Developments in Mineral Deposit Modeling

JAMES D. BLISS, Editor

U.S. GEOLOGICAL SURVEY BULLETIN 2004
CONTENTS

Introduction and overview of mineral deposit modeling, by Dan L. Mosier and James D. Bliss 1

Numerical mineral deposit models, by Richard B. McCammon 6

DEPOSIT MODELS

11d Descriptive model of thorium-rare-earth veins, by Mortimer H. Staatz 13
 Grade and tonnage model of thorium-rare-earth veins, by James D. Bliss 16

19c Descriptive model of distal disseminated Ag-Au, by Dennis P. Cox 19
 Grade and tonnage model of distal disseminated Ag-Au, by Dennis P. Cox and Donald A. Singer 20

25a Grade and tonnage model of hot-spring Au-Ag, by Byron R. Berger and Donald A. Singer 23

26a Grade and tonnage model of sediment-hosted Au, by Dan L. Mosier, Donald A. Singer, William C. Bagby, and W. David Menzie 26

28a.1 Grade and tonnage model of Sierran kuroko deposits, by Donald A. Singer 29

32e Descriptive model of solution-collapse breccia pipe uranium deposits, by Warren I. Finch 33
 Grade and tonnage model of solution-collapse breccia pipe uranium deposits, by Warren I. Finch, Charles T. Pierson, and Hoyt B. Sutphin 36

34f Descriptive model of oolitic ironstones, by J.B. Maynard and F.B. Van Houten 39
 Grade and tonnage model of oolitic ironstones, by Greta J. Orris 41

36a.1 Grade and tonnage model of Chugach-type low-sulfide Au-quartz veins, by James D. Bliss 44

38g Descriptive model of laterite-saprolite Au, by Gregory E. McKelvey 47
 Grade and tonnage model of laterite-saprolite Au, by James D. Bliss 50

Preliminary descriptive deposit model for detachment-fault-related mineralization, by Keith R. Long 52

40a Descriptive model of detachment-fault-related polymetallic deposits, by Keith R. Long 57

References cited 59

APPENDIXES

A. Classification of deposit models by lithologic-tectonic environment 63
B. Locality abbreviations 64
C. Taxonomy used to define the attributes of numerical mineral deposit models 64
D. Worksheets for numerical mineral deposit models 79
E. Minerals identified in solution-collapse breccia pipe uranium deposits 168
FIGURES

1. Sketch of idealized model showing relationship of thorium-rare-earth veins to alkalic rocks and carbonatites 15

2–19. Graphs showing:
 2. Tonnages of thorium-rare-earth veins 17
 3. Thorium-oxide grades of thorium-rare-earth veins 17
 4. Rare-earth-oxide grades of thorium-rare-earth veins 18
 5. Tonnages of distal disseminated Ag-Au deposits 21
 6. Gold grades of distal disseminated Ag-Au deposits 21
 7. Silver grades of distal disseminated Ag-Au deposits 22
 8. Tonnages of hot-spring Au-Ag deposits 24
 9. Gold grades of hot-spring Au-Ag deposits 24
 10. Silver grades of hot-spring Au-Ag deposits 25
 11. Tonnages of sediment-hosted Au deposits 27
 12. Gold grades of sediment-hosted Au deposits 28
 13. Silver grades of sediment-hosted Au deposits 28
 14. Tonnages of Sierran kuroko deposits 30
 15. Copper grades of Sierran kuroko deposits 30
 16. Zinc grades of Sierran kuroko deposits 31
 17. Lead grades of Sierran kuroko deposits 31
 18. Gold grades of Sierran kuroko deposits 32
 19. Silver grades of Sierran kuroko deposits 32
 20. Schematic cross section of a solution-collapse breccia pipe in the Grand Canyon region, showing the general distribution of uranium ore within the pipe 35
 21. Graph showing tonnages of solution-collapse breccia pipe uranium deposits 36
 22. Graph showing uranium-oxide grades of solution-collapse breccia pipe uranium deposits 37
 23. Scatter plot of logarithms of uranium-oxide grade vs. tonnage of uranium ore 38
 24. Diagram of generalized stratigraphic model for oolitic ironstones 40
 25–31. Graphs showing:
 25. Tonnages of oolitic ironstone deposits 41
 26. Iron grades of oolitic ironstone deposits 42
 27. Silica grades of oolitic ironstone deposits 42
 28. Phosphate grades of oolitic ironstone deposits 43
 29. Tonnages of Chugach-type low-sulfide Au-quartz vein deposits 45
 30. Gold grades of Chugach-type low-sulfide Au-quartz vein deposits 45
 31. Silver grades of Chugach-type low-sulfide Au-quartz vein deposits 46
 32. Sketch of idealized cross section of laterite-saprolite Au deposit 47
 33. Graph showing tonnages of laterite-saprolite Au deposits 50
 34. Graph showing gold grades of laterite-saprolite Au deposits 51
 35. Location map of major detachment faults and detachment-fault-related mineral deposits in Arizona, southeastern California, and southernmost Nevada 53
 36. Schematic diagram showing structural position of detachment-fault-related polymetallic mineralization, Ba-F-Mn veins, and lacustrine manganese mineralization in detachment-faulted terranes 54
TABLES

1. Quantization levels for presence/absence of particular mineral deposit 7
2. Quantization levels and associated scores for mineral deposit models 8
3. Worksheet for numerical model of Sn greisen deposits 10
4. Comparison of classification between Prospector II and panel of geologists using the Cox-Singer deposit classification for 124 metalliferous lode deposits in Alaska (Nokleberg and others, 1987) 11
5. Grades and tonnages of distal disseminated Ag-Au deposits 20
6. Grades and tonnages of hot-spring Au-Ag deposits 23
7. Grades and tonnages of sediment-hosted Au deposits 27
8. Grades and tonnages of Sierran kuroko deposits 29
9. Summary statistics of chemical analyses of one selected sample from each of the five solution-collapse breccia pipe uranium deposits 38
10. Grades and tonnages for detachment-fault-related polymetallic deposits 56
GRADE AND TONNAGE MODEL OF CHUGACH-TYPE LOW-SULFIDE Au-QUARTZ VEINS

By James D. Bliss

COMMENTS Vein deposits in the Chugach National Forest, Alaska, have gross deposit characteristics that are consistent with the descriptive model for low-sulfide Au-quartz veins (Berger, 1986c). However, grade and tonnage data collected from these deposits during the preparation of the quantitative mineral resource assessment of undiscovered mineral deposits in the Chugach National Forest showed that the typical deposit has about half the tonnages and half the Au grades as those for low-sulfide Au-quartz veins elsewhere (Bliss, 1986). An important regional aspect of these deposits appears to be the absence of association with batholithic-scale intrusive bodies, as is commonly found with low-sulfide Au-quartz vein deposits elsewhere. These low-sulfide Au-quartz veins are a subtype, here referred to as “Chugach-type low-sulfide Au-quartz veins.” They are located along faults and joints without a “consistent association with igneous activity” (Goldfarb and others, 1986). Major regional faults with mineralization are absent in the Chugach National Forest; such faults are important sites of mineralization for these low-sulfide Au-quartz vein deposits elsewhere. Fluid inclusion data for this area suggest that these deposits were deposited by low-salinity fluids generated by low-grade metamorphism (Goldfarb and others, 1986). The host rocks in the Chugach National Forest are metamorphosed to medium greenschist facies. A distinctive local characteristic of these deposits is that they exhibit much less wall-rock alteration (Goldfarb and others, 1986) than low-sulfide Au-quartz veins elsewhere (Berger, 1986c).

Data for Chugach-type low-sulfide Au-quartz veins are from deposits in or adjacent to the Chugach National Forest and may bias the grade and tonnage model in ways not identified. Deposit definition was made using the same spatial rules concerning proximity of workings as in the model for low-sulfide Au-quartz veins (that is, properties within one mi of each other are aggregated) (Bliss, 1986). Data sources are from Jansons and others (1984) and the U.S. Geological Survey computerized data base on mineralized occurrences, prospects, and mines (the Minerals Resources Data System (MRDS)). In some cases, an estimate of tonnage was made using the technique developed by Bliss (1988). Significant correlation is present between Ag and Au grades ($n=21, r=0.77$); this is also the case for low-sulfide Au-quartz vein deposits (Bliss, 1986). More Ag grades were found in Chugach-type low-sulfide Au-quartz vein deposits (70 percent) than in low-sulfide Au-quartz vein deposits (10 percent) (Bliss, 1986). When Ag grades are reported for Chugach-type low-sulfide Au-quartz vein deposits, it is typically from 6 to 40 percent of Au grade compared with 11 to 89 percent for low-sulfide Au-quartz vein deposits. The data giving the ratio of Ag to Au grades between the main deposit type and the subtype are not significantly different at the 5 percent level (Mann-Whitney U Test). See appendix B for locality abbreviations. See introduction for explanation of the grade and tonnage model as shown in figures 29–31.
Chugach-type low-sulfide Au-quartz veins

Figure 29. Tonnages of Chugach-type low-sulfide Au-quartz vein deposits.

Figure 30. Gold grades of Chugach-type low-sulfide Au-quartz vein deposits.
Figure 31. Silver grades of Chugach-type low-sulfide Au-quartz vein deposits.

<table>
<thead>
<tr>
<th>Name</th>
<th>Country</th>
<th>Name</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska Homestake</td>
<td>USAK</td>
<td>Imperial</td>
<td>USAK</td>
</tr>
<tr>
<td>Cameron-Johnson</td>
<td>USAK</td>
<td>Kana</td>
<td>USAK</td>
</tr>
<tr>
<td>Cliff-Sealy</td>
<td>USAK</td>
<td>Kenai Lu</td>
<td>USAK</td>
</tr>
<tr>
<td>Crown Point--Fall Creek</td>
<td>USAK</td>
<td>Little Giant</td>
<td>USAK</td>
</tr>
<tr>
<td>Cube</td>
<td>USAK</td>
<td>Mayfield</td>
<td>USAK</td>
</tr>
<tr>
<td>Donohue</td>
<td>USAK</td>
<td>McMillan</td>
<td>USAK</td>
</tr>
<tr>
<td>Downing</td>
<td>USAK</td>
<td>Mineral King</td>
<td>USAK</td>
</tr>
<tr>
<td>Gold King</td>
<td>USAK</td>
<td>Monarch-Bahrenburg</td>
<td>USAK</td>
</tr>
<tr>
<td>Granite Lake (1)</td>
<td>USAK</td>
<td>Nearhouse</td>
<td>USAK</td>
</tr>
<tr>
<td>Granite Lake (2)</td>
<td>USAK</td>
<td>Primrose</td>
<td>USAK</td>
</tr>
<tr>
<td>Granite-Snowball</td>
<td>USAK</td>
<td>Ramsey-Rusherford</td>
<td>USAK</td>
</tr>
<tr>
<td>Heaston-James</td>
<td>USAK</td>
<td>Rough & Tough</td>
<td>USAK</td>
</tr>
<tr>
<td>Hercules-Big Four</td>
<td>USAK</td>
<td>Seward Bonanza</td>
<td>USAK</td>
</tr>
<tr>
<td>Hirshey-Carlson</td>
<td>USAK</td>
<td>Tomboy-Lansing</td>
<td>USAK</td>
</tr>
<tr>
<td>Hirshey-Lucky</td>
<td>USAK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DEPOSITS

<table>
<thead>
<tr>
<th>Name</th>
<th>Country</th>
<th>Name</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska Homestake</td>
<td>USAK</td>
<td>Imperial</td>
<td>USAK</td>
</tr>
<tr>
<td>Cameron-Johnson</td>
<td>USAK</td>
<td>Kana</td>
<td>USAK</td>
</tr>
<tr>
<td>Cliff-Sealy</td>
<td>USAK</td>
<td>Kenai Lu</td>
<td>USAK</td>
</tr>
<tr>
<td>Crown Point-Fall Creek</td>
<td>USAK</td>
<td>Little Giant</td>
<td>USAK</td>
</tr>
<tr>
<td>Cube</td>
<td>USAK</td>
<td>Mayfield</td>
<td>USAK</td>
</tr>
<tr>
<td>Donohue</td>
<td>USAK</td>
<td>McMillan</td>
<td>USAK</td>
</tr>
<tr>
<td>Downing</td>
<td>USAK</td>
<td>Mineral King</td>
<td>USAK</td>
</tr>
<tr>
<td>Gold King</td>
<td>USAK</td>
<td>Monarch-Bahrenburg</td>
<td>USAK</td>
</tr>
<tr>
<td>Granite Lake (1)</td>
<td>USAK</td>
<td>Nearhouse</td>
<td>USAK</td>
</tr>
<tr>
<td>Granite Lake (2)</td>
<td>USAK</td>
<td>Primmrose</td>
<td>USAK</td>
</tr>
<tr>
<td>Granite-Snowball</td>
<td>USAK</td>
<td>Ramsay-Ruherford</td>
<td>USAK</td>
</tr>
<tr>
<td>Heaston-James</td>
<td>USAK</td>
<td>Rough & Tough</td>
<td>USAK</td>
</tr>
<tr>
<td>Hercules-Big Four</td>
<td>USAK</td>
<td>Seward Bonanza</td>
<td>USAK</td>
</tr>
<tr>
<td>Hirshey-Carlson</td>
<td>USAK</td>
<td>Tomboy-Lansing</td>
<td>USAK</td>
</tr>
<tr>
<td>Hirshey-Lucky</td>
<td>USAK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 31. Silver grades of Chugach-type low-sulfide Au-quartz vein deposits.