches thick. The sample was submitted by B. D. Stewart (USGS), June 10, 1929.

KILLIK RIVER OUTCROP

. Analysis A6848 (p. 26). Weathered coal from outcrop on northeast bank of Killik River, 9.8 miles south, 68° east of the junction of Killik and Colville Rivers. Thickness of bed, 2 feet; roof and floor, shale. The sample was taken after 2 feet of weathered face was cut away by J. B. Mertle (USGS), July 1, 1924.

Geologic relations are given in Geological Survey Bulletin 815 (p. 314).

KUKPOWRUK RIVER. OUTCROPS

Analysis 96820 (p. 26). Weathered coal from outcrop on Kukpowruk River, 5 miles upstream from mouth. Thickness of bed, 10 feet; roof, brown shale; floor, gray shale; dip, 30° to 50°. The bed was measured and sampled at one

floor, gray shale; dip, 30° to 50°. The bed was measured and sampled at one point by W. T. Foran (USGS), July 21, 1923.

Geologic relations are given in Geological Survey Bulletin 815 (p. 305).

Analysis 96821 (p. 26). Weathered coal from outcrop on Kukpowruk River, 25 miles upstream from mouth. Thickness of bed, 20 feet; roof, gray, sandy shale; floor, gray shale; dip, 30° to 50°. The bed was measured and sampled at one point by W. T. Foran (USGS), July 20, 1923.

Geologic relations are given in Geological Survey Bulletin 815 (p. 305).

MEADE RIVER. MEADE RIVER MINE

Analysis C27944 (p. 26). Weathered subbituminous coal, Meade River district; from Meade River mine on Meade River; latitude 70°30′ N., longitude 157°8′ W. The bed is 66 inches thick; the bottom is 2 feet above the surface of the river. The bed was measured and sampled at one point by R. S. Sanford (USBM), August 19, 1944.

The production for the following winter was estimated at 1,500 tons, which

was to be used by the Office of Indian Affairs at Point Barrow.

MEADE RIVER. MEADE RIVER PROSPECT

Analysis C27945 (p. 26). Weathered subbituminous coal, Meade River district, from prospect on Meade River; latitude 70°38' N., longitude 157°7' W. The bed is at least 36 inches thick; the top is just above the surface of the river. The test pit was flooded, and the exact thickness of the bed could not be determined. The sample was taken by R. S. Sanford (USBM) in August

PEARD BAY, OUTCROP

Analysis C27946 (p. 26). Weathered subbituminous coal, Peard Bay district, from outcrop on east bank of Peard Bay; latitude $70^{\circ}43'$ N., longitude $159^{\circ}00'$ W. Thickness of bed, 66 inches; cover at point sampled, 12 feet. The bed was exposed 1,000 feet along the east bank of the bay and was measured and sampled by R. S. Sanford (USBM), September 4, 1944.

PEARD BAY, PROSPECT

Analysis C27948 (p. 26). Weathered subbituminous coal, Peard Bay district, Kugrua Inlet, from prospect on north bank of Kugrua River. Thickness of bed, 66 inches; thickness of sample, 30 inches. The bed is level. The sample was taken from face of old trench cut by natives by R. S. Sanford (USBM), September 7, 1944.

WAINWRIGHT. ARCTIC OCEAN BEACH

Analysis C27950 (p. 26). Weathered subbituminous coal, Wainwright district, 2 miles southwest of Wainwright; latitude 70°38' N., longitude 159°55' W. The coal was washed upon beach during storms. It was gathered by Eskimos, sacked, and used in Wainwright. The sample was taken by R. S. Sanford (USBM) in September 1944.

WAINWRIGHT. KUK RIVER OUTCROPS

Analyses C27949 and C27947 (p. 26). Weathered subdituminous coal, Kuk River district, from outcrop on east bank of Kuk River; latitude 70°27' N., longitude 150°41' W. The beds were exposed for a mile along the east bank of the Kuk River and were measured and sampled at two points by R. S. Sanford (USBM), September 4, 1944, as described below:

Section of coal beds on Kuk River

Laboratory Nos	C279 C279	949, 947	Laboratory Nos	C27949, C27947
Overburden Bone Conl ^a Clay	12 1 5 4	0 6 6 0	Coal ^b Clay Surface of river.	6 0

^a Sample C27949, top bed. ^b Sample C27947, bottom bed.

Analysis 96823 (p. 26). Subbituminous B coal from outcrop on Kuk River, approximately 12 miles south of Wainwright. Thickness of bed, 12 feet; roof, carbonaceous shale; floor, bluish-gray sandy shale. The bed is level; it was measured and sampled at one point by W. T. Foran (USGS), September 1,

The natives have mined and sold several hundred tons of coal in Wainwright.

The natives have mined and sold several hundred tons of coal in Walnwright. The mining methods were very primitive.

Geologic relations are given in Geological Survey Bulletin 815 (p. 808).

Analysis 96822 (p. 26). Subbituminous B coal from outcrop on Kuk River, about 14 miles south of Wainwright. Thickness of bed, 12 feet; roof, carbonaceous shale; floor, bluish-gray sandy shale. The bed is level; it was measured and sampled at one point by W. T. Foran (USGS), September 1, 1923. Geologic relations are given in Geological Survey Bulletin 815 (p. 308).

WAINWRIGHT. MINE

Analysis 26371 (p. 26). Subbituminous B coal from a mine near Wainwright Inlet. Data on sampling this mine were not available.

SEWARD PENINSULA REGION

CANDLE. KUGRUK MINE

Analysis 19928 (p. 26). Subbituminous coal, Seward Peninsula, from Kugruk mine, a drift mine 20 miles from Candle. Coal bed, unnamed; thickness of bed, 70 feet; dip, 60° E.; strike, N.-S.; cover at point sampled, 180 feet. The bed was measured and sampled at face of a stope, 450 feet from mine mouth, by William Maloney (USGS), September 9, 1914.

The annual output at the time of sampling was approximately 750 tons.

Geologic relations are given in Geological Survey Bulletin 379 (p. 362).

CHICAGO CREEK. CHICAGO CREEK MINE

Analyses 6940 to 6948 (p. 26). Lignite from Chicago Creek mine on Chicago Creek, a tributary of Kugruk River; latitude 55°55′ N., longitude 162°25′ W. Thickness of bed, 88 feet (with a few thin partings of bone and sandy shale); dip, 53° W.; strike, N. 8° W. The bed was measured and sampled at nine points by F. F. Henshaw (USGS) in 1908.

Sample 6944 was taken in crosscut on lowest level, 12 feet from hanging wall; sample 6942, 12 to 24 feet from hanging wall; sample 6946, 24 to 36 feet from hanging wall; sample 6941, 36 to 48 feet from hanging wall; sample 6948, 48 to 60 feet from hanging wall; sample 6940, 60 to 72 feet from hanging wall; sample 6947, 72 to 84 feet from hanging wall; sample 6948, 84 to 96 feet from hanging wall; and sample 6945, 96 to 104 feet from hanging wall.

Geologic relations are given in Geological Survey Bulletin 379 (p. 362)

YUKON REGION

BROAD PASS FIELD

Broad Pass. Prospects

Analyses C31318 to C31322 (p. 28). Lignite and weathered lignite, Broad Pass district, from prospects near Broad Pass in T. 19 S., R. 9 W. The bed dips 0° to 15°; it was measured and sampled at five points by James Hulbert (USBM), September 6 to 9, 1944, as described below:

Sections of lignite bed in prospects near Broad Pass

Section		A C31318		B C31319		C C31320		D C31321		E C31322	
Roof, clay and gravel: Bone	- a 1 2	a 5 5 5		in. 8 a 10 a 4	Ft. 1 a 1 a 1 1 2	in. 4 7 3 8 7 0	Ft. 2	in. 4	Ft. 8	in.	
Thickness of bedThickness of sample	6 4	8 5	6 5	. 4	9 5	4	6 5	11	8	8	

⁴ Not included in sample.

Samples C31318, C31320, and C31321 were trench samples 1, 3, and 10, respectively; sample C31322 was a prospect sample; and sample C31319 was an entry sample from Archie Lewis tunnel.

CHARLEY CREEK, PROSPECT

Analysis 5794 (p. 28). Coal from Jim Henderson claim at Charley Creek, near Copper Creek, Yukon River. Coal bed, No. 2.

CHICKEN. PROSPECT

Analyses A47661 and A47662 (p. 28). Subbituminous C coal from a 35-foot prospect shaft ¼ mile west of Chicken, Fortymile district. Coal bed, unnamed; thickness, 22 feet; dip, 90°; strike, N. 65° E.; roof and floor, not exposed. The bed was measured and sampled at two points by J. B. Mertie (USGS), August 23, 1928. Sample A47661 represented the entire bed and was taken 60 feet from shaft bottom, Sample A47662 represented a narrow band of bright coal. Geologic relations are given in Geological Survey Bulletin 813 (p. 141).

COLORADO STATION. COSTELLO CREEK MINE

Analyses C1804 to C1807 (p. 28). Subbituminous A and B coals, Broad Pass field, from Costello Creek mine, 12 miles northwest of Colorado Station. Coal beds, Stevens, Billie, and Dunkle; dip, 3° to 10°; strike, variable. The beds

were measured and sampled at four points by C. R. Garrett (USBM), April 24 and 28, 1943, as described below:

Sections of Dunkle coal bed in Costello Creek mine

Sections	s of Dun	kle coal l	oed in Costello Creek min		unidetu. Ludatetaj
SectionLaboratory No	A C1804	B C1806	Section Laboratory No	A C1804	C1806
Roof, sandy shale: Shale, carbonaceous Coal	Ft. in.	Ft. in.	Coal, shattered Coal	Ft. in. 2 9	Ft. in 2
Shale Coal, bony Coal Coal, blocky Shale	1/2 91/2 	2 8	Floor, shale, carbonaceous: Thickness of bed Thickness of sample	6 2 5 5	8 (

a Not included in sample.

Sample C1804 was taken at face of haulageway, 450 feet from No. 2 portal; cover, 80 feet. Sample C1806 was taken from face of 1 room, 120 feet from haulageway, 40 feet from No. 2 portal; cover, 50 feet.

Section of Stevens coal bed in Costello Creek mine

Laboratory No	C1805	Laboratory No	C18	105
Roof, sandy shale: Coal, blocky	Ft. in. 2 3 4 3 10	Coal, shale Floor, shale: Thickness of bed Thickness of sample	Ft. 6	in. 5

^a Not included in sample.

Sample C1805 was taken from haulageway, 30 feet from face in 2 north room, 140 feet from No. 1 portal; cover, 55 feet.

Section of Billie coal bed in Costello Creek mine

Laboratory No	C1807	Laboratory No	C1807	
Roof, shale: Coal	$Ft. in, \ 2 \ a \ 2 \ 2 \ 9$	Floor, sandy shale: Thickness of bed Thickness of sample	Ft. in. 5 0 4 10	

a Not included in sample.

Sample C1807 was taken in raise, 5 feet above hanging wall of Stevens bed, 40 feet from No. 1 portal; cover, 45 feet.

System of mining, room-and-pillar. The coal was shot down with explosives and shipped as run-of-mine. In 1942, 3,000 tons from the Dunkle bed was hauled by truck 12 miles to the railroad.

COLORADO STATION. DUNKLE-CAMP CREEK MINE

Analysis B67785 (p. 30). Subbituminous B coal, Broad Pass field, from Dunkle-Camp Creek mine, near Colorado Station. Coal bed, No. 8; thickness, 8 feet; dip, 4°; cover, 150 feet. The bed was measured and sampled at last crosscut on L., 125 feet from portal, by M. L. Sharp (USBM) in 1941.

EAGLE. PROSPECT

Analysis 5795 (p. 30). Lignite from prospect at Williams Creek, 6 miles from Eagle, on Yukon River. Coal bed, No. 3.

Geologic relations are given in Geological Survey Bulletin 218 (pp. 55-58).

GALENA. OUTCROP

Analysis C36293 (p. 30). Weathered subbituminous coal, Nulato district, from outcrop on north bank of Yukon River, 20 miles above Galena. The sample was taken by R. M. Chapman (USGS) in 1944,

IDITAROD. PROSPECT

Analysis 19347 (p. 30). Anthracite, Iditarod district, from prospect near Iditarod Flat tramway. Thickness of bed, 15 to 30 inches; roof and floor, shale. The sample was taken by Charles Estmere (USGS) in 1914.

INNOKO DISTRICT. PROSPECTS

Analysis 26370 (p. 30). Anthracite from prospect, near tramway between Iditarod and Flat, Innoko district,
Analysis A16716 (p. 30). Coal, Innoko district, from prospect in gulch on northwest side of Innoko River, 6 miles above its confluence with Shageluk Slough. The sample was taken by Harry Buhro (USGS), October 21, 1925. Geologic relations are given in Geological Survey Bulletin 410 (pp. 56-57).

KALTAG. ADOLPH MULLER PROSPECT

Analysis A15869 (p. 30). Coal, Kaltag district, from Adolph Muller prospect, 8 miles below Kaltag on the Yukon River. The bed was 54 inches thick, It was measured and sampled at one point by M. L. Sharp (USBM), September

KALTAG. PROSPECT

Analysis C36295 (p. 30). Weathered bituminous coal, Innoko district, from prospect on west bank of Yukon River, 70 miles below Kaltag. The sample was taken by R. M. Chapman (USGS) in 1944.

MOUNT MCKINLEY NATIONAL PARK. ALASKA ROAD COMMISSION MINE

Analysis B16186 (p. 30). Subbituminous B coal, Mount McKinley National Park district, from Alaska Road Commission mine near the 42-mile post of the Mount McKinley National Park Highway, on Coal Creek, a tributary of the east fork of Toklat River. The sample represented 6 feet of the lower bench of a bed of undetermined thickness. It was taken from face of gangway by B. D. Stewart, Commissioner of Mines, July 30, 1936.

MOUNT McKINLEY NATIONAL PARK DISTRICT. PROSPECT

Analysis 87352 (p. 30). Subbituminous coal, Mount McKinley National Park district (Kantishna), from prospect on west fork of Stony Creek, a tributary of Toklat River. The sample was taken from a 2-ton lot by J. A. Davis (USBM), October 2, 1922. The bed was reported to be at least 30 feet thick. Geologic relations are given in Geological Survey Bulletin 687 (p. 112).

MOUNT McKINLEY PARK STATION. PROSPECT

Analysis 94109 (p. 30). High-volatile A bituminous coal, Mount McKinley National Park district, from prospect 6 miles from the 347-mile post on the Alaska Railroad. The sample was taken by A. Anderson (USGS) in 1923.

YANERT. YANERT MINE

Analyses 94166 to 94169 (p. 30). Medium-volatile bituminous and weathered coals, Mount McKinley National Park district, from Yanert mine, 1 mile from Yanert siding. The bed was sampled at three points by J. A. Davis (USBM), August 18, 1923.

Sample 94166 (weathered) was a grab sample taken in upper counter. Sample 94167 was taken at breast of main tunnel, 420 feet from portal; and sample 94168, at breast of counter, 380 feet from portal.

660032°---46---6

The ultimate analysis of a composite made by combining samples 94167 and 94168 is given under laboratory No. 94169.

NENANA FIELD

Stan 5

CALIFORNIA CREEK. OUTCROPS

Analysis 26359 (p. 32). Lignite, Nenana field, California Creek district, from outcrop in bluff on east bank of California Creek, near southeast corner of SW14SW14 sec. 15, T. 9 S., R. 6 W. The bed was 10 feet 6 inches thick. The sample was taken from the top 6 feet 6 inches of bed by G. C. Martin (USGS), July 3, 1916.

Much baked clay, probably from burning of large beds, was noted at an altitude of approximately 1,650 feet in NE14NW14; at an altitude of 1,400 feet near the center of NE14; at 1,575 feet on both sides of the stream that enters California Creek from the southeast in SE14; and at 1,900 feet near the northwest corner of the section.

Geologic relations are given in Geological Survey Bulletin 664 (p. 19).

Analyses 26360 and 26361 (p. 32). Weathered lignite, Nenana field, California Creek district, from outcrop in a cliff on east side of California Creek in SW1/4NE1/4 sec. 27, T. 10 S., R. 6 W. The bed was measured and sampled at one point by G. O. Martin (USGS), July 16, 1916. Sample 26360 was 6 feet 6 inches thick and was separated by 8 inches of clay from sample 26361, which was 12 feet thick.

Geologic relations are given in Geological Survey Bulletin 664 (p. 23).

HEALY CREEK. OUTCROPS

Analysis 26368 (p. 32). Weathered subbituminous coal, Nenana field, Healy Creek district, from outcrop in cliff on north bank of Healy Creek, 1 mile above creek mouth. The bed was measured and sampled at top of 12-foot bed, by G. C. Martin (USGS), August 19, 1916. The sample contained 6 feet of coal.

Analysis 17794 (p. 32). Lignite (weathered), Nenana field, Healy Creek district, from outcrop on Igloo Creek, about ¼ mile above junction with Healy Creek and 6-miles above junction of Healy Creek with Nenana River. Thickness of bed, 8 feet; dip, 40° to 50°; strike, SW. The lignite is massive, showing slight shaly characteristics. The sample was taken by J. A. Holmes (USGS). October 3, 1013

(USGS), October 3, 1913.

Geologic relations are given in Geological Survey Bulletin 501 (p. 57).

Analysis 17795 (p. 32). Lignite (weathered), Nenana field, Healy Creek district, from outcrop on left bank of Igloo Creek, about ¼ mile above junction with Healy Creek and 6 miles above junction of Healy Creek with Nenana River. Thickness of bed, 12 to 15 feet; dip, 40° to 45°; strike, SW. The bed was measured and sampled about 400 feet below point where sample 17794

was measured and sampled about 400 reet below point where sample 17794 was taken by J. A. Holmes (USGS), August 26, 1913.

Geologic relations are given in Geological Survey Bulletin 501 (p. 57).

Analysis 17796 (p. 32). Lignite (weathered), Nenana field, Healy Creek district, from outcrop on left side of Healy Creek, ¼ mile above junction with Igloo Creek. Thickness of bed, 8 feet; dip, 35° NW. The bed was measured and sampled at one point by J. A. Holmes (USGS), August 26, 1913. The sample represented only 2 feet of top of bed.

Geologic relations are given in Geological Survey Bulletin 501 (p. 57).

HEALY FORK. OUTCROPS

Analyses C30893 and C30894 (p. 32). Weathered subbituminous coal, Nenana Analyses C30893 and C30894 (p. 32). Weathered substitutions coal, Nehana field, from outcrop on west bank of Cripple Creek, 8 miles east of Healy Fork in sec. 16, T. 12 S., R. 6 W., 1,840 feet above sea level. Coal bed, No. 6 (?); thickness, 18 feet 4 inches; dip, 40° N.; strike, N. 70° E.; roof, sandstone; floor, clay. The bed was separated into two benches by a 1-inch parting 6 feet 3 inches from top. Sample C30893 represented the lower bench and was 12 feet thick. Sample C30894 represented the top bench and was 6 feet 4 inches thick. The bed was measured and sampled by Clyde Wahrhaftig (USGS), Milton Marsing (USGS), and Jacob Friedman (USGS), August 29, 1944.

Analyses C30892 and C30895 (p. 32). Weathered subbituminous coal, Nenana field, from outcrop on west bank of Cripple Creek, 8½ miles east of Healy Fork in sec. 15, T. 12 S., R. 6 W., 1,900 feet above sea level. Coal bed, No. 3 (?); dip, 85° N.; strike, N. 70° E. Thickness of bed, 12 feet 4 inches; roof, sand-stone; floor, clay. The bed was separated into two benches by a 1-inch parting 6 feet 6 inches from top. Sample C30892 represented the bottom bench and was 5 feet 10 inches thick. Sample C30895 represented the top bench and was 6 feet 6 inches thick. The bed was measured and sampled by Clyde Wahrhaftig (USGS), Milton Marsing (USGS), and Jacob Friedman (USGS), August 29, 1944.

HEALY FORK. ROTH PROPERTY OUTCROPS

Analyses X10030 to X10036 (p. 32). Subbituminous B and C coals, Nenana field, from outcrops on Roth property, 12 miles east of Healy Fork and 8 miles east of Suntrana on Healy River, near Coal Creek, in secs. 10, 11, and 12, T. 12 S., R. 6 W. The beds were measured and sampled by H. Marstrander (USBM) and C. R. Garrett (ADM), August 7, 1944, as described below. Sample X10030 was taken 6 feet above water level from south bank of Healy

Sample X10030 was taken 6 feet above water level from south bank of Healy River, 1,000 feet west of Coal Creek; thickness of bed, 10 feet. Sample X10031 was taken 16 feet above water level from a vertical bed on south bank of Healy River, 500 feet southeast of Mammoth bed; thickness of bed, 36 feet. Samples X10032 and X10035 were taken from a 55-foot (Moose) bed on south bank of Healy River, ½ mile east of Mammoth bed; they included 28 feet of bed. Sample X10033 was taken 2 feet above water level from a 22-foot vertical bed 300 feet southeast of Mammoth bed. Sample X10034 was taken from Mammoth bed, 1 mile east of Coal Creek, north bank of Healy River; it included 16 feet from the middle of a 36-foot bed. Sample X10036 was taken from a 22-foot bed, 250 feet northeast of Mammoth bed, north bank of Healy River; it included 20 feet of bed.

HEALY FORK. ROTH-TAYLOR MINE

Analysis A11088 (p. 32). Subbituminous coal, Nenana field, from Roth-Taylor mine, 12 miles north of Healy Fork. Coal bed, Mammoth; thickness, 52 feet. The sample was taken from a car by M. L. Sharp (USBM), March 4, 1925.

LIGNITE CREEK. CALDERHEAD MINE

Analysis 34587 (p. 34). Lignite (weathered), Nenana field, Lignite Creek district, Government Reserve, from Calderhead mine. The bed was measured and sampled at one point by J. A. Davis (USGS), May 1920.

LIGNITE CREEK. OUTCROPS

Analysis 26362 (p. 34). Lignite (weathered), Nenana field, Lignite Creek district, from outcrop in bluff on north side of Lignite Creek in SE¼SW¼SW¼ sec. 30, T. 11 S., R. 6 W., at an altitude of 1,650 feet. Coal bed, "B"; thickness of bed, 27 feet 6 inches; thickness of sample, 26 feet. Two clay partings 6 and 12 inches thick were excluded from sample. The bed was measured and sampled by G. C. Martin (USGS), August 16, 1916.

Geologic relations are given in Geological Survey Bulletin 664 (p. 34).

Geologic relations are given in Geological Survey Bulletin 664 (p. 34).

Analysis 26363 (p. 34). Lignite (weathered), Nenana field, Lignite Creek district, from outcrop on west side of fault gulch in NW¹/₄SE¹/₄ sec. 26, T.

11 S₁, R. 6 W. Thickness of bed and sample, 16 feet; dip, 26° N.; strike, N.

80° W. The bed was measured and sampled at one point by G. C. Martin (USGS), August 11, 1916.

Geologic relations are given in Geological Survey Bulletin 664 (p. 30).

Analysis 26364 (p. 34). Lignite (weathered), Nenana field, Lignite Creek district, from outcrop in gulch emptying into Lignite Creek from north, ¼ mile northeast of southwest corner of sec. 26, T. 11 S., R. 6 W. Thickness of bed and sample, 12 feet. The bed was measured and sampled at one point by G. C. Martin (USGS), August 12, 1916.

Geologic relations are given in Geological Survey Bulletin 664 (p. 31).

Analysis 26365 (p. 34). Lignite (weathered), Nenana field, Lignite Creek district, from outcrop on south bank of Lignite Creek near forks, 800 feet north of southeast corner of sec. 26, T. 11 S., R. 6 W. Thickness of bed and sample, 10 feet; dip, 30° SW.; strike, N. 60° W. The bed was measured and sampled by G. C. Martin (USGS), August 12, 1916.

Geologic relations are given in Geological Survey Bulletin 664 (p. 29).

Analysis 26366 (p. 34). Lignite (weathered), Nenana field, Lignite Creek district, from outcrop in tributary of Lignite Creek in NW4/SE4/NW4/ sec. 27, at an altitude of 1,960 feet. Thickness of bed, 25 feet; dip, 20° N.; strike, N. 78° E. The coal was in a faulted zone. The bed was measured and sampled at one point by G. C. Martin (USGS), August 8, 1916.

Geologic relations are given in Geological Survey Bulletin 664 (p. 32).

Analysis 26367 (p. 34). Lignite (weathered), Nenana field, Lignite Creek district from an outgrop on porth bank of Lignite Creek 1 mile above mouth

district, from an outcrop on north bank of Lignite Creek, 1 mile above mouth in NE14NW14 sec. 5, T. 12 S., R. 7 W. Thickness of bed, 15 feet; thickness of sample, 7 feet (lower part of bed); dip, 12° S.; strike, N. 105° E. The bed was measured and sampled by G. C. Martin (USGS), August 18, 1916.

Geologic relations are given in Geological Survey Bulletin 664 (p. 47).

Analysis 26369 (p. 34). Lignite (weathered), Nenana field, Lignite Creek district, from outcrop in bluff on north side of creek in NW1/4NW1/4 sec. 35, T. 11 S., R. 7 W. The bed was measured and sampled at one point by G. C. Martin (USGS), August 20, 1916, as described below:

Section of lignite bed in Lignite Creek outcrop

Laboratory No	26369	Laboratory No	26369	
Roof, not stated: Coal	$Ft. in. \ 12 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	CoalFloor, not stated: Thickness of bed Thickness of sample	Ft. in. 11 0 0 0 0 0 0 0	

a Not included in sample.

Geologic relations are given in Geological Survey Bulletin 664 (p. 43).

Analyses 26588 and 26589 (p. 34). Lignite (weathered), Nenana field, Lignite Creek district, from outcrop on north side of Lignite Creek, 6 miles above junction with Nenana River. Coal beds No. 1 and No. 5; dip, 6°; roof, sandstone; floor, clay; height above sea level, 2,000 feet. Sample 26588 represented 8 feet of a 30-foot (No. 5) bed of uniform structure. Sample 26589 represented 8 feet of coal from a bed (No. 1) 45 to 50 feet thick. The beds were measured and sampled by G. W. Evans (USGS), September 15, 1916.

Geologic relations are given in Geological Survey Bulletin 664 (p. 8)

Geologic relations are given in Geological Survey Bulletin 664 (p. 8).

NENANA RIVER. OUTCROP

Analysis 23042 (p. 34). Lignite (weathered), Nenana field, Lignite Creek district, from outcrop on west bank of Nenana River, 1½ miles below junction with Lignite Creek. Roof, cemented gravel; floor, sandstone; dip, 15° NW. The sample was taken from the upper part of a 5-foot bed by Thomas Riggs, Jr. (AEC), September 4, 1915.

Geologic relations are given in Geological Survey Bulletin 501 (p. 54).

NULATO. PROSPECT

Analysis C36294 (p. 34). Weathered bituminous coal, Nulato district, from prospect on west bank of Yukon River, 10 miles below Nulato. The sample was taken by R. M. Chapman (USGS) in 1944.

SUNTBANA. NEW SUNTBANA (HILL) AND OLD SUNTBANA MINES

Analyses C9524 to C9530 (p. 34). Subbituminous B and C coals, Nenana field, from New and Old Suntrana mines at Suntrana, T. 12 S., R. 7 W. Coal

beds, "E," "C," "B," "F," "D," No. 4, and No. 6; dip, 26° to 37°; strike, N. 70° E. Each bed was sampled at one point by H. J. Marstrander (USBM), October 3, 1943, as described below:

Section of "E" bed in New Suntrana (Hill) mine

Laboratory No	C9524	Laboratory No	C9524
Roof, sandstone: Clay, dark Coal, hard, bright Clay Coal, dirty Coal, dirty Coal, clayey	$Ft. in.$ $a \ 1 \ 2 \ 5 \ 6 \ a \ 6 \ 4 \ 2 \ a \ 1 \ 1 \ 2 \ 2 \ a \ 1 \ 5$	CoalFloor, clay: Thickness of bed	Ft. in. 1 9 11 4 5 6

a Not included in sample.

Sample C9524 was taken where new tunnel intersected bed; cover, 225 feet.

Section of "C" bed in New Suntrana (Hill) mine

Laboratory No	C9525	Laboratory No	C9525	
Roof, arkose, fine: Coal, solid, blocky Shale, carbonaceous Coal, solid Parting	2	Coal, solid Parting Floor, shale, carbonaccous:	. 7	

Sample 39525 was taken where new tunnel intersected bed; cover, 225 feet.

Section of "B" bed in New Suntrana (Hill) mine

Laboratory No		526	Laboratory No	C9(526
Roof, arkose: Coal, Coal, solid Coal, shaly Coal, solid Coal Coal Coal	l	in. 9 9 2 1 9 1 2 1 2	Coal, solid	2 ·	in. 71/2 6

a Not included in sample.

Sample C9526 was taken where new tunnel intersected bed; cover, 200 feet.

Section of "F" bed in New Suntrana (Hill) mine

Laboratory No	C9	527	Laboratory No	C9527
Roof, clay, sandy: Coal, dirty Rock Coal, clean Rock Coal Bone Coal	Ft.	in. 45 42 47 48 37 49	Coal, dirty— Coal, dirty, and bone— Coal, hard, blocky— Floor, hard clay: Thickness of bed— Thickness of sample—	Ft. in. 47 a 1 3 14 0 20 3 14 0

[&]quot; Not included in sample.

Sample C9527 was taken where new tunnel intersected bed; cover, 250 feet,

Section of "D" bed in New Suntrana (Hill) mine

Laboratory No	C9530	Laboratory No	C9530
Roof, clay: Sandstone	Ft. in. a 1 2 10 a 8 2 9 a 1 4 a 1 1	Coal, bonyCoal, solidToild	Ft. in. a 6 2 8 8 5 5

a Not included in sample.

Sagar)

Sample C9530 was taken where new tunnel intersected bed; cover, 250 feet. System of mining, chute-and-pillar. The coal was shot down with explosives. It was screened on shaker screens to produce lump nut, nut, and chestnut sizes. Production in 1942 was 100,000 tons. In 1943 the life of the mine was estimated to be 10 years.

Section of No. 4 bed in Old Suntrana mine

Laboratory No	C9528	Laboratory No	C9528
Roof, shale, banded: Bone Coal. Parting. Coal. Parting. Coal. Parting. Coal, solid. Parting. Coal, solid.	Ft. in. 3 8 1 2 1 4 8 1 4 1 1 1 2 7	Parting Coal, solid Parting Coal, solid Bone Floor, shale: Thickness of bed Thickness of sample	Ft. in. 3 4 14 1 3 6 13 5 14 12 9 14

^a Not included in sample.

Sample C9528 was taken in east 131 chute, 7,200 feet east of main-entry crosscut; cover, 225 feet.

Section of No. 6 bed in Old Suntrana mine

Laboratory No	C952	29	Laboratory No	C95	29
Roof, sandstone: Coal, bony Coal Shale Coal		in. 8 0 9 0	Bone	Ft.	in. 6 11 0

a Not included in sample.

Sample C9529 was taken in 1 chute on main-haulage pillar; cover, 300 feet.

SUNTRANA, PROSPECTS

Analyses C31323 to C31327 (p. 36). Subbituminous C and weathered subbituminous coals, Nenana field, from prospects in secs. 11 and 14, T. 12 S., R. 6 W., 5 to 7 miles from Suntrana. The beds were measured and sampled at five points by James Hulbert (USBM), September 20, 1944, as described below:

Sections of coal beds sampled

SectionLaboratory No	C3	A 1823	C3	B 1324	C31) 325	Cai) .326	C313	327
Roof, not stated: Coal Overburden, frozen	Ft.	in. 7	Ft. 5	in. 2	Ft.	in. 8	Ft.	in.	Ft.	in.
Mud Coal Coal, dirty, bony	7								10 α 1	4 8 10
Floor, not stated: Thickness of bed Thickness of sample	14 13	0 5	5 5	2 2	5 5	8 8	6 6	2 2	19 18	11

^a Not included in sample.

Samples C31323, C31324, and C31327 were trench samples Nos. 51, 52, and 53, respectively. Samples C31325 and C31326 were taken from outcrops.

SUNTRANA. SUNTRANA MINE

Analyses B80608 to C80610 (p. 36). Subbituminous C coal, Nenana field, from Suntrana mine, a drift mine at Suntrana, in T. 12 S., R. 7 W. Coal bed, Donaldson (No. 3); dip, 27° to 33° N.; strike, N. 70° E. The bed was measured and sampled at three points by M. L. Sharp (USBM) and H. L. Feidler (USBM), June 19 to 21, 1942, as described below:

Sections of Donaldson (No. 3) bed in Suntrana mine

SectionLaboratory No	A	B	Section	A	B
	B80609	B80610	Laboratory No	B80609	B80610
Roof, coal: Coal Parting Coal Parting Coal, crushed Parting Coal, shattered Parting	Ft. in, 4 2 4 1 9 4 1 10 1 0 1 16	Ft. in. 3 1 5 2 4	Coal, blocky Parting Coal and bony coal Coal, solid Bone Floor, coal: Thickness of bed Thickness of sample	6 8	Ft. in. 3 6 2 6 4 1 14 45 6 14 35 6

^a Not included in sample.

Sample B80608 (10 feet 11 inches) was taken at face of east gangway, 15 switch, 20 chute; sample B80609, from side-wall face of counter, between 37 and 38 rooms, 55 feet above gangway; and sample B80610, at face of east gangway, 36 switch, 40 chute.

way, 36 switch, 40 chute.

System of mining, room-and-pillar. The coal was shot down with explosives. It was screened on shaker screens to produce lump-nut, nut, and chestnut sizes. The mine produced 75,000 tons in 1941, 75 percent from advance workings. The average daily output was 300 tons. In 1942 the life of the mine was estimated to be 100 years,

TATLANIKA CREEK, OUTCROP

Analysis 17797 (p. 38). Weathered lignite, Nenana field, from outcrop on right bank of Tatlanika Creek, 6 miles below mouth of Grubstake Creek. The bed was measured and sampled at one point by J. A. Holmes (USGS), August 29, 1913. The sample represented only 2 feet of shaly, weathered material beginning 1 foot from the top of the bed. The exposed part of the bed was 8 to 9 feet thick, and the lower part was concealed by flood-plain gravel at creek level.

Geologic relations are given in Geological Survey Bulletin 501 (p. 61).

114 115

House the con-

UNALAKLEET, PROSPECTS

Analysis C36296 (p. 38). Weathered subbituminous coal, Unalakleet district, from prospect in clay cliff on Mine Creek, Norton Sound, 10 miles south of Unalakleet. The sample was taken by R. M. Chapman (USGS) in 1944.

Analysis B64867 (p. 38). Subbituminous coal, Unalakleet district, from prospect 12 miles south of Unalakleet. The bed is 4 to 8 feet thick. The sample was submitted by C. G. Sherman (Office of Indian Affairs) in 1941.

KUSKOKWIM REGION

NELSON ISLAND. PROSPECT

Analysis A15868 (p. 38). Weathered bituminous coal, Nelson Island district, from prospect on Nelson Island. The sample was taken by a trader from an 18-inch bed and transmitted by M. L. Sharp (USBM) in 1925.

SLEITMUT. PROSPECT

Analyses B91995 and B91996 (p. 38). Peat, from prospect on quicksilver property near Sleitmut. The samples were submitted by H. E. Heide (USBM), December 11, 1942.

SOUTHWESTERN ALASKA REGION

CHIGNIK BAY. ALASKA PACKERS' ASSOCIATION MINE

Analysis 6953 (p. 40). High-volatile C bituminous coal, Chignik Bay district, from Alaska Packers' Association mine on north side of Chignik River, 2 miles below Chignik Lake; latitude 56°20' N.; longitude, 158° W.; Chignik formation. The bed was measured and sampled at one point by W. W. Atwood (USGS) in 1908,

Geologic relations are given in Geological Survey Bulletin 467 (p. 97).

CHIGNIK BAY. HOOK BAY MINE

Analysis 6952 (p. 40). High-volatile A bituminous coal, Chignik Bay district, from Hook Bay mine on west side of main stream, 7 miles northwest of Hook Bay, east side of Chignik Bay. Chignik formation; strike, N. 11° E.; dip, 34° E. The bed was measured and sampled at one point by W. W. Atwood (USGS) in 1908, as described below:

Section of coal bed in Hook Bay mine

Laboratory No	6952	Laboratory No	6952
Roof, sandstone: Coal	Ft. in. **1 3 ** 8 ** 4 ** 7 1 61/2 2	Coal, bony Coal Bone Floor, shale: Thickness of bed Thickness of sample	a 1'

a Not included in sample.

Geologic relations are given in Geological Survey Bulletin 467 (p. 99).

CHIGNIK BAY. THOMPSON VALLEY PROSPECT

Analysis 6956 (p. 40). High-volatile C bituminous coal, Chignik Bay district. from prospect in Thompson Valley, 134 miles from beach, 300 feet above valley floor Chignik formation; dip, 21° NW.; strike, N, 61° E. Two beds were measured by W. W. Atwood (USGS) in 1908, as described below;

Section of lower coal bed in Thompson Valley prospect

1769	Ft. in.	Ft. vin.
Roof, sandy shale: Coal: Shale Coal: Coal: Coal; shaly	1 8 2 2 6 4	Coal 5 1 Coal 2 Floor, sandstone: Thickness of bed 5 4

This bed was measured but not sampled.

Section of upper coal bed in Thompson Valley prospect

aboratory No	6956	Laboratory No.	6956
oof, sandstone:	Ft. in.	Coal Bone	Ft. in
Clay Coal Coal, shaly Shale	a 4 a 4 a 8	Conl. Shale. Coal, bony	a 6 a 6
Shale, coaly Coal Clay	1 0	Floor, not stated: Thickness of bed Thickness of sample	12
Coal Shale, coaly	2 6		2300

Geologic relations are given in Geological Survey Bulletin 467 (p. 112).

CHIONIK BAY. WHALERS CREEK MINE

Analysis 6955 (p. 40). High-volatile B bituminous coal, Chignik Bay district, from Whalers Creek mine, ¾ mile above mouth of Whalers Creek, at Chignik Lagoon. Chignik formation; dip, 22° E.; strike, N. 5° E. The bed was measured and sampled at one point by W. W. Atwood (USGS) in 1908, as described below: as described below:

Section of coal bed in Whalers Creek mine

Laboratory No	6955	Laboratory No	5
Roof, sandstone: Shale, coaly Shale Coal Shale, coaly Shale, coaly Coal and slate Shale, coaly	Ft. in. a 10 a 8 a 1 0 a 4 a 7 a 5 a 6	Sandstone	10 6 0 11 4 81 31

a Not included in sample.

Geologic relations are given in Geological Survey Bulletin 467 (p. 111).

HERENDEEN BAY, JOHNSON TUNNEL

Analysis 6951 (p. 40). High-volatile C bituminous coal, Herendeen Bay district, Johnson tunnel, 1¼ miles above mouth of Mine Creek, 870 feet above sea level. Chignik formation; dip, 34° NE.; strike, N. 101° E. The bed was measured and sampled at one point by W. W. Atwood (USGS) in 1908 as described below:

Section of coal bed in Johnson tunnel

Laboratory No	6951	Laboratory No	6951
Roof, shale; Coal Shale Coal	Ft. in. 4 1 4 9 5 0	Floor, clay: Thickness of bedThickness of sample	Ft. in. 7 1 5 0

a Not included in sample.

Geologic relations are given in Geological Survey Bulletin 467 (p. 102).

HERENDEEN BAY. LOWER TUNNEL

Analysis 6957 (p. 40). High-volatile C bituminous coal, Herendeen Bay district, from Lower tunnel, ¾ mile above mouth of Mine Creek. Chignik formation; dip, 30° N.; strike, N. 91° E. The bed was measured and sampled at one point by W. W. Atwood (USGS) in 1908, as described below:

Section of coal bed in Lower tunnel

Laboratory No	6957	Laboratory No	6957
Roof, shale: Coal, shaly Bone Coal	Ft. in. 1 1 2 1 1	Coal, shaly Coal Floor, shale: Thickness of bed and sample	Ft. in. 2 1 4 3 10

Lower tunnel was near the stream bed, 275 feet above sea level, and had been driven 150 feet along the strike of coal. The roof was firm, and no timbering was necessary except at the entrance. About 20 tons was taken from this drift in 1907 for use in drilling and for domestic purposes.

Geologic relations are given in Geological Survey Bulletin 467 (p. 102).

HERENDEEN BAY. PROSPECTS ON MINE CREEK

Analyses X1 to X11 (p. 40). High-volatile C and weathered bituminous coals, Herendeen Bay district, from prospects along Mine Creek. The samples were collected in 1942: Samples X1 to X9, by Army engineers; sample X10, by R. S. Sanford (USBM); and sample X11, by Lt. Col. C. W. Jeffers (Quartermaster Corps)

master Corps).

Sample X1 (weathered coal) was taken from prospect at creek level. Thickness of bed, 42 inches; dlp, horizontal; strike, S.; roof and floor, shale. Sample X2 (weathered coal) was taken from prospect above mine. Thickness of bed, 35 feet; dip, 70°; strike, NE. The coal was in layers, none thicker than 36 inches, separated by rock layers 2 to 24 inches thick. Sample X3 (weathered coal) was taken from vicinity of lower tunnel. Thickness of bed, 18 feet; dip, 60°; strike, NE. The coal layers, none of which was thicker than 24 inches, were separated by rock layers ½ to 24 inches thick. Sample X4 (weathered coal) was taken from bed being mined. Thickness of bed, 54 to 60 inches; dlp, 45°; strike, NE. The bed was exposed for 500 yards along valley. Sample data were not given for sample X5. Sample X6 (weathered coal) was taken from bed being mined. Dip, 45°; strike, NE. The main bed was separated from several others by 4 feet of soapstone. Sample X7 (weathered coal) was taken from a cliff on first stream below one on which mine was located. Thickness of bed, 35 feet; dip, 20°; strike, E. The bed was broken up by layers of rock. Sample X8 was taken farther down stream, near lower-tunnel area, from same bed as sample X3. Sample X9 (weathered coal) was

taken between sample X3 and X8 and was part of same seam. Sample X10 was taken about 50 feet from Johnson tunnel. Thickness of bed, 48 inches; dip, 35° NE; strike, S. 80° E.

dip, 35° NE; strike, S. 80° E.

Sample X11 was taken 6 feet stratigraphically below sample X10. Thickness of bed, 42 inches; dip, 35° NE; strike, S. 80° E.

UNGA ISLAND, COAL HARBOR MINE

Analysis 6954 (p. 40). Lignite, Unga Island district, from Coal Harbor mine on Coal Harbor. Kenai formation; dip, 8° W.; strike, N. 12° W. The bed was measured and sampled at one point by W. W. Atwood (USGS) in 1908, as described below:

Section of coal bed in Coal Harbor mine

Laboratory No	6954	Laboratory No	6954
Roof, conglomerate: Lignite Sand Lignite Shale, coaly	Ft. in. 1 1 46 8	Clay Lignite	$egin{array}{cccccccccccccccccccccccccccccccccccc$

a Not included in sample.

Geologic relations are given in Geological Survey Bulletin 467 (p. 119).

COOK INLET REGION

COOK INLET FIELD

BLUFF POINT. BLUFF POINT MINE

Analyses 81606 to 81609 (p. 40). Subbituminous C coal, Cook Inlet field, from Bluff Point mine at Bluff Point. Coal bed, Cooper; height above sea level, 26 feet. The bed is level; it was measured and sampled at three points by B. W. Dyer (USBM), August 28, 1921, as described below:

Sections of coal bed in Bluff Point mine

SectionLaboratory No	81	A 606		B 607	81	C 608
Post day	Ft.	in.	Ft.	in.	Ft.	in.
Roof, clay: Coal. Coal, bony	3.	$\frac{41}{2}$	1	0	4	21/
Slate Clay				1/4		a 3½
Coal, bony		$\frac{81/2}{1}$	2	5		6
Bone Coal Bone	- <u>ī</u>	2	1	1 0		6
Coal Floor, clay:			1	ĩ		,
Thickness of bed	5 5	6 6	5 5	$\frac{914}{914}$	5 5	7 3½

^a Not included in sample.

Sample 81606 was taken from right rib, 5 feet from face of 3 room, 1 west gangway; sample 81607, from face of 4 room, 1 west gangway; and sample 81608, from rib of 3 crosscut, between 3 and 4 rooms, 1 west gangway.

The ultimate analysis of a composite made by combining samples 81606 to 81608 is given under laboratory No. 81609.

System of mining, room-and-pillar. The coal was shot from the solid with black powder. It was shipped from the mine by boat. The average daily output at the time of sampling was 25 tons. ilma (1917**4) (i**l 1971 (j. storosti

KACHEMAK BAY, OUTCROPS

SALENGER BERNE

Analyses 4457 and 4429 (p. 42). Subbituminous coal, Cook Inlet field, Kachemak Bay district, from outcrops. The beds were measured and sampled

by W. W. Atwood (USGS) in 1908.
Sample 4457 was taken from an outcrop 3 miles east of Homer Spit and

sample 4429, from a 6-foot outcrop 1 mlle west of Homer Spit.

Geologic relations are given in Geological Survey Bulletin 379 (pp. 110–122). Analyses 4426 and 4432 (p. 42). Subbituminous coal, Cook Inlet field, Kachemak Bay district, from outcrops southeast of Anchor Point. The beds were measured and sampled by W. W. Atwood (USGS) in 1908, as described below:

Section of coal bed in outcrop % mile west of Diamond Creek

Laboratory No.	44	26	Laboratory No	4426
Roof, shale: Coal Shale Coal Shale Shale	Ft.	in. 3 5 0 2	Coal Floor, clay: Thickness of bed Thickness of sample	Ft. in 2 7

^a Not included in sample.

Section of coal bed in outcrop 11/2 miles east of Troublesome Gulch

Laboratory No	4432	Laboratory No	4432
Roof, sand: Coal Shale Coal	Ft. in. 2 0 4 3 1 9	Floor, clay: Thickness of bed Thickness of sample	Ft. in, 3. 9

a Not included in sample.

Geologic relations are given in Geological Survey Bulletin 379 (p. 110).

PORT GRAHAM. OUTCROPS

Analysis 4458 (p. 42). Subbituminous coal, Cook Inlet field, from outcrop on north shore of Port Graham. The bed represented 8 to 9 feet of coal, including some bone, and was measured and sampled by W. W. Atwood (USGS) in 1908.

Geologic relations are given in Geological Survey Bulletin 379 (p. 110).

Analysis 17489 (p. 42). Subbituminous coal, Cook Inlet field, from outcrop at Port Graham. Dip, 11°; strike, N. 22° W. The bed was measured and sampled at one point by G. W. Evans (USGS), June 2, 1913, as described below:

Section of coal bed in outcrop at Port Graham

Laboratory No	17489	Laboratory No
Roof, sea beach: Bone Shale Coal, blocky Shale	Ft. in.	Coal, blocky 1 8 Floor, concealed: 3 10

a Not included in sample.

TYONEK. OUTCROPS

Analyses 4425, 4464, and 4465 (p. 42). Subbituminous coal, Cook Inlet field, from outcrops south of Tyonek. The beds were measured and sampled by W. W. Atwood (USGS) in 1908. Sample 4425 was composed of loose coal pebbles from a conglomerate. Sample 4465 was taken at south end of Tyonek beach, 4 miles south of Tyonek. Sample 4464 was taken at first outcrop on west shore of Cook Inlet, 3 miles south of Tyonek. Geologic relations are given in Cook in Cook in the cook in t

Geologic relations are given in Geological Survey Bulletin 379 (p. 110).
Analyses 4484 and 4456 (p. 42). Subbituminous coal, Cook Inlet field, from outcrops on Beluga River. The beds were measured and sampled by W. W. Atwood (USGS) in 1908.
Samples 4484 and 4456 were taken 10 and 1014 miles, respectively, above the

canyon and rapids of Beluga River.

MATANUSKA FIELD

ANTHRACITE RIDGE. OUTCROPS

Analysis 2222 (p. 42). Anthracite, Matanuska field, Anthracite Ridge district, from outcrop on north side of Matanuska Valley between Boulder and Hicks Creeks, 18 miles from Chickaloon. Thickness of bed, 38 feet. The bed was measured and sampled by G. C. Martin (USGS) in 1905.

Geologic relations are given in Geological Survey Bulletins 327 (pp. 52-56)

Analysis 4754 (p. 42). Bituminous coal, Matanuska field, Anthracite Ridge district, from outcrop at east end of ridge, 3,600 feet above sea level. The bed was measured and sampled at one point by G. C. Martin (USGS) in 1905, as described below:

Section of coal bed in outcrop at east end of Anthracite Ridge

Laboratory No	47	'54	Laboratory No	47	54
Roof, sandstone; Coal. Coal and shale. Coal. Coal. Coal	Ft.	in. 6 4 6 6 2	Coal	Ft.	in. 10 4 10

a Not included in sample.

Geologic relations are given in Geological Survey Bulletins 327 (p. 55) and 861. Analysis 17792 (p. 42). Bituminous coal, Matanuska field, Anthracite Ridge district, from outcrop 5,800 feet above sea level, overlooking Matanuska Glacier. The bed was measured and sampled at one point on Anthracite Ridge, 500 feet from eastern end of field, by J. T. Ryan (USGS), August 23, 1913. Geologic relations are given in Geological Survey Bulletins 592 (p. 282) and 861

Analysis 12746 (p. 42), Anthracite, Matanuska field, Anthracite Ridge district, from outcrop 3,700 feet above sea level, near middle of south face of ridge. The bed was measured and sampled by J. A. Holmes (USGS) in 1911, Geologic relations are given in Geological Survey Bulletins 327 (pp. 52-56)

Analysis 12757 (p. 42). Semianthracite, Matanuska field, Anthracite Ridge district, from outcrop 4,100 feet above sea level, near middle of south slope. The bed was measured and sampled by J. A. Holmes (USGS), October 26, 1911. Geologic relations are given in Geological Survey Bulletins 327 (pp. 52–56)

Analyses A3538 to A3540 (p. 42). Weathered anthracite, Matanuska field, Anthracite Ridge district, from outcrop on west fork of Purinton Creek. Beds Nos. 2, 3, and 4 were sampled by S. R. Capps (USGS) and J. J. Carey (USGS). July 20, 1924.

Sample A3538 (No. 2 bed) was taken at an elevation of 3,925 feet. Thickness of bed, approximately 40 feet; dip, 48° SE.; strike, N. 55° E. Sample A3539 (No. 3 bed) was taken at an elevation of 4,240 feet. Thickness of bed, not given; dip, 48° SE.; strike, N. 55° E. Sample A3540 (No. 4 bed) was taken a little lower than A3539 (elevation not given). Thickness of bed, not given; dip, 36° NW.; strike, N. 60° E.

ANTHRACITE RIDGE, PROSPECTS

Descriptions of samples taken from prospects on Anthracite Ridge by the United States Geological Survey in 1931 follow. The analyses were made

by M. L. Sharp (USBM) at Anchorage.

Analysis X4488 (p. 44). Bituminous coal from prospect on crest of a southern spur of Anthracite Ridge, in NW1/4SW1/4 sec. 3, T. 20 N., R. 7 E.; dip, 70° N. 25° E. The test pit showed one bed 24 inches thick, containing crushed coal, underlain by four other beds, 6, 9, 10, and 10 inches thick, separated by

a few inches of shale. The analysis was made on a composite of the five beds. Analysis X4809 (p. 44). Semianthracite, from prospect in ravine of middle branch of Meadow Creek, in SW4/NE4/2 sec. 11, T. 20 N., R. 7 E. Thickness of bed, 12 inches; dip, 30° to 80° S.

Analysis X4844 (p. 44). Prominger and from prospect in ravine of the control of the co

Analysis X4484 (p. 44). Bituminous coal, from prospect near base of small ridge at foot of main slope of Anthracite Ridge, in NW1/48E1/4 sec. 11, T. 20 N., R. 7 E. Thickness of bed, 2 feet of crushed, shaly coal; dip, 70° S.

Analysis X4480 (p. 44). Semianthracite, from prospect on ridge between Meadow and Chikootna Creeks, in SW4NW4 sec. 12, T. 20 N., R. 7 E. The test pit exposed two beds of coal, 3 feet and 4 feet 9 inches thick, separated by 15 inches of shale and coaly shale; dip, 60° S. 25° E. The analysis was made on a composite of the two beds.

Analysis X4490 (p. 44). Semianthracite, from prospect on west side of ravine of Purinton Creek, in SE4NW4 sec. 12, T. 20 N., R. 7 E. Thickness of bed, 16 feet; dip, 30° S.

Analyses X4444, X4486, and X4485 (p. 44). Semianthracite and bituminous coal, from prospect on west side of ravine of Purinton Creek (south of west from location X4490). A large test pit showed 24 feet of coal. The coal was divided into four benches by shale parting 3 or 4 inches thick. Sample X4444 represented the top bench; thickness, 10 feet. Sample X4486 represented the second and third benches; thickness, 3 and 4 feet, respectively. Sample X4485 represented the bottom bench; thickness, 7 feet. The three upper benches were semianthracite, and the lower was bituminous coal,

Analyses X4443, X4445, X4446, and X4391 (p. 44). Semianthracite, from prospect on west bank of ravine of Purinton Creek, 200 to 300 feet north of small mass of diabase, in SE¼NW¼ sec. 12, T. 20 N., R. 7 E. Thickness of bed, 35 to 40 feet; dip, 20° N. 20° E. The bed was measured and sampled at four points by R. W. Richards (USGS) in 1931 in approximately 8-foot sections from the top.

Analysis X4466 (p. 44). Bituminous coal, from prospect in ravine of Upper Winding Creek, in NE14NE14 sec. 17, T. 20 N., R. 8 E. Thickness of bed, 5 feet; dip, 10° N. 19° E.

Analysis X4483 (p. 44). Bituminous coal, from prospect on east side of main ravine of Upper Muddy Creek, in SW14SE14 sec. 9, T. 20 N., R. 8 E. Thickness of bed, 6 feet 2 inches (shale parting in middle of bed).

Analysis X4482 (p. 44). Bituminous coal, from prospect on southernmost point of ridge between Muddy Creek and Packsaddle Gulch, in NW¼NW¼ sec. 22, T. 20 N., R. 8 E. Thickness of bed, 7 feet 6 inches; dip, 20° NW. Analysis X4489 (p. 44). Bituminous coal, from prospect on southernmost prominent exposure of coal on Muddy Creek, in NE½SW¼ sec. 16, T. 20 N.,

R. 8 E. Thickness of bed, 6 feet; dip, 30° SW. The bed was near stream level at base of bluff.

Analysis X4481 (p. 44). Bituminous coal, from prospect on south bank of Lower Purinton Creek, in SW1/4NW1/4 sec. 23, T. 20 N., R. 7 E. Thickness of bed, 36 inches of crushed, shaly coal; dip, 70° N.

Analysis X4808 (p. 44). Bituminous coal, from prospect on east side of Lower Purinton Creek, in NW1/4SW1/4 sec. 23, T. 20 N., R. 7 E. Thickness of bed, 12 inches; dip, 20° N. 20° E.

Geologic relations constitutes for classical Communications.

Geologic relations are given in Geological Survey Bulletin 861.

CHICKALOON. CHICKALOON (NAVY) MINE

Analyses 83981, 83982, 83174, 85745 to 85748, 85288, 85284, 83983, 83173, 85749 to 85754, 85285, 85740 to 85744, 83984, and 85755 (p. 44). Low-volatile bituminous coal, Matanuska field, from Chickaloon (Navy) mine, ¼ mile from Chickaloon. Coal beds, Nos. 1, 3, 4, 5, Upper No. 5, Nos. 6, 8, and 10. The Navy Alaskan Coal Commission carried on exploratory work at Chickaloon from July 1, 1920, to April 30, 1922. The beds were measured and sampled by Capt. W. P. T. Hill, Marine Corps, as described below:

Sections of No. 1 bed in Chickatoon (Navy) mine

Section	etion A B Section		Section	A	B	
Laboratory No	boratory No 83981 83982 Laboratory No		Laboratory No	83981	83982	
Roof, shale: Bone	Ft. in. 8 3 0 1/2 10 11/2	Ft. in.	Coal Bone Floor, sandstone: Thickness of bed Thickness of sample	Ft. in. 4 8 8 5 8 5 8	Ft: in. 4 8 8 8 4 2	

a Not included in sample.

Samples 83981 and 83982 were taken 15 feet south of station 541, 2 south entry, 2 west counter Z

Sections of No. 3 bed in Chickatoon (Navy) mine

Section Laboratory No	83	A 174	a 88	B 5 74 5	a 88	746	a 85) 5747	8	E 5283	85:	ያ 284
Roof, shale: Coal, bony, shale:	Ft.	in.	Ft.	in.	Ft.	in.	Ft.	in.	Ft.	in.	Ft.	in.
Shale, sandy Coal. Shale Coal. Shale	2	1 6 1 6		1 1 8	- <u>z</u>	2 1 9	2	0 1 8	1	10½ 1 9½	ī	8 1 6
Floor, shale: Thickness of bed and sample	. 4	2	2	10	3	0	2	9	2	9	2	4

 $[^]a$ Silicified trees excluded from sample

Sample 83174 was taken 40 feet west of station 515, 2 west gangway; sample 85745, from 2 east counter, 27 room, 1 crosscut; sample 85746, from 2 east counter, 28 room, 1 crosscut; sample 85747, from 2 east counter, 26 room, 1 crosscut; sample 85283, from 2 east counter, 70 feet east of station 614; sample 85284, from 2 east gangway, 6 feet north of station 269.

The ultimate analysis of a composite made by combining samples 85745 to 85747 is given under laboratory No. 85748.

Section of No. 4 bed in Chickatoon (Navy) mine

Laboratory No	83983	Laboratory No	83983
Roof, shale: Coal Shale Coal and bone	Ft. in. 10 11 11	Bone Floor, shale: Thickness of bed Thickness of sample	Ft. in. a 1 9 3 61/4 1 91/4

^a Not included in sample.

Sample 83983 was taken 17 feet south of 2 east counter, 1 south crosscut.

Section of No. 5 bed in Chickatoon (Navy) mine

Laboratory No	83173	Laboratory No	83173
Roof, shale, sandy: Shale, black	Ft. in. 1 6 11/6 12/3	Coal	Ft. in. 3 9 2 0 2 4 8 10

Sample 83173 was taken 40 feet east of station 520, 2 east gangway.

Sections of Upper No. 5 bed in Chickatoon (Navy) mine

SectionLaboratory No	A	B	C	D	E
	85749	85750	85751	85752	85753
Roof, not stated:" Coal. Shale, coal, and shale. Coal. Bone. Coal. Floor, not stated: Thickness of bed. Thickness of sample.	Ft. in. a 9 a 31/2 2 8 1 0 8 5 41/2 4	Ft. in. 9 31/2 3 2 9 6 5 51/2 5 51/2	Ft. in. 2 9 2 4 1 8 1 0 6 1/2	Ft. in. 2 9 2 31/2 3 2 1 3 1 0 6 51/2 5 5	Ft. in. 2 9 2 33/2 2 6 1 0 1 4 5 10/2 4 10

a Not mined in these sections.

Sample 85749 was taken at 2 west counter, 6 room, 24 feet above counter cap; sample 85750, at 2 west counter, 7 room, 6 feet above counter cap; sample 85751, at 2 west counter, 5 room, 6 feet above 1 crosscut; sample 85752, at 2 west counter, 3 room, 8 feet above 1 crosscut; and sample 85753, at 2 west counter, 4 room, 8 feet above 1 crosscut.

The ultimate analysis of a composite made by combining samples 85749 to 85753 is given under laboratory No. 85754.

No. 6 bed (sample 85285) consisted of 1 foot 6 inches of coal underlain by 1 foot 2 inches of bone and coal. The sample was taken 32 feet north of 5 west gangway in tunnel G.

Sections of No. 8 bed in Chickatoon	(Navy) mine

Section_ Laboratory No	A 85740	B 85741	C 85742	D 85743
RoofBone	Ft. in.	$Ft{(b)}^{in}$.	Ft. in .	Ft. in .
Bone and shale Coal Shale	₁ ₆		2 0	
Bone and shale Coal Shale Coal	5	5 1 2 10	$\begin{array}{c} 1 \\ 6 \\ 1 \\ 2 \end{array}$	
Bone Sandstone Coal	2 6 10	1 2	10	1 2
Sandstone and shale Bone and shale Coal Bone and shale		2 2	1 6	3 6
Shale Bone Coal	1 2	7	8 2 4	У эчестве
Coal, bony and shaly Bone and shale Coal Shale	10	9 4	6	
Coal, bone and shale	1 7			
Floor, not stated: Thickness of bed Thickness of sample	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17 8 17 1	11 7	5 8

a Broken sandstone.

Sample 85740 was taken at 13 crosscut, 1 slope to 1 slope aircourse; cover, 720 feet. Sample 85741 was taken at west face of manway between 2 west gangway and Old slope; cover, 875 feet. Sample 85742 was taken from 5 room, 2 west gangway, 8 west counter, 8 feet east of 3 crosscut; cover, 217 feet. Sample 85743 was taken from 6 room, 2 west gangway, 8 west counter, 8 crosscut; cover, 217 feet.

The ultimate analysis of a composite made by combining samples 85740 to 85743 is given under laboratory No. 85744.

Sections of No. 10 bed in Chickatoon (Navy) mine

Section	839 839	84	85'	B 755	Section	55
Roof, shale: Bone and coal. Sandstone. Bone and coal. Coal. Shale Coal. Shale	Ft. a 1	in. 8 3 4 6 0 0 8 1	Ft.	in. 8	Coal	in. 10 1 1 0 1 0

a Not included in sample.

Sample 83984 was taken 84 feet west of station 572, west gangway; cover, 100 feet. Sample 85755 was taken from 3 east counter, 9 feet west of station 604; cover, 623 feet.

CHICKALOON. COAL CREEK (NAVY) MINE

Analyses 85282, 83985, 85277 to 85279, 83986, 83987, 80608, 80607, and 85640 (p. 46). Low- and medium-volatile bituminous coals, Matanuska field, from Coal Creek (Navy) mine on east bank of Coal Creek, 2½ miles south of Chickaloon. Coal beds: Bardin, North Spaulding, North Tierney, Olson, and Spaulding. The

 $660032^{\circ}--46--7$

^b Not stated.

O Not included in sample.

beds were measured and sampled by Capt. W. P. T. Hill (USMC) during 1921-22, as described below:

Section of Bardin bed in Coal Creek (Navy) mine

Laboratory No	85282	Laboratory No	852	82
Roof, shale; Shale. Coal. Shale.	Ft. in.	Coal Floor, sandstone: Thickness of bed and sample	Ft. 1 2	in. 11/4 3

Sample 85282 was taken in north gangway, 51 feet east of portal.

Sections of North Spaulding bed in Coal Creek (Navy) mine

Section Laboratory No		A 83985		B 277		C 278	852) 279
Roof, shale: Coke	-	t. in	Ft.	in.	Ft.	in.	Ft.	in. 0
Shale Coal Shale	3	1 a 1/2	1	10	1	5		1½ 8 4
Shale and bone	1	a 6 1/2	1	5 7 4	1	2 8 4	1	<u>8</u>
Coal Shale Floor	 	9	-	8 b) 1	(10 b)	1	
Thickness of bed		9 4	5 5	8 4	5 4	3 11	7 4	71.

^a Not included in sample.

Sample 83985 was taken in 2 North Spaulding gangway, 50 feet east of station 42; sample 85277, at 2 North Spaulding counter, 32 feet east of 9 raise; sample 85278, at 2 North Spaulding gangway, 76 feet east of station 53; and sample 85279, at 1 North Spaulding counter, 17 feet east of portal.

Sections of North Tierney bed in Coal Creek (Navy) mine

Laboratory No	83986	83987	Laboratory No	8398	6	839	87
Roof, shale, sandy: Coai Shale Bone Shale	Ft. in. 2 2 1/2 9	Ft. in.	Coal, bony Flor, shale, sandy: Thickness of bod Thickness of sample	Γt. i 1 4 4 4 4 4		1 -	**

a Not included in sample.

Samples 83986 and 83987 were taken in North Tierney gangway, 50 feet from east portal. The impurities were excluded from sample 83987.

Sections of Olson bed in Coal Creek (Navy) mine

Section Laboratory No	A 8060	3	856	3 340	Section Laboratory No	806	\ 308	856	40
Roof, sandstone: Coal. Coal, shaly Coal		in. 10 6 0	Ft.	in. 9 9 6	Floor, shale: Thickness of bed and sample.	Ft.	in.	Ft. 3	in. 0

b Shale.

^c Sandstone.

Sample 80608 was taken in north Olson gangway, 20 feet east of R2 Olson gangway, 250 feet east of portal; and sample 85640, at face above 1 raise, 2 north Olson gangway.

Section of Spaulding bed in Coal Creek (Navy) mine

Laboratory No	806	07	Laboratory No	806	07
Roof, shale: CoalShale, hard	Ft.	in. 0 2	Coal Floor, not stated: Thickness of bed and sample	Ft. 5	in. 0 2

Sample 80607 was taken 250 feet east of portal in North Spaulding gangway. Approximately 1,300 tons of coal was produced during prospecting. Further work was not justified because of the small quantity of minable coal found. The mine was reopened by private capital in 1925 on the west side of Coal Creek by extending the Navy prospects. Operation was continued until 1980. During this period 1,650 tons of coal was produced, coked at Anchorage, and used in foundry of the railroad shops.

ESKA. ESKA MINE

Analyses 28733, 28735, 28734, 28731, 28732, and B67588 (p. 48). High-volatile A and high-volatile B bituminous coals, Matanuska field, Eska Creek district, at Eska, in sec. 16, T. 19 N., R. 3 E. Coal beds, David, Emery, Eska (Upper), Maitland (Kelly), and Upper Shaw. The first four beds were measured and sampled by G. W. Evans (USBM) in May 1917, and the last bed was measured and sampled by M. L. Sharp (USBM), October 1, 1941, as described below:

Section of David bed in Eska mine

Laboratory No	2873	33	Laboratory No	287	33
Roof, shale and bony coal: Coal, bony Coal Shale		in. 4 2 6	Coal Floor, bone and shale: Thickness of bed Thickness of sample	Ft. 2 2	in, 10 7 4

a Not included in sample.

Sample 28733 was taken in 2 chute, 75 feet from portal.

Section of Emery bed in Eska mine

Laboratory No	28	735	Laboratory No	287	35
Roof, coal and bone: Coal, Coal, bonyShale	Ft.	in. 0 8 a 2	Bone	Ft. 3 2	in. 0 10 8

^a Not included in sample.

Sample 28735 was taken in 1 chute, 60 feet from portal. Sample 28734, representing the upper part of Eska bed, was taken in 1 chute. Roof, shale; floor, bone and shale.

Sections of Maitland (Kelly) bed in Eska mine

SectionLaboratory No	a 28	A 3731	<i>b</i> 2	B 8732	Section A 28731	^B 28732
Roof, shale: Coal Shale Coal	Ft. 2	in. 10	Ft. 1 2	in. 0 5	Floor, shale: Thickness of bed and 2 10	Ft. in. 3 5½

b Lower bench.

Samples 28731 and 28732 were taken in 1 chute, 80 feet west of portal.

The Maitland bed on the east side of Eska Creek was also known as Kelly bed

Section of Upper Shaw bed in Eska mine

Laboratory No	B67588	Laboratory No	B67588
Roof, shale: Coal Ironstone Coal Ironstone	Ft. in. 1 7 1 214 1 112	Coal	Ft. in. 101/4 a 10 4 8 3 10

a Not included in sample.

Sample B67588 was taken in 19 room, face of 2 crosscut, 750 feet from main tunnel on west haulage.

System of mining, room-and-pillar. The coal was shot off the solid and screened on bar screens.

The mine was opened in January 1917 and operated until June 1917; lack of capital for exploration forced the operators to sell their equity to the Alaska Railroad. The railroad modernized the mine and operated it until 1921, when private operators on the adjacent property were able to supply the railroad and local demands. The mine was reopened for a short time in 1922 because fire in the Evan Jones mine endangered the railroad's fuel supply. It had been kept in condition for emergency operation. In 1941 the average daily output was 100 tons.

Geologic relations are given in Geological Survey Bulletins 712 (pp. 152-163) and 880d (pp. 205-206).

ESKA. McCAULEY PROSPECT

Analysis 28836 (p. 50). Bituminous coal, Matanuska field, Eska Creek district, from McCauley prospect 1,600 feet above sea level, in sec. 10, T. 19 N., R. 3 E., 1¼ miles northeast of Eska mine. Coal bed, McCauley; dip, 14° SW. The bed was measured and sampled at one point by G. W. Evans (USBM), May 16, 1917. The sample represented 9 feet 8 inches of coal.

ESKA CREEK. OUTCROP

Analysis 29362 (p. 50). Bituminous coal, Matanuska field, Upper Eska Creek district, from an outcrop on the west bank of west fork of Middle Fork, near northern boundary of sec. 9, T. 19 N., R. 3 E. The sample was taken by S. S. Smith (USBM), September 6, 1917.

JONESVILLE. EVAN JONES MINE

Analyses A11087, A11083, 89706, 89705, A11084, 89707, 89708, A11086, A11085, A98201, B25076, B25077, and B56287 (p. 50). High-volatile B bituminous coal, Matanuska field, Eska Creek district, from Evan Jones mine at Jonesville. Coal beds, Nos. 00, 0, 2, 3, 4, 5, 6, 8, and 10. The beds were measured and sampled as follows: Nos. 00, 0, 3, 5, and 6, by M. L. Sharp (USBM), February 27, 1925;

Nos. 2, 3, and 4, by Capt. W. P. T. Hill (USMC), February 2, 1923; No. 8, by M. L. Sharp (USBM), August 5, 1940, H. I. Smith (USGS) and B. D. Stewart (USGS), June 22, 1934, and H. B. Humphrey (USBM), November 2, 1937. The measurements of the various samplings are given below:

Section of No. 00 bed in Evan Jones mine

Laboratory No	A11087	Laboratory No	A11087
Roof; coal, bony: Coal Shale Coal Coal Coal, bony	Ft. in. 1 6 1 6 3 9	Pyrite Coal Floor, shale: Thickness of bed and sample	Ft. in 1 9 9 4 11

Sample A11087 was taken from face 6 feet west on crosscut, 750 feet north of portal on main tunnel.

Section of No. 0 bed in Evan Jones mine

Laboratory No	A11083	Laboratory No	A11083
Roof, sandrock and coal: Coal Bone and coal Coal Bone	Ft. in. 1 3 6 1 6 4	CoalFloor, shale: Thickness of bed and sample	Ft. in 2 6 6 1

Sample A11083 was taken 400 feet in west main tunnel at junction of 1 slant. Sample 89706 was taken from No. 2 bed at 2 east gangway, 3 chute; thickness of bed, 2 feet 8 inches.

Sections of No. 3 bed in Evan Jones mine

SectionLaboratory No	A	B	Section	A	B
	89705	A11084	Laboratory No	89705	A11084
Roof Coal Shale Coal Shale Coal	Ft. in. (a) 4 4	$Ft{(b)}in. \ 2 \ 2 \ 11/2 \ 41/2 \ 21/2 \ 2 \ 6$	Coal	Ft. in.	$egin{array}{cccccccccccccccccccccccccccccccccccc$

a Sandstone.

ng water

Sample 89705 was taken in 3 east gangway, 10 feet from 16 chute; and sample A11084, 500 feet east of main tunnel on upside slant.

Sample 89707 (No. 4 bed) represented 3 feet 4 inches of coal and was taken at 2 west on 4 counter, 28 feet west on 1 chute. Sample 89708 (No. 4 bed) represented 3 feet 7 inches of coal and was taken at 2 east on 4 east gangway, 10 feet from 6 chute.

Section of No. 5 bed in Evan Jones mine

Laboratory No	A11086	Laboratory No	A11086
Roof, coal, bony: Coal. Coal, bony. Coal. Parting.	Ft. in. 1 6 7 5	Coal	$egin{array}{cccc} Ft. & in. & 10 & & & & & & & & & & & & & & & & & $

Sample A11086 was taken from 1 east chute, 20 feet above counter, 1,300 feet

north of No. 4 bed in new tunnel.

Sample Al1085 (No. 6 bed) was taken from east gangway, 1,875 feet north of No. 4 bed in new tunnel; thickness of bed, 3 feet 7½ inches.

Sections of No. 8 bed in Evan Jones mine

Section Laboratory No	A A98201	B B25076	C B25077
Roof, shale:	Ft. in.	Ft. in.	Ft. in
Coal	1112	$\begin{array}{ccc} & 11 \\ & 1 \\ 2 & 2 \end{array}$	a 1 0 a 6 a 1 0
Bone. Coal Shale.	2 9 1	1	1 0
Sone. Coal. Shale.	1 2 1	6 	2 6
Bone Rash. Coal Shale	21/2	1 	2
Bone Coal	6		2 8
Coal Rash			, , , , , , , , , , , , , , , , , , ,
loor, shale: Thickness of bed Thickness of sample	5 5 5 5	4 3 4 3	8 3 5 3

a Not included in sample.

Sample A98201 was taken from south rib, 20 feet inside 23 chute, in main haulage gangway; sample B25076, from 40 room, 11 crosscut; and sample B25077, from gangway just inby 44 room.

Section of No. 10 bed in Evan Jones mine

Laboratory No=	B56287	Laboratory No	B56287
Roof, shale: Shale, coaly Coal Shale and bone Coal	$Ft. in.$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$	Shale, coaly	Ft. in. # 5

^a Not included in sample.

Sample B56287 was taken from face of last two coal seams in No. 10 bed,

413 feet from No. 8 bed, in new gangway.

System of mining, room-and-pillar. The coal was undercut by hand and shot down with explosives. It was screened on revolving screens and washed on a jig washer. The average daily output in 1940 was 200 tons.

Geologic relations are given in Geological Survey Bulletin 880d (pp. 204–208).

KINGS RIVER. OUTCROPS

Analysis 2218 (p. 54). Bituminous coal, Matanuska field, Kings River district, from outcrop on west bank of Kings River at upper bridge. Thickness of bed, 9 feet 11 inches; dip, 42° NE. The bed was measured and sampled at one point by G. C. Martin (USGS) in 1905, as described below;

Section of coal bed in outcrop on Kings River

Laboratory No	2218	Laboratory No	2218
Roof, not stated: Coal Sandstone Coal Shale Coal Shale Coal Sandstone	Ft. in. 2 5 1 4 1 5 1 5 1	Coal, bony Sandstone Coal Floor, not stated: Thickness of bed Thickness of sample	Ft. in. 1 0 3 4 9 11 9 7
307 11.			

[&]quot;." Not included in sample.

Geologic relations are given in Geological Survey Bulletin 284 (p. 94).

Analyses 18137, 18136, 18136, and 18147 (p. 54). Medium-volatile bituminous coal and natural coke, Matanuska field, Kings River district, from outcrops along banks of Kings River. Coal bed, No. 1. The bed was measured and sampled by J. T. Ryan (USBM) and G. W. Salisbury (USBM), September 13, 1913, as described below:

Section of No. 1 bed in outcrop on Kings River

Laboratory No	18137	Laboratory No	18187
Roof, shale: Coal, bony Coal, bright Shale Coal, bright Coal, bony Coal	Ft. in. 2 3 1 5 1 3	Coal, shaly Coal, hard Shale Coal, soft Floor, not stated: Thickness of bed Thickness of sample	Ft. in. a 8 1 0 1 2 2 2 9 6 8 2

[&]quot; Not included in sample.

Sample 18137 was taken from outcrop on west bank of Kings River below lower bridge; dip, 37° E.; strike, N. 2° W. Sample 18319 was cut from outcrop on west bank of river, 600 feet below cabin. Sample 18136 (natural coke) was taken from outcrop on east bank of river, above rock tunnel, at point where an igneous sill divides the bed into two parts; thickness of sample, 3 feet 10 inches. Sample 18147 consisted of selected pieces of natural coke taken 15 feet right of point at which sample 18136 was taken,

Geologic relations are given in Geological Survey Bulletin 284 (p. 94).
Analysis 18151 (p. 54). Medium-volatile bituminous coal, Matanuska field,
Kings River district, from outcrop on Kings River. Coal bed, No. 2; dip, 37°
E.; strike, 2° W. The bed was measured and sampled at outcrop, 13 feet above
No. 1 bed, by J. T. Ryan (USBM), September 13, 1913, as described below:

Section of coal bed in Kings River outcrop

Liaboratory No	18151	Laboratory No.	18151
Roof, shale; Coal and shale	Ft, in a 1 2 1 6	Coal and pyrite Bone Coal Floor, shale: Thickness of bed	2 6

^{&#}x27;a Not included in sample.

MATANUSKA RIVER. OUTCROP

Analysis 18144 (p. 54). Bituminous coal, Matanuska field, from outcrop on south bank of Matanuska River, 3 miles above mouth of Chickatoon River. Coal bed, unnamed; thickness of bed, 6 feet 6 inches, badly crushed with thin bone and shale partings; floor, shale and clay. The sample was taken by J. T. Ryan (USBM) and G. W. Salisbury (USBM); September 16, 1918.

Geologic relations are given in Geological Survey Bulletin 500 (p. 75).

Moose Creek (Station). Baxter Mine

Analyses 85511 to 85514 (p. 54). High-volatile B bituminous coal, Matanuska field, Moose Creek district, from Baxter mine, 5 miles northeast of Moose Creek Station, Coal bed, "Big"; dip, 40°; strike, NE. The bed was measured and sampled at three points by B. W. Dyer (USBM), March 24, 1922, as described below: it have ford

Sections of "Big" bed in Baxter mine

Section Laboratory No						 		511	85512	85513
				· · · · · · · · · · · · · · · · · · ·	- 12	 				
*****							Ft.	in.	Ft. in.	Ft. in
loof, coal: Coal	-		. • .				ł	10	1 8	194.10 Er
Parting						 		1/8	1/2	· · · i'
Coal		~ ~ ~ ~ ~ ~ ~ .				 	5	2	3 11	8,
Coal, bony Bone				·		 			6.1	22222
Coal						 	55,55			4 21
loor, not stated: Thickness of bed	and sample					 	B	12	5 111/6	K G
Thickness of bed	Lordings Due					 		. 78	0 1172	0 0

Sample 85511 was taken from rib, 2 chute, south gangway, 20 feet above counter; sample 85512, from high rib of aircourse, 15 feet outside 1 chute; and sample 85513, from high rib, south gangway, 40 feet inside tunnel.

The ultimate analysis of a composite made by combining samples 85511 to

System of mining, room-and-pillar. The coal was undercut by hand and shot down with explosives. The mine was opened and operated during the winter of 1917-18 but later closed owing to faulted beds. It was reopened in 1921 and produced a small tennage until 1925, when it was abandoned.

Geologic relations are given in Geological Survey Bulletin 712 (pp. 164-166)

and Bureau of Mines Report of Investigations 3784.

MOOSE CREEK (STATION). BUFFALO MINE

Analyses B98926 to B98929, B98931 to B98933, and B98935 to B98937 (p. 56). High-volatile B bituminous coal, Matanuska field, Moose Creek district, from Buffalo mine, an adit and shaft mine 1,015 feet above sea level, 4 miles from Moose Creek, 12 miles north of Palmer, in sec. 23, T. 19 N., R. 2 E. Coal beds, Nos. 1 to 7; dip, 65° SE.; strike, N. 41° E. The beds were measured and sampled by S. C. Bjorklund (USBM), February 10, 1943, as described below:

Section of No. 1 bed in Buffalo mine

Laboratory No	В9	8926	Laboratory No	B98	3926
Hanging wall, shale: Coal. Shale. Coal. Shale. Coal. Shale. Coal. Shale. Coal. Coal.	Ft. 2	in. 6 1½ 0 ½ 2 ½ 5	Shale	a 1	in 1/2 7 5 8 0 0 0

[&]quot; Not included in sample.

Sample B98926 was taken from south face of 1 gangway, 65 feet from main entry. Sample B98928 (No. 2 bed) representing 6 feet 8 inches of clean, broken coal, was taken in shaft 92 feet below 2 gangway, 210 feet southwest of main entry. Sample B98927 (No. 2 bed), representing 4 feet 4 inches of clean, broken coal, was taken 6 feet from north face of 2 gangway, 850 feet northeast of main entry. Sample B98929 (No. 3 bed), representing 2 feet 5 inches of clean, broken coal, was taken at north face of 3 gangway, 185 feet from main entry. Sample B98931 (No. 4 bed), representing 2 feet 10 inches of fairly clean, broken coal, was taken from north wall of main entry at intersection of No. 4 bed. Sample B98933 (No. 5 bed, upper bench), representing 2 feet 2 inches of clean coal, and sample B98932 (No. 5 bed, lower bench), representing 3 feet 5 inches of coal with a 1-inch shale parting in middle, were taken at north wall of main entry at intersection with No. 5 bed. Sample B98935 (No. 6 bed), representing 4 feet 6 inches of clean coal, was taken from north wall of "Badger Hole" extension of main entry at intersection of No. 6 bed. Sample B98987 (No. 7 bed, upper bench), representing 1 foot 6 inches of clean coal, and sample B98936 (No. 7 bed, lower bench), representing 1 foot 6 inches of clean coal, and sample B98936 (No. 7 bed, lower bench), representing 1 foot 6 inches of clean, broken coal, were taken from north wall of Badger Hole extension of main entry at intersection of No. 7 bed, lower bench), representing 1 foot 6 inches of clean, broken coal, were taken from north wall of Badger Hole extension of main entry at intersection of No. 7 bed.

System of mining, room-and-pillar. The coal was undercut by hand and shot down with dynamite. It was screened on a shaker screen to produce nut and steam sizes. The mine was in the prospect stage and had not reached commercial production.

Geologic relations are given in Bureau of Mines Report of Investigations 3784.

Moose Creek (Station). Howard & Jesson (LeRoy) Mine

Analyses A1963 to A1965 (p. 56). High-volatile B bituminous coal, Matanuska field, Moose Creek district, from Howard & Jesson (LeRoy) mine, a tunnel mine 1,200 feet above sea level, 8 miles north of Moose Creek. Coal beds, Nos. 3, 4, and 5; dip, 65°; strike, N. 32° E. Each of the three beds was measured and sampled at one point by J. J. Carey (USBM), May 11, 1924, as described below:

Sections of Nos. 3, 4, and 5 beds in Howard & Jesson (LeRoy) mine

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SectionLaboratory No	a A	A 1963	b A	B 1964	o V	C 1965
Coal 6 0 10 0 1 Shale, sandy d 3 3 3 Coal 1 9 3 3 Sandstone d 1 1 Coal 3 10 3 Floor, bone and shale: 11 11 10 0 5 Thickness of bed 11 11 10 0 5		F_t .	in.	Ft.	in.	Ft.	in.
Conl 1 9 3 Sandstone d1 0 1 Coal 3 10 10 Floor, bone and shale: 11 11 10 0 Thickness of bed 11 11 10 0 5	Coal	6	d 2	10	0	1	. d5
Floor, bone and shale: Thickness of bed 11 11 10 0 5	Coal	1	d 1			3	6
Thickness of bed	Floor, bone and shale:	` `					
	Thickness of bed		7	10	0	5 4	0 11

⁶ No. 3 bed. ^b No. 4 bed.

Sample A1963 was taken 390 feet south of portal; sample A1964, 400 feet south of portal; and sample A1965, 415 feet south of portal.

Further information may be obtained from Mineral Resources of Alaska: Geology and Coal Resources of the Western Part of the Lower Matanuska Coal Field, Alaska, by T. G. Payne and D. M. Hopkins, published by the Geological Survey, Department of the Interior.

MOOSE CREEK (STATION). NEW BLACK DIAMOND (RAWSON) MINE

Analyses 82919 to 82921 (p. 56). Bituminous coal, Matanuska field, Moose Creek district, from New Black Diamond (Rawson) mine, a tunnel mine 8½ miles from Moose Creek. Coal bed, No. 3; thickness, 8 feet 6 inches; dip, 60° N.; strike, S. 82° E. Samples 82919 and 82920 were taken from opposite sides of a stock pile by B. W. Dyer (USBM), October 19, 1921.

No. 5 bed.

d Not included in sample.

The ultimate analysis of a composite made by combining the two samples is

given under laboratory No. 82921.

This mine was first known as Rawson. Some coal was produced in development work, which was discontinued in 1926. In 1932 the Wishbone Hill Coal Co. reopened the mine, but only a small quantity of coal was produced. workings were taken over in 1934 by the New Black Diamond Coal Co.

Further information may be obtained from Bureau of Mines Report of In-

vestigations 3784.

MOOSE CREEK (STATION). PREMIER MINE

Analysis A1962 (p. 58). High-volatile B bituminous coal, Matanuska field, Mose Creek district, from Premier mine, 4 miles north of Moose Creek Station. Coal bed, No. 2; thickness, 7 feet. The bed was measured and sampled near top of chute at counter, 250 feet below collar of slope, by M. L. Sharp (USBM), May 5, 1924.

The mine was opened in 1925 by the Alaska Matanuska Coal Co. After the railroad was extended to Premier in 1926 it became the principal producer in the Modse Creek district. In 1933 water broke through and flooded the workings; a small tonnage, however, was produced daily from beds above water level until the mine was closed in 1943.

Further information may be obtained from Geological Survey Bulletin 857 (pp. 66-67) and Bureau of Mines Report of Investigations 3784.

MOOSE CREEK (STATION). PROSPECTS

Analyses C31928 to C31930 (p. 58). Weathered and high-volatile C bituminous coals, Matanuska field, Moose Creek district, from three prospects ¼ mile east of Howard & Jesson (LeRoy) mine, 8¼ miles north of Moose Creek, in sec. 13, T. 19 N., R. 2 E. Coal beds, unknown. The beds were measured and sampled by James Hulbert (UBSM), November 17 to 19, 1944, as described below:

Sections of coal beds in prospects

Section Laboratory No	^a C31928	^b C31929	⁶ C31930
Hanging wall:	Ft. (d) in.	Ft. in.	$Ft{\binom{d}{l}}in.$
Shale Bone Coal Shale	7 7 7 7 1 7 2 1 4	3	7 3 7 2
Coal, bony. Coal. Clay	2 6	3 3	1 2
Coal. Coal, bony Clav	4 / 2	7 	3 1 2
Shale Coal. Coal. bony		2 3	1 f 8 8
Floor, not stated: Thickness of bed	$\begin{bmatrix} 12 & 1 \\ 6 & 9 \end{bmatrix}$	6 9 6 3	7 613

^a Prospect in No. 1 gully. ^b Prospect in No. 2 gully. ^c Prospect in No. 3 gully.

Young Creek. Outcrops

Analysis 2223 (p. 58). Bituminous coal, Matanuska field, Young Creek district, from outcrop at an elevation of 1,585 feet, on west bank of Young Creek, 3 miles above trail. The bed comprised 1 foot of coal, 15 feet of shale, and 6 inches of coal; dip, 20° NW. It was measured and sampled by G. C. Martin (USGS) in 1905. The sample represented 1 foot 6 inches of coal.

Geologic relations are given in Geological Survey Bulletin 500 (pp. 42-52, 72-78).

Analysis 11382 (p. 58). Bituminous coal, Matanuska field, Young Creek district, from outcrop near Young Creek; longitude 148°42′12″ W., latitude

d Shale,

^e Bone. f Not included in sample.

61°47'47" N. Thickness of bed, 12 feet 8 inches; dip, 54° SE; strike, N. 67° E. The bed was sampled by G. C. Martin (USGS), August 11, 1910, from natural outcrop after weathered coal was removed. It was measured on north face of Red Mountain, 4 miles north of mouth of Young Creek. Several other beds of undetermined thickness were observed above this bed.

Geologic relations are given in Geological Survey Bulletin 480 (p. 129).

ALASKA GULF REGION

BERING RIVER FIELD

BARRETT CREEK. CUNNINGHAM CLAIM OUTCROPS

Analyses 12716, 12709, 12707, 12708, 12714, 12710, 12718, 12712, and 12711 (p. 60). Low-volatile bituminous coal, Bering River field, from outcrops on Cunningham claim on Barrett Creek, ¾ mile above junction of Barrett and Clear Creeks, approximately 25 miles northeast of Katalla. The samples were taken August 19, 1911.

Sample 12716 (first and lowest bed in series) represented 5 feet of coal. Sample 12709 (second bed) represented 2 feet of coal. Sample 12707 (third bed) was taken 15 or 20 feet above second bed; thickness of bed not given. Sample 12708 was taken from fourth bed in series. Samples 12714 and 12710 (fifth bed) were taken 350 feet up Barrett Creek from fourth bed. Sample 12718 (sixth bed) was taken 20 to 30 feet above fifth bed. Sample 12712 (seventh bed) was taken 150 feet upstream from sixth bed. Sample 12711 was taken from

bank of tributary of Clear Creek, 1,000 feet above mouth of Barrett Creek.

Geologic relations are given in Report on Coal in Alaska for Use in United

States Navy, House Document No. 876, 1914 (p. 38).

BERING LAKE. TUNNEL

Analysis 4427 (p. 60). Low-volatile bituminous coal, Bering River field, from tunnel on shore of Bering Lake, halfway between Poul Point and Dick Creek. Coal bed, unnamed; thickness of bed, 6 feet 6 inches; thickness of sample, 4 feet; roof and floor, shale; dip, 72° NW. The bed was measured and sampled at one point by G. C. Martin (USGS) in 1906.

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31–35, 81).

CANYON CREEK. PROSPECTS

Analyses 4433 and 4461 (p. 62). Anthracite, Bering River field, from prospects on tributary to Canyon Creek, on east side and next below Hunt's Cabin. Coal bed, unnamed; roof and floor, shale; dip, 31° NE. The bed was measured and sampled at two points by G. C. Martin (USGS) in 1906. Samples 4433 and 4461 represented 2 feet 7 inches and 6 feet 9 inches of coal, respectively.

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31-35, 69).

CARBON CREEK. PROSPECT TUNNEL

Analysis 2492 (p. 62). Low-volatile bituminous coal, Bering River field, from prospect tunnel on south bank of Carbon Creek. Coal bed, unnamed; thickness of bed and sample, 8 feet 11 inches; roof, arkose; floor, shale. The bed was measured and sampled by G. C. Martin (USGS) in 1905.

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31-35, 77).

CARBON MOUNTAIN (EAST SIDE), PROSPECTS

Analyses 2480, 2483, and 2487 (p. 62). Anthracite, Bering River field, from prospects on east side of Carbon Mountain. Coal beds, unnamed; roof and floor, shale. The beds in three prospects were measured and sampled by G. C. Martin (USGS) in 1905.

Sample 2480 was taken near hillside trail and represented 15 feet of coal; sample 2483, taken near sample 2480, represented 10 feet 6 inches of coal; and sample 2487, taken 200 feet below hillside trail, represented 4 feet 8 inches of coal.

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31-35, 68).

61 6

CARBON MOUNTAIN (WEST SIDE). OUTCROPS

Analyses 2482 and 2496 (p. 62). Anthracite, Bering River field, from outcrops on west side of Carbon Mountain near Hunt's trail. Coal bed, unnamed; thickness of bed and sample, 10 feet (sample 2482) and 15 feet (sample 2496); roof and floor, shale. Samples 2482 and 2496 were taken at south and north ends of the trail, respectively, by G. C. Martin (USGS) in 1905.

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31–35, 68).

CARBON MOUNTAIN (WEST SIDE), PROSPECTS

Analyses 4459 and 4462 (p. 62). Semianthracite and anthracite, Bering River field, from prospects on west side of Carbon Mountain, opposite mouth of Canyon Creek. Coal beds, unnamed; roof and floor, shale; dip, 53° NW. The beds were measured and sampled by G. C. Martin (USGS) in 1906.

Sample 4459 represented 2 feet 7 inches of coal from a bed 4 feet 8 inches thick, 900 feet above sea level; and sample 4462, 1 foot 8 inches of coal from a bed 950 feet above sea level.

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31-35, 70).

CLEAR CREEK, OUTCROPS

Analyses 12713, 12715, and 12717 (p. 62). Natural coke and semianthracite, Bering River field, from outcrop in east wall of gorge below main falls, 41/2 miles above mouth of Clear Creek. Three samples were taken from the bed

Sample 12713 was taken next to roof and represented 6 to 10 inches of natural coke; sample 12715 was taken next to coke and represented 6 to 8 inches of coal; and sample 12717 represented the main body of the bed of approximately 10 feet of coal.

Geologic relations are given in Report on Coal in Alaska for Use in United . States Navy, House Document No. 876, 1914 (p. 38).

Analyses 4430 and 4460 (p. 62). Semianthracite (?), Bering River field, from outcrops on tributary of Clear Creek southeast of Monument Mountain. Coal bed, unnamed; dip, 30° NW. The bed was measured and sampled by G. C. Martin (USGS) in 1906, as described below:

Sections of coal bed on tributary of Clear Creek

Section Laboratory No	44	A B 4460		B 160	SectionLaboratory No	44	A :30	B 4460	
Roof, shale: Shale, hard	Ft. 1	in. 10 4 11	Ft. a 1	in. 4 7 7 7 2 3	Coal, shaly Coal Shale Coal, shaly Coal Floor, shale	Ft. 3 5 a 2 a 1	in. a 3 3 0 0	Ft.	in.
Coal, bony Coal		3	3	ō	Thickness of bed Thickness of sample	15 6	5 3	8	4 0

Sample 4430 was taken at an elevation of 1,200 feet and sample 4460, at 1.450 feet.

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31-35, 71).

CLEAR CREEK. PROSPECTS

Analyses 4431, 4435, and 4451 (p. 62). Semianthracite (?), Bering River field, from prospects on Clear Creek. The samples were taken by G. C. Martin (USGS) in 1906.

Sample 4431 was taken from tunnel on north bank of Clear Creek at top of falls and represented 18 feet of coal; sample 4435 was taken from tunnel on north bank of Clear Creek at base of falls and represented 5 feet of coal; and

sample 4451 was taken from east bank of Clear Creek, 3 miles above mouth, and represented 4 feet of coal.

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31-35, 72).

FALLS CREEK. CHRISTOPHER PROSPECT

Analysis 2488 (p. 64). Semianthracite (?), Bering River field, from Christopher prospect in cliffs of Falls Creek, 1 mile north of Bering Lake. Coal bed, unnamed; dip, 25° NE.; elevation, 110 feet. The bed was measured and sampled at one point by G. C. Martin (USGS) in 1905, as described below:

Section of coal bed in Christopher prospect

Laboratory No	24	88	Laboratory No	248	8
Roof, arkose: Coal. Coal and shale Coal	Ft.	in.	Floor, shale, sandy: Thickness of bed Thickness of sample	Ft. 10 7	in. 0 0

[&]quot; Not included in sample.

FALLS CREEK. OUTCROP

Analysis 4454 (p. 64). Semianthracite (?), Bering River field, from outcrop on tributary of Falls Creek, ½ mile northeast of Christopher's Cabin. Coal bed, umamed; dip, 60° SE.; elevation, 200 feet. The bed was measured and sampled by G. C. Martin (USGS) in 1906, as described below:

Section of coal bed in outcrop near Christopher's Cabin

Laboratory No	4454		Laboratory No	4454	
Roof, shale: Coal Shale Coal Shale Coal Coal	Ft. 2	in. 7 4 7 4 9 10 4 5	Shale, coaly	F1.	in. a 6 8 7

^a Not included in sample.

ual orga Pod og

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31-35, 79).

FOURTH BERG LAKE. OUTCROP

Analysis 2478 (p. 64). Anthracite, Bering River field, from outcrop 1% miles up creek from Fourth Berg Lake. Coal bed, unnamed; dip, 55° SW.; elevation, 1,850 feet. The bed was measured and sampled by G. C. Martin (USGS) in 1905, as described below:

Section of coal bed in outcrop near Fourth Berg Lake

Laboratory No		78	Laboratory No	2478	
Roof, shale: Coal Shale, coaly Coal. Shale, coaly	Ft.	in. 8 4 11 23	Coal	Ft. 2 2	in. 8 10 3

a Not included in sample.

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31-35, 67).

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31-35, 79).

Bill Court of the

KATALLA, CARBON MINE

Analyses 86751, 86750, 86745, 86743, 86744, and 86748 (p. 64). Low-volatile bituminous coal, Bering River field, from Carbon mine, 18 miles northeast of

Katalla. The samples were taken at washing plant of coal mined in 1 chute, 16 gangway, No. 16 bed, by Capt. W. P. T. Hill (USMC), July 1922.

Sample 86751 represented run-of-mine coal; sample 86750, 2½-inch lump; sample 86745, 2½- by 1-inch (washed); sample 86748, 2½-inch slack; sample 86744, 1-inch slack; and sample 86748, 1-inch slack (washed).

KATALLA, SHIELD'S PROSPECT TUNNEL

Analyses 79356 to 79358 (p. 64). Low-volatile bituminous coal (noncaking), Bering River field, from Shield's prospect tunnel, 22 miles northeast of Katalla. Coal bed, No. 18; thickness of bed, 9 feet; thickness of sample, lower 3 feet; dip, 45° W.; strike, NE. The bed was measured and sampled at face, 1,500 feet from portal, by Capt. W. P. T. Hill (USMC), March 11, 1921.

The ultimate analysis of a composite made by combining samples 79356 and

79357 is given under laboratory No. 79358.

KUSHTAKA RIDGE (EAST SIDE). OUTCROPS AND TUNNEL

Analyses 4455, 4428, and 4463 (p. 64). Semianthracite, Bering River field, from outcrops and tunnel on east side of Kushtaka Ridge. Coal beds, unnamed; dip, 40° to 45° NW. The beds were measured and sampled by G. C. Martin (USGS) in 1906.

Sample 4455 was taken 1 mile northwest of cabin; elevation, 1,850 feet; thickness of bed and sample, 3 feet. Sample 4428 was taken 1½ miles northwest of cabin; elevation, 1,600 feet; thickness of bed and sample, 14 feet. Sample 4463 was taken from tunnel; elevation, 790 feet; thickness of bed and sample, 14 feet 6 inches.

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31-35, 74-75).

LEEPER CREEK. OUTCROP

Analysis 4453 (p. 64). Semianthracite, Bering River field, from outcrop 1/3 mile above mouth of Leeper Creek (tributary of Shepherd Creek). Coal bed, unnamed; thickness of bed and sample, 8 to 11 feet; dip, 75° NW. The bed was measured and sampled by G. C. Martin (USGS) in 1906.

Geologic relations are given in Geological Survey Bulletin 355 (pp. 31-35, 77).

MOUNT ANN. OUTCROPS

Analyses 12719, 12720, and 12733 (p. 64). Semianthracite, Bering River field, from outcrops on Mount Ann. The bed was sampled by J. A. Holmes (USBM) in November 1911.

Sample 12719 was taken near top of Mount Ann; sample 12720, on side; and sample 12733, on top.

MOUNT HAMILTON. McDonald MINE

Analyses 12722, 12730, and 12731 (p. 66). Low-volatile bituminous coal, Bering River field, from McDonald mine, ½ mile south of United States Land Monument on Mount Hamilton. Coal bed, unnamed; thickness, 15 feet; dip, nearly vertical. The bed was measured and sampled at three points by J. A. Holmes (USBM) in August 1911.

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31-35).

MOUNT HAMILTON. OUTCROP

Analyses 4437, 4452, and 4436 (p. 66). Low-volatile bituminous coal, Bering River field, from outcrop in gulch % mile southwest of Mount Hamilton. Coal bed, unnamed; dip, 52° NW.; elevation, 1,100 feet. Coal was found in two benches, separated by 30 feet of shale. The bed was measured and sampled at one point by G. C. Martin (USGS) in 1906, as described below:

Section of coal bed southwest of Mount Hamilton

Laboratory Nos	44: 44: 44	52,	Laboratory Nos	4437 4457 443	2
Roof, shale: Coall. Shale. Shale, coaly. Coal, dirty. Shale. Coal, shaly. Shale. Coal, shaly. Shale. Coal, shaly. Do.	Ft. a 5 30 b 1 b 1 b 1	in. 0 0 0 5 2 4 0 6	CoalShale	Ft. 1 1 4 50	in. 9 0 4 8 2 6

(32,32)

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31-35, 80).

NEVADA CREEK. PROSPECT TUNNEL

Analysis 2491 (p. 66). Semianthracite, Bering River field, from prospect tunnel near mouth of Nevada Creek. Coal bed, unnamed; thickness of bed and sample, 19 feet 7 inches; dip, 78° N.; roof, shale; floor, arkose. The bed was measured and sampled by G. C. Martin (USGS) in 1905.

POWERS CREEK. PROSPECT TUNNEL

Analysis 2493 (p. 66). Semianthracite, Bering River field, from prospect tunnel on Powers Creek, 1 mile north of Bering Lake. Coal bed, unnamed; dip, 35° NW. The bed was measured and sampled by G. C. Martin (USGS) in 1905, as described below:

Section of coal bed in tunnel on Powers Creek

Laboratory No	24	93	Laboratory No	24	93
Roof, not stated: Coal (concealed) Shale Coal	Ft. a 2 a 1 8	in. 0 6 6	Floor, sandstone: Thickness of bed Thickness of sample	Ft. 12 8	in. 0 6

⁴ Not included in sample.

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31-35, 77).

QUEEN CREEK. OUTCROPS

Analyses 2486 and 2495 (p. 66), Low-volatile bituminous coal, Bering River field, from outcrop on northwest bank of Queen Creek. The bed was measured and sampled at one point by G. C. Martin (USGS) in 1905, as described below:

Section of coal bed in outcrop on Queen Creek

Laboratory Nos	2486, 2495	Laboratory Nos	2486, 2495
Roof, shale: Coal	$Ft. in. \ ^a \ 27 0 \ 7 0 \ 2 0$	Shale Coal Floor, shale: Thickness of bed	Ft. in. 10 0 5 31 0 77 0

^a Sample 2486. ^b Sample 2495.

^a Coal included in sample 4437. ^b Coal included in sample 4452. ^c Coal included in sample 4436.

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31-35, 76). Analysis 2494 (p. 66). Semianthracite, Bering River field, from outcrop on east branch of Queen Creek. The bed was measured and sampled by G. C. Martin (USGS) in 1905, as described below:

Section of coal bed in outcrop on Queen Creek

Laboratory No	2494	Laboratory No
Roof, shale: Coal. Shald. Coal. Shald Coal.	Ft. in. 17 0 41 0 44 0 5 0 3 3 0	Shale

^a Not included in sample.

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31-35, 77).

SECOND BERG LAKE. OUTCROP

Analysis 2485 (p. 66). Anthracite, Bering River field, from outcrop in gulch at head of Second Berg Lake. Coal bed, unnamed; thickness of bed, 2 feet 8 inches; thickness of sample, 2 feet 2 inches; dip, 32° NE.; roof, sandscone; floor, shale. The bed was measured and sampled by G. C. Martin (USGS) in 1905. Six inches of beny roof or the roof and sampled by G. C. 1905. Six inches of bony coal on top was excluded from sample.

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31-35, 67).

TOKUN CREEK. PROSPECT TUNNEL

Analysis 2490 (p. 66). Semianthracite, Bering River field, from lower pros-Adalysis 2490 (p. 66). Seminiturative, bering kiver held, from lower prospect tunnel on Tokun Creek, 1½ miles above Lake Tokun. Coal bed, unnamed; thickness of bed and sample, 6 feet 8 inches; roof, arkose; floor, shale. The bed was measured and sampled by G. C. Martin (USGS) in 1905.

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31–35, 79).

TROUT CREEK. CUNNINGHAM PROSPECT TUNNELS Nos. 4 AND 5

Analyses 15355 to 15360 (p. 66). Low-volatile bituminous coal, Bering River field, from Cunningham prospect tunnels on Trout Creek, ¼ mile down creek from Cunningham Cabin. No. 4 tunnel was 100 feet below No. 5 tunnel. The bed in No. 4 tunnel was measured and sampled at four points and that in No. 5 tunnel at two points by W. A. Selvig (USBM), November 12 to 22, 1912, as described below:

Sections of coal bed in prospect tunnel No. 4

SectionLaboratory No	A 15355		B 15356	16	C 3357	1 15) 358
Roof, shale, sandstone, and coal: Coal Charcoal, dirt, and shale Coal Charcoal, shale, and sulfur Coal Floor, sandstone and coal: Thickness of bed Thickness of sample	Ft. in 2 8 2 1 1 2 2 1 1 6 6 5 8 4	2 1	Ft. in. 2	Ft 2 5 2 10 8	in. 3 81/2 71/4 71/4 33/4	Ft. 1 1 3 7 6	in. 0 0 5 11 0 3 8

a Not included in sample.

Sample 15355 was taken in chute between timber sets 19 and 20, 76 feet from drift mouth and 10 feet from entry; sample 15356, on rib of right crosscut between timber sets 18 and 19, 72 feet from drift mouth and 17 feet from entry; sample 15357, on rib near face of right crosscut between timber sets 11 and 12, 44 feet from drift mouth; and sample 15358, in right crosscut between timber sets 25 and 26, 100 feet from drift mouth and 11 feet from entry.

Sections of coal bed in prospect tunnel No. 5

Section	A	B	Section	A	B
Laboratory No	15359	15360	Laboratory No,	15359	15360
Roof, shale and coal: Coal. Shale and dirt. Coal Charcoal and shale	Ft. in. 2 8 2 8 2 7 4 1 7	Ft. in.	CoalFloor, coal: Thickness of bed Thickness of sample	Ft. in.	Ft. in. 1 3 6 10 5 3

a Not included in sample.

Sample 15359 was taken in chute at left of entry between timber sets 21 and 22, 84 feet from drift mouth and 17 feet up chute; and sample 15360, in left crosscut between timber sets 13 and 14, 52 feet from drift mouth and 5 feet from entry.

Geologic relations are given in Geological Survey Bulletin 335 (pp. 31-35, 72).

WARDALL RIDGE. OUTCROPS

Analyses 22932 and 22933 (p. 68). Weathered bituminous coal, Bering River field, from outcrops on west side of Wardall Ridge, in SE¹/₄ sec. 10, T. 17 S., R. 8 E. Coal beds, unnamed; dip, 45° NW.; strike, N. 65° E. The beds were measured and sampled by G. W. Evans (USBM), August 17, 1915, as described below:

Sections of coal beds in outcrops on Wardall Ridge

SectionLaboratory No	A	B	Section	A	B
	22932	22933	Laboratory No	22932	22933
Roof, sandstone, shale: Coal with shale Coal, bright Shale Coal	Ft. in.	Ft. in.	Coal, soft	Ft. in. 6 5 0	Ft. in.

a Not included in sample.

The coal bed represented by sample 22932 was 30 feet above the one in sample 22933.

YAKATAGA. OUTCROP

Analysis 19345 (p. 68). Weathered bituminous coal, Yakataga district, from outcrop on slope of Duktoth River Valley, 200 feet above floor and 25 miles from mouth of river. Coal bed, unnamed; thickness of bed and sample, 4 feet; dip, 35° N.; strike, N. 80° E.; roof and floor, shale. The sample was taken from outcrop by A. G. Maddren (USGS) in August 1913.

Geologic relations are given in Geological Survey Bulletin 592 (p. 148).

SOUTHEASTERN ALASKA REGION

ADMIRALTY ISLAND, HARKRADER MINE

Analyses A43506 and A43507 (p. 68). High-volatile B bituminous coal, Admiralty Island district, from Harkrader mine, a shaft mine on Kootznahoo Inlet, west shore of Admiralty Island. Two samples were collected at the mine by B. D. Stewart (USBM) in June 1928.

delegic relations are given in Geological Survey Bulletins 287 (pp. 151-154) and 824 (pp. 71-72).

MURDER COVE. PROSPECT

Analysis 5796 (p. 68). Coal, Admiralty Island district, from prospect on Murder Cove.

Geologic relations are given in Geological Survey Bulletin 287 (pp. 152-153).

DESCRIPTION OF DELIVERED SAMPLES

By N. H. SNYDER¹ and R. J. SWINGLE²

EXPLANATION OF TABLE OF DESCRIPTION

The data in table 9 were taken from notes made by the persons who took the samples and supplement the description given in the table of

analyses (p. 26).

The delivered samples were collected systematically throughout all deliveries and from storage piles by representatives of the Bureau of Mines and several other Government departments under directions supplied by the Bureau. All delivered samples were analyzed by M. L. Sharp at Anchorage, Alaska. Average analyses for the calendar year are given for these samples.

Table 9.—Description of delivered samples

					1. (, ,
	Approx-	*			1
Region,	imate		Date of	Index	Reference.
town or district,	tons	Place of delivery	delivery	No.	pagein
		race of denvery	denvery	140.	
and mine	delivered				this report
· · · · · · · · · · · · · · · · · · ·	2	3		5	6
			4		
	[
YUKON REGION					
Colorado Station:	·				
Costello Creek	81	Alaska Railroad	1941	1.	30
Do	1.813	Alaska Railroad Fort Richardson and Alaska Railroad	1942	2	
	417	Alaska Railroad	1943	3	F4 (1971)
. <u>P</u> o		Maska Ranroad			. 5 ')
Do	1,235	Fort Richardson	1944	4	
Suntrana:			'		
Suntrana	707	Alaska Railroad	1941		36
	101	Alaska Kamroad		5	- 00
Do		Fort Richardson	1942	6	
Do		do	1943	7	
Do	1,917 3,862 3,611	Alaska Railroad	.1944	0	ľ
	1,000	Alaska Dallara I	1000		my Colle
Do	3,862	Alaska Rauroad	1936		
Do	3.611	do	1937	10	2 64 t
Do	3,574	do	1938	11	
	6,073	do	1939	12	
Do	3,972				
Do	2.654	do	1940	. 13	
Do	4,214 2,186	do	1941	14	1. Admin
Do	0 100	do	1942	15	4.1
	4,100	33 / TOU 1 . 1			V
Do	528	Fort Richardson Alaska Railroad	1944	16	4.547
Do	1,023	· Alaska Railroad	1939	17	
Do	1,151	do	1940	18	1
	1,848	1.	1941	19	
Do	1,040	do		19	
Do	3,616	Alaska Railroad and Ladd Field	1942	20	. Joseph
Do	646 l	Alaska Railroad	1943	21	
Do	784	do	1932	22	
	0 017			23	
Do	2,217	do	1933		
Do	4,116	do	1936	24	
Do	3,776	do	1937	25	
Do	4,123	do	1938	26	
	2,140			4U.	
Do	5,069	do	1939	27	
Do	3 017 (do	1940	28	
Do	5,229	do	1941	29	$[-1,100,I_{\odot}]$
	3,602	do		30	levi i e i e i e
Do	0,002		1942	ðU	11.
And the second second		J	J		
COOK INLET REGION				1	
					1 . 1
Chickaloon:		•			1 1 1 1
		,	1000		
Coal Creek (Navy).	214	do	1928	31	48
Do	88	do	1929	32	
Do	282	do	1930	33	
	398	do	1933	34	
Do					$\log \log \Lambda$

Supervising engineer, Fuel-Inspection Section, Bureau of Mines.
Senior scientific aide, Fuel-Inspection Section, Bureau of Mines.

Region, town or district, and mine		Approx- imate tons delivered	imate tons Place of delivery		Index No.	Reference, page in this report	
J	1	. 2	3	4	5	6	
COOK	NLET REGION—					2.5	
Eska:				1007	0,2	40 .	
Юви	Do	4,542 8,051	Alaska Railroad	1937 1938	35 36	48	
	Do	1 1 413	do	1939 1940	37 38	1.5	
	Do	6,459 37,652	do	1941	39		
	Do Do		do	1942 1943	40 41	1 3 m	
(:)	Do	16,434	do	1944	42		
	Do		do	1938 1938	43 44		
	Do	1,311 12,924	do	1944	45	N.	
•, **	Do Do Do	$\begin{bmatrix} 12,924 \\ 6,692 \end{bmatrix}$	do	1944 1938	46 47		
_ : :::		0,002			1 7	4	
Jonesvil Eve	le: an Jones	2,361	S. S. General Gorgas	1937	48	50	
	Do	250	Lighthouse Service	1927 1930	49 50		
	Do	_ 294	do	1931	51		
	Do	. 36	Signal Corps Lighthouse Service	1931 1933	52 53		
	Do.	349	_ do	1936	54		
4.5	Do Do	303	Bureau of Education Bureau of Indian Affairs	1938 1930	55 56		
	Do	1,836	Bureau of Indian Affairs	1931	57		
	Do	$\begin{array}{c c} 37 \\ 1,462 \end{array}$	Alaska Communication System	1936 1936	58 59	:	
	Do	1,407	Bureau of Indian Affairs Alaska Railroad and Bureau of Indian	1937	60		
	Do	1,660	Affairs.	1938	61		
	Do		Alaska Railroad, Signal Corps, Light- house Service, and Bureau of Indian Affairs.	1939	62		
(G)	Do		Alaska Railroad and Bureau of In- dian Affairs	1940	63	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Do.	358 13,344	Bureau of Indian Affairs Alaska Railroad, Fort Richardson, and Bureau of Indian Affairs.	1941 1942	64 65		
	Do	1	Fort Richardson and Bureau of In- dian Affairs.	1943	66		
	Do	5,019	Signal Corps and Bureau of Indian Affairs.	1944 1938	67 68		
	Do	1	Alaska Railroad and Bureau of Indian Affairs.	1939 1940	69 70		
	Do		Alaska Railroad	1941	71		
	Do	1,875	Alaska Railroad Quartermaster Corps, Fort Richard- son, and Bureau of Indian Affairs. Fort Richardson. Bureau of Indian Affairs and Fort	1942 1943	72 73		
	Do	16,715	i menardson.	1944	74		
	Do		Alaska Railroad and Bureau of Indian Affairs.	1939	75		
	Do		Fort Richardson Alaska Railroad	1940 1943	76 77		
	Do	_ 354:	do	1936 1937	78 79		
	Do Do		do	1937	80		
	Do	220	Lighthouse Service	1928 1931	81		
	Do	. 34.	Bureau of Public Roads	1932	83	}	
	Do	343	Lighthouse Service	1932 1936	84 85		
	Do	2,455	do	1930	86 87		
	Do Do	1.50	do	1931 1936	87 88		
	Do	16,249	do	1937	89		
	Do	18,595 23,167	do	1938 1939	90 91		
	Do	. 32.537	Alaska Railroad and Bureau of Indian	1940	92		
	Do	6,545	Affairs.	1941	93		
	Do	35,992	Alaska Railroad, Bureau of Indian Affairs, and Fort Richardson.	1942	94		

	,		 		,
Region, town or district, and mine	Approx- imate tons delivered	Place of delivery	Date of delivery	Index No.	Reference, page in this report
1	2	3	4	5	6
cook inler region—					era sa vitatora 1 das
Jonesyille—Continued.	39,270	Bureau of Indian Affairs and Fort	1943	95	54
Do	40,060	Richardson. Alaska Railroad, Bureau of Indian Affairs, and Fort Richardson.	1944	96	. 1
Moose Creek (Station): Buffalo Do Do Do Do Do Do Do Do Do	513 35	Alaska Railroad Fort Richardson do Alaska Railroad do Car sample do Alaska Railroad do Alaska Road Commission Fort Richardson Lighthouse Service Bureau of Indian Affairs Fort Richardson do Alaska Railroad Fort Richardson Loghthouse Service Bureau of Indian Affairs Fort Richardson do Alaska Railroad Fort Richardson	1942 1943 1944 1941 1942 1929 1927 1938 1935 1936 1937 1938 1937 1938 1943 1943 1943 1943 1943 1943	97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	56 58 58 58 58 58
Houston	$\begin{array}{c} 74 \\ 130 \\ 114 \end{array}$	Alaska Railroaddo	1937 1939 1938 1939 1939 1937 1938 1939	121 122 123 124 125 126 127 128 129	60·

	Sangg		
and the second of the second o	NL)EX	4
	10.7		; ;
TO TO	age	,	 The
Admiralty Island, coal, analyses	68	Broad Pass depression, coal, rank	Page
mine samples, description	107	Coal beds, description	. 5
Adolph Muller prospect, coal, analysis	30 75	coal field, geologic structure	5
mine sample, description Agglomerating properties, coal, table	22	coal field, geologic structure	8, 30
Alaska, coal, analyses 26 cleaned mechanically, output table		prosect rass prospects, coar ped, sections	73
cleaned mechanically, output	$\frac{12}{13}$	See also Broad Pass.	
consumption	13	Buffalo mine, coal, analyses	56
disposition, table	12	Brooks, A. H., work. 7; Buffalo mine, coal, analyses. delivered samples, description mine samples, description 9 coal bed section 9	110
production, history	10	coal bed, section	98
tables	12	coal bed, section Bureau of Mines, coal investigations	11
canic consumption. disposition, table. imports, table. production, history. tables. value, table. sizes.	12 23	Burdick, L. R., work cited.	. 22
uses	14	"C" bed, coal, analysis	34
uses coal industry, development, factors re- tarding	14	section	79
expansion	14	Calderhead mine, coal, analysis mine sample, description California Creek, coal, analyses	34 77
coal mines, cleaning method	12	California Creek, coal, analyses	32
production table	$\frac{12}{12}$	mine samples, description	76
tarding expansion coal mines, cleaning method. labor data, table production, table value, table.	$\begin{array}{c c} 12 \\ 12 \end{array}$	mine samples, description Candle, coal, analysis mine sample, description	72
coal resourcesAlaska Gulf-Copper River region, coal re-	11	Canyon Creek, coal, analyses	62
Sarves	8	Capps, S. R., work cited	101 8. 9
Alaska Gulf region, coal, analyses 60 mine samples, description 101-coal fields, geologic structure	-68	Capps, S. R., work cited Carbon Creek, coal, analysis	8, 9
coal fields, geologic structure	107	Carbon mine, coal, analyses	101
man	der	mine sample, description Carbon mine, coal, analyses mine samples, description Carbon Mountain, east side, coal, analyses mine samples, description	104
Alaska Packers' Association mine, coal, an-	40	Carbon Mountain, east side, coal, analyses.	62
alysis mine sample, description	82	west side, coal, analyses	62
Alaska Road Commission mine, coal, analysis	30	mine samples, description	102
mine sample, description Alaskan Engineering Commission, work Alaskan Engineering Commission mine, coal, analyses 32.	$\frac{75}{11}$	mine samples, description west side, ooal, analyses mine samples, description west side, ooal, analyses mine samples, description Charley Creek, coal, analysis mine sample, description Chicago Creek, coal, analyses mine samples, description 77 Chicago Creek mine see Chicago Creek Chicago Creek mine See Chicago Creek	73
Alaskan Engineering Commission mine, coal,	[Chicago Creek, coal, analyses26	, 28
analyses 32, American Society for Testing Materials,	34	mine samples, description 72 Chicago Creek mine. See Chicago Creek.	2-73 -
work cited	20	Chickaloon, coal, analyses 44, 46 delivered samples, description 8 mine samples, description 8 Chickaloon (Navy) mine, coal beds, sec- tions 89, 90	3, 48
work cited	44 -89	delivered samples, description	108
Anthracite Ridge outeron, coal bed, section.	87	Chickaloon (Navy) mine, coal beds, sec-	95 95
Apell, G. A., work cited Arctic Ocean beach, coal, analysis	$\frac{11}{26}$	tions89, 90	, 91
mine sample, description	72	See also Chickaloon. Chicken, coal, analyses	.28
mine sample, description	9	mine samples, description	73
"B" bed, coal, analyses	34	Unignik Bay, coal, analyses	40 2–83
"B" bed, coal, analyses section	79	Chipp River outcrop, coal bed, section See also Ikpikpuk River.	70
Bardin bed, coal, analysis	02.1	Christopher proceed and trees	. GA
Barkley, J. F., work cited	22	mine sample, description	103
section Barkley, J. F., work cited Barrett Creek, coal, analyses mine samples, description	60	mine sample, description coal bed, section Christopher's Cabin outerop, coal bed, section	103
Baxter mine, coal, analyses	101 54	See also Falls Creek.	109
Baxter mine, coal, analyses mine samples, description	98	Cleaning, mechanical, output	12
coal bed, sections Berg Lake, See Fourth Berg Lake; Second	98	table	62
		Clear Creek, coal, analyses	103
Bering Lake, coal, analysis	00	Clear Creek outcrops, coal bed, sections	102
Bering River field, coal, analyses.	60	Coal, agglomerating properties, table	22
mine samples, description101-1	.07	analyses, table 26	-69
Berg Lake. Bering Lake, ooal, analysis. mine sample, description	7	classification, by rank	$^{20}_{-21}$
		cleaned machanically production	12
ections	54 98	table consumed in Alaska, source, table delivered. See Delivered coal.	13 13
Billie bed, coal, analysis	28	delivered. See Delivered coal.	
Secucia-	74 40	delivered. See Delivered coal. disposition, table. fixed carbon, determination. imports, table. production, annual, table. data, table. history. value, table.	12
Bluff Point, coal, analyses 85-	86	imports, table	13
mine samples, description	85	production, annual, table	12
	28	history	10
mine samples, description	73	value, table	12

•	-		175
•	Page		Page
Coal—Continued.		East Kushtaka Ridge. See Kushtaka	
rank, symbols indicating	. 24 . 16	Ridge.	40
sampling, for shipment or delivery		Emery bed, coal, analysis	93
volatile matter, determination		Eska coal analyses	48. 50
Coal ash, fusibility, determination		Eska, coal, analyses delivered samples, description	109
Coal Creek (Navy) mine, coal, analyses		l mina gamples description	02.04
delivered samples, description	. 108	Eska bed, coal, analysis. Eska coal group, description Eska Creek, coal, analysis. mine sample, description Eska Creek district, development. Eska mine, coal bed, sections.	48
mine samples, description	91-93	Eska coal group, description	. 4
coal beds, sectionsCoal deposits, description	. 92, 93	Eska Creek, coal, analysis	50
Coal deposits, description	. 2	mine sample, description	94
geologic structure Coal fields, description map	. 2	Eska Creek district, development	00 U1
Coal neids, description	Tiolijani	See also Eska.	95, 94
rocorrog	rolder 7	Evan Jones mine, coal, analyses 50,	59 54
reserves. Coal Harbor mine, coal, analysis. mine sample, description.	40	delivered samples, description1	09-110
mine sample, description	85	mine samples, description	94-96
coal bed, section	85	coal bed, sections	95, 96
coal bed, sectionCoal industry, development	10		-
lactors retarding	11, 14	"F" bed, coal, analysis	34
expansionCoal mines, cleaning method	14	section Falls Creek, coal, analyses mine samples, description. Falls Creek outcrop, coal bed, section	79
Coal mines, cleaning method	12	Falls Creek, coal, analyses	64
labor data, tableproduction, annual, table	$\begin{array}{c c} 12 \\ 12 \end{array}$	Falls Creak autonom and had marking	103
production, annual, table	12	San glas Tolla Charle	103
value, tableCoal reserves, estimates	1 7	See also Falls Creek.	23
investigations	11	Fixed carbon, determination, methods	1 9
Collier, A. J., work cited	8, 10	Fieldner, A. C., work cited Fixed carbon, determination, methods————————————————————————————————————	64
Colorado Station, coal, analyses	28, 30	mine sample, description	103
delivered samples, description	108	mine sample, descriptionFourth Berg Lake outcrop, coal bed, section_	103
investigations. Collier, A. J., work cited. Colorado Station, coal, analyses. delivered samples, description mine samples, description.	73-74	See also Fourth Berg Lake.	1 1
Connel, G. P., work cited Cook Inlet field, coal, analyses	22	C-1	
Cook inlet field, coal, analyses	40, 42	Galena, coal, analysis mine sample, description	30
mine samples, description	40.60	Cotes C O work sited	75
Cook Inlet region, coal, analysesdelivered samples, description1	08-110	Gates, G. O., work cited. Geological Survey, United States Department of the Interior, work cited.	Ą
: mine comples description	85-101 I	ment of the Interior work cited	8, 23
map	Folder	Gilmore, R. E., work cited	22
map. Cook Inlet-Susitna region, bibliography coal deposits, description geologic structure coal reserves Cooper bed, coal, analyses sections	9	Gilmore, R. E., work citedGrant, U. S., work cited	9
coal deposits, description	4		1
geologic structure	* 4	Harkrader mine, coal, analyses	68
coal reserves	. 8	mine samples, description	107
Cooper bed, coal, analyses	40	Harrington, G. L., work cited Healy Creek, coal, analyses mine samples, description	9
sections	85	mine semples description	32 76
Copper Missas Gun region, coar re-	8	Healy Fork coal analyses	32
ServesCopper River region, coal fields, geologic	١	Healy Fork, coal, analyses mine samples, description	76-77
structure	71	Herendeen Bay, coal, analyses	40
map	Folder	Herendeen Bay, coal, analyses mine samples, description	83-85
Costello Creek mine, coal, analyses	28, 30	Hill mine, coal, analyses mine samples, description	34
delivered samples, description mine samples, description coal bed, sections. Cumingham Claim outcrops, coal, analyses.	108	mine samples, description	78-80
mine samples, description	73~74	coal beds, sections Holmes, J. A., work cited Hook Bay mine, coal, analysis	79, 80
Coal Ded, Sections	74	Hoals Port wine and analysis	10
mine complex description	101		82
mine samples, description Cunningham prospect tunnels Nos. 4 and 5, coal, analyses mine samples, description coal bed, sections	101	coal bed, section Houston, coal, analyses delivered samples, description Houston mine. See Houston.	82
coal, analyses	66, 68	Houston, coal, analyses	60
mine samples, description1	06-107	delivered samples, description	110
coal bed, sections10	06, 107	Houston mine. See Houston.	
		Howard & Jesson mine, coal, analyses mine samples, description	56
"D" bed, coal, analysis	34	mine samples, description	99
Dell W II would sided	80	coal beds, sections	99
Section Dall, W. H., work cited David bed, coal, analysis	48	Iditared goal analysis	30
section	93	Iditarod, coal, analysis mine sample, description	75
Delivered coal, analyses	19	IKDIKDUK Kiver, coal, analyses	26
section	108	mine samples, description Ikpikpuk River ourcrop, coal bed, section Ikpikpuk River ourcrop, coal bed, section	70-71
sizes	23	Ikpikpuk River ourcrop, coal bed, section	70
Diamond Creek outcrop, coal bed, section	86		i
See also Kachemak Bay.		Imports, table	13
Distribution, of Alaska coal, table	12	Imports, table Innoko district, coal, analyses mine samples, description	30
Donaldson bed, coal, analyses	81	mine samples, description	75
Dougherty mine, coal, analyses	56	Jarvis Creek area, coal deposits, description.	3
delivered samples, description	110	Jesson mine. See Howard & Jesson mina	3
delivered samples, description Dunkle bed, coal, analyses	28	Johnson, B. L., work cited	9
sections	28 74	Johnson tunnel, coal, analysis	· 40
sections. Dunkle-Camp Creek mine, coal, analysis. mine sample, description.	30 74	mine sample, description	83-84
mine sample, description	74	coal bed, section	84
MIDN had and ambush	این	Jonesville, coal, analyses50,	52, 54
"15" ped, coal, analysis	34	delivered samples, description10	19-110
"E" bed, coal, analysissection	34 79 30	Jaryıs Creek area, coal deposts, description Jesson mine. See Howard & Jesson mine. Johnson, B. L., work cited. Johnson tunnel, coal, analysis mine sample, description	94-96
mine sample description	74	Kachemak Bay, coal, analyses	42
Eskin, H. M., work cited	74 8	mine samples, description	86
Eakin, H. M., work cited East Carbon Mountain. See Carbon	٦	Kaltag, coal, analyses	30
Mountain	. 1	mine samples, description	30

Page	Page
Katalla, coal, analyses 64	
mine samples, description 104	Mount Hamilton, coal, analyses 66 mine samples, description 104-105
Katz, F. J., work cited 9 Kelly bed, coal, analyses 48	105
sections 94	See also Mount Hamilton. Mount McKinley National Park, coal, anal-
Kenai Peninsula, coal beds, description 6	
coal field, geologic structure	mine sample, description 75
Kiana, coal, analysis 26 mine sample, description 71	Mount McKinley National Park district
Killik River, coal, analysis 26	coal, analysis 30 mine sample, description 75
mine sample, description 71	mine sample, description 75 Mount McKinley Park Station, coal, anal-
Kings River, coal, analyses 54	ysis 80 mine sample, description 75
mine samples, description 96–97 Kings River outcrops, coal beds, sections 97	Muller present description 75
See also Kings River	Muller prospect. See Adolph Muller prospect.
Knappen, R. S., work cited9	Murder Cove, coal, analysis 68
Kugruk mme, coar, anarysis 20	mine sample, description107
mine sample, description	
mine samples, description 72	Navy (Chickaloon) mine, coal, analyses 44, 46
coal beds, section72	mine samples, description89:01
Kukpowruk River, coal, analyses 26	coal beds, sections 89, 90, 91 Navy (Coal Creek) mine, coal, analyses 46, 48
mine samples, description 71 Kuskokwim region, coal, analyses 38	delivered samples, description 108
mine samples, description 82	mine samples, description 01_93
	coal beds, sections 92, 93 Nelson Island, coal, analyses 38 mine sample, description 82
map Folder Kushtaka Ridge (east side), coal, analyses 64	mine sample, description
mine samples, description 104	Nenana field, coal, analyses 32-38
and the second s	Nenana field, coal, analyses 32–38 mine samples, description 76–82
Labor data 12	description 1 geologic structure 3 Nenana River, coal, analysis 34
Leeper Creek, coal, analysis 64	Nenana River, coal, analysis 34
mine sample, description 104 LeRoy mine, coal, analyses 56	mine sample, description
mine samples, description 99	Nevada Creek, coal, analysis 66
coal beds, sections 99	mine sample, description105 New Black Diamond mine, coal, analyses_ 56, 58
Lignite beds, sections 73, 78	delivered samples, description 110
Lignite Creek, coal, analyses 32, 34 mine samples, description 77–78	mine samples, description 99-100
Lignite Creek outcrop, coal bed, section 78	New Suntrana mine, coal, analyses 34
See also Lignite Creek.	mine samples, description78-80
Lower Matanuska Valley field, coal, rank. 4	Nicolls, J. H. H., work cited 22
geologic structure 4 Lower tunnel, coal, analysis 40	coal beds, sections 79, 80 Nicolls, J. H. H., work cited 22 North Spaulding bed, coal, analyses 46
mine sample, description	sections 92
coal bed, section84	North Tierney bed, coal, analyses
	Northern Alaska and Seward Peninsula re-
Maitland bed, coal, analyses 48	gions, bibliography
Maitland bed, coal, analyses 48 sections 94	coal reserves8
Mammoth hed coal analyses 32	Northern Alaska region, coal, analyses 26
Martin, G. C., work 7, 8, 9	mine samples, description 70-72 coal deposits, description 2
Matanuska field, coal, analyses 42–58 mine samples, description 87–101	peologic structure 2
development11	mapFolder Nulato, coal, analysis34 mine sample, description78
description 1, 4	Nulato, coal, analysis 34
geologic structure 4	No. 0 bed, coal, analysis50
Matanuska River, coal, analysis	section95
McCauley bed, coal, analysis50	No. 00 bed. coal, analysis 50
McCauley prospect, coal, analysis 50	section
mine sample, description 94	sections 89. 97. 98
McDonald mine, coal, analyses 66 mine samples, description 104	sections 89, 97, 98 No. 2 bed, coal, analyses 28, 42, 50, 54, 56, 58
Meade River, coal, analyses 26	section 97 No. 3 bed, coal, analyses 30, 32, 36, 38, 42, 44,
mine samples, description 71	100. 3 Dect, coal, analyses 50, 32, 36, 38, 42, 44, 50, 56, 58
Meade River mine. See Meade River.	sections81, 89, 95, 99
Meade River prospect. See Meade River. Mechanically cleaned coal, production	sections 81, 89, 95, 99 No. 4 bed, coal, analyses 36, 42, 46, 50, 56
table13	Sections
Mertie, J. B., Jr., work cited	No. 5 Ded, coal, analyses 34, 45, 50, 56
Mine Creek prospects, coal, analyses 40 mine samples, description 84-85	No. 6 bed, coal, analyses 32, 36, 46, 50, 56
mine samples, description 84-85	section80
Mine samples, analyses 19 table 26 collection, method 15 description 70–107 relation to commercial shipments 15 Mineral-methor-free basis shipments 15	No. 7 bed, coal, analyses 56
collection, method15	sections 01 06
description 70-107	No. 10 bed, coal, analyses46. 50
Mineral-matter-free basis, calculation, meth-	80 80 80 No. 7 bed, coal, analyses 56 No. 8 bed, coal, analyses 30, 46, 50 sections 91, 96 No. 10 bed, coal, analyses 46, 50 sections 91, 96 No. 16 bed, coal, analyses 64 No. 18 bed, coal, analyses 64
od21	No. 16 bed, coal, analyses 64
od 21 Moffit, F. H., work cited 8 Moose Creek (Station), coal, analyses 54, 56, 58	ino, 10 ded, coai, analyses 64
Moose Creek (Station), coal, analyses 54, 56, 58	
delivered samples, description 110 mine samples, description 98-100	Old Suntrana mine, coal, analyses 36 mine samples, description 78–80
Morse bed, coal, analyses 32	coal beds, sections 80
Morse bed, coal, analyses 32 Mount Ann, coal, analyses 64, 66 mine samples, description 104	coal beds, sections 80 Olson bed, coal, analyses 48
mine samples, description 104	sections92

Page Part, S. W., work cited 21 Part, S. W., work cited 21 Part, S. W., work cited 27 part, S. W., work cited 27 Pore, G. S., work cited 15, 16 Port Graham, coal, analyses 42 Port Graham, coal, analyses 42 Port Graham outcon, coal bed, section 86	\mathbf{P}_{i}
	Suntrana, coal, analyses
eard Bay, coal, analyses 26	delivered samples, description
mine samples, description 71	delivered samples, description mine samples, description 78
Pope, G. S., work cited 15, 16	Suntrana mine, coal bed, sections
ort Graham, coal, analyses 42	See also Suntrana
mine samples; description 86	Susitna-Cook Inlet region, bibliography
Port Graham outcrop, coal bed, section 86 See also Port Graham.	coal deposits, description geologic structure
Powers Creek, coal, analysis 66	coal reserves
mine sample, description 105	Susitna field, coal, analyses
Powers Creek prospect tunnel, coal bed,	Susitna lowland, coal, rank
section 105 See also Powers Creek.	coal-bearing area, geologic structure
See also Powers Creek.	Symbols, indicating rank of coal, list
Premier coal group, description 4 Premier mine, coal, analyses 58	mulating data and the state of the state of
Premier mine, coal; analyses 58 delivered samples, description 110	Tatlanika Creek, coal, analysis mine sample, description
mine sample, description 100	mine sample, description.
Production, annual, table 12	Thompson Valley prospect, coal, analysis mine sample, description 82
data, table 12	coal beds, sections
history10	Tipple samples, analyses
mechanically cleaned coal 12	table
table 13	Tokun Creek, coal, analysis
value, table12	mine sample, description
Queen Creek, coal, analyses66	Troublesome Gulch outcrop, coal bed, sec-
Queen Creek, coal, analyses 66 mine samples, description 105-106	See also Kachemak Bay.
Queen Creek outcrops, coal beds, sections 105, 106	Trout Creek, coal, analyses as
See also Queen Creek.	Trout Creek, coal, analyses 66, mine samples, description 106—
the self-control of the control of t	Tuck, Ralph, work cited.
Rank, classification of coal by 20	Tyonek, coal, analyses
table 21	mine samples, description
Rawson mine, coal, analyses 56, 58	
delivered samples, description 110 mine samples, description 99-100	Unalakleet, coal, analyses
Roth Property outcrops, coal, analyses 32	mine samples, description
mine samples, description	Unga Island, coal, analysis
Roth-Taylor mine, coal, analysis 32	mine sample, description. United States Department of the Interlor,
mine sample, description 77	United States Department of the Interior,
Russian-American Co., work 10	work cited
	description
Sampling, coal, for shipment or delivery 16	geologic structure
Sampling methods, discussion 15 results 17	geologic structure Upper No. 5 bed, coal, analyses
results	sections
mine sample, description106	Upper Shaw bed, coal, analysis
Selvig, W. A., work cited 23	section
Seward Peninsula and Northern Alaska re-	Uses, of coal
gions, bibliography	37 1 192 44 7
coal reserves 8	Volatile matter, determination, methods
Seward Peninsula region, coal, analyses26, 28 mine samples, description72-73	Land to the case of the second section of the
coal deposits, description 2	Wahrhaftig, Clyde, work cited
geologic structure	Wainwright, coal, analyses
mapFolder	mine samples, description
Sharp, M. L., work 23	Wardall Ridge, coal, analyses
Shield's prospect tunnel, coal, analyses 64	mine samples, description Wardall Ridge outcrops, coal beds, sections
mine samples, description 104	See also Wardall Ridge.
Shipments, commercial, relation to mine	Waring, G. A., work cited
Sizes, coal, delivered 23	West Carbon Mountain. See Carbon
Sleitmut; coal, analyses	Mountain.
mine sample, description	whaters Creek inine, coal, analysis
mith, P. S., work cited 8. 9. 19	mine sample, description
mith, P. S., work cited 8, 9, 19 Southeastern Alaska region, bibliography 9	coal bed, section Wright, C. W., work cited
coai, analyses	TITLESTO, O. W. WOLK OLDER
mine samples, description 107	1
coal beds, description 7	Yakataga, coal, analysis
coal reserves	mine sample, description
mapFolder Southwestern Alaska region, bibliography9	Yanert, coal, analyses mine samples, description75
coal, analyses 40	Yanert mine. See Yanert,
mine samples, description 82-85	Young Creek, coal, analyses
coal fields, geologic structure 6	mine samples description 100-
coal reserves 8	Yukon region, bibliography
mapFolder	coal, analyses 28
map Folder Spaulding bed, coal, analysis 48	delivered samples, description
section 93	1 mine samples, description 73.
section 93 Stanton, F. M., work cited 28 Stevens bed, coal, analysis 28	com deposits, description
Stevens bed, coal, analysis 28 sections 74	coal reservesFol
14	map Fol