Distribution of Gold, Copper and Some Other Metals in the McCarthy B–4 and B–5 Quadrangles, Alaska

By E. M. MacKevett, Jr., and James G. Smith

GEOLOGICAL SURVEY CIRCULAR 604

United States Department of the Interior STEWART L. UDALL, Secretary

Geological Survey William T. Pecora, Director

Free on application to the U.S. Geological Survey, Washington, D.C. 20242

CONTENTS

	Page	
Abstract	1 1 1 2 3 3 3 6	GeologyContinued Distribution of metalsContinued Antimony

ILLUSTRATIONS

Page

Page

6

6

6

7

7

7

Figure 1. Index map showing location of the McCarthy $B-4$ and	
B-5 quadrangles	2
Generalized geologic map showing sample locations	
in the McCarthy B-4 and B-5 quadrangles	4

TABLES

Page

Table 1. Analyses of rocks, altered zones, and lodes from the	
McCarthy B-4 and B-5 quadrangles	8
2. Analyses of stream-sediment samples from the	
McCarthy B-4 and B-5 quadrangles	18
זו	

Distribution of Gold, Copper, and Some Other Metals in the McCarthy B–4 and B–5 Quadrangles, Alaska

By E. M. MacKevett, Jr., and James G. Smith

Abstract

The main mineral commodities in the McCarthy B-4 and B-5 quadrangles, eastern Alaska, include copper, gold, silver, antimony, molybdenum, and arsenic. Analyses of atream-sediment and rock samples, and related geologic investigations, provide data on the metal contents of the previously known deposits, of several newly found deposits, of stream-sediment samples, and of many of the rocks and altered zones. Some of the newly found deposits probably merit more thorough examinations.

INTRODUCTION

Geochemical investigations were conducted during the summer of 1967 in the McCarthy B-4 and B-5 15-minute quadrangles, Alaska, and in small adjacent parts of the McCarthy A-4 and A-5 quadrangles, as part of the U.S. Geological Survey's Heavy Metals Program. The B-4 and B-5 quadrangles, which are centered about 250 miles east of Anchorage (fig. 1), include parts of the southern Wrangell Mountains and the contiguous Chitina Valley. The landforms of the B-4 and B-5 quadrangles have been strongly modified by glaciation and range in altitude from about 1,400 to 9,265 feet. Most of the mountainous regions are sparsely covered by vegetation and have good outcrops, but bedrock in the lowlands is generally obscured by diverse vegetation and extensive surficial deposits. The investigators utilized helicopter support concomitantly with other geologic studies in the region. The fieldwork consisted of collecting 105 stream-sediment samples and 146 samples from veins, altered zones, and rocks, G. R. Winkler ably assisted in the sampling. The samples were sieved to -180 mesh and analyzed in U.S. Geological Survey laboratories for gold by atomic absorption methods and for 33 other elements by semiquantitative spectroscopy. In addition to sampling virgin outcrops, numerous samples were collected from mines and prospects to augment the study of the region's mineral deposits and the interpretation of the general sampling. Results of previous geologic studies in the B-4 and B-5 quadrangles are mainly incorporated in reports by Moffit and Capps (1911), Moffit (1938), and MacKevett (1965).

GEOLOGY

Geologic Setting

The McCarthy B-4 and B-5 quadrangles are underlain largely by thick sequences of sedimentary and

volcanic rocks that range in age from Permian and Permian(?) to Cretaceous and by diverse Quaternary surficial deposits (fig. 2). The older rocks are cut by Tertiary intrusive rocks, and near the northeast corner of the B-4 quadrangle are overlain by Tertiary continental sedimentary rocks that contain intercalated lava flows. The pre-Cretaceous rocks mainly occupy a northwest-trending belt along the south flank of the Wrangell Mountains. The southern part of this belt is overlapped by Cretaceous marine sedimentary rocks and by surficial deposits, the northern part by volcanic rocks of the extensive Wrangell Lava, The oldest rocks in the quadrangles are submarine lava flows and their derivative volcaniclastic rocks, which together constitute the Station Creek Formation of the Skolal Group (Smith and MacKevett, 1968). These rocks are slightly metamorphosed and are probably Permian in age. They are conformably overlain by slightly metamorphosed fossiliferous Permian rocks, the Hasen Creek Formation of the Skolal Group (Smith and MacKevett, 1968). Triassic rocks are represented by a local thin remnant of unnamed Middle Triassic sedimentary rocks; by extensive basalt flows, the Nikolai Greenstone of late Middle and (or) early Late Triassic age; by Late Triassic carbonate rocks, the Chitistone and Nizina Limestones; and by carbonaceous shales, cherts, and impure limestones of the Late Triassic part of the McCarthy Formation, Early Jurassic rocks, chiefly spiculites and shales, of the upper member of the McCarthy Formation are sparsely distributed in the northern parts of the B-4 and B-5 quadrangles. The pre-Cretaceous rocks were folded and faulted during the major orogeny of the region, near the close of the Jurassic or in the Early Cretaceous; most major structures are related to this period of deformation. Cretaceous clastic sedimentary rocks, largely of shallow marine origin, overlie the older rocks with a strong angular unconformity and are widely distributed throughout the southern parts of the B-4 and B-5 quadrangles (Jones and MacKevett, 1968). Quaternary surficial deposits, largely of fluvioglacial derivation, cover most low parts of the quadrangles.

Intrusive rocks in the quadrangles include gabbro, granodiorite, and altered felsic hypabyssal rocks. The gabbro is Permian or Triassic in age, and is confined to terrane underlain by Skolai Group rocks; it

.

Figure 1.—Index map showing location of the McCarthy B-4 and B-5 quadrangles.

generally forms small discordant or concordant plutons. The granodiorite is Tertiary in age and forms small discordant stocks near Williams, Andrus, and Pyramid Peaks (fig. 2). The hypabyssal rocks, the youngest intrusives in the quadrangles, are also Tertiary. They form small stocks and numerous dikes and sills that commonly cut Cretaceous rocks. Most of the hypabyssal rocks are porphyritic rhyodacite and dacite that in places have been extensively altered to clay minerals, sericite, and chlorite. Intruded rocks near the gabbro, in particular those adjacent to the granodiorite, have been metamorphosed, chiefly to hornfels.

Hydrothermally altered zones, a few inches to 250 feet wide, are common in the eastern part of the B-4 quadrangle, where they are localized mainly along faulte. The altered zones consist largely of copiously iron-stained yellowish- or reddish-brown leached or gougy material.

For the purpose of this report, formations that contain similar rock types have been grouped as follows in figure 2 regardless of their geologic ages:

- All surficial deposits, such as alluvium, talus, rock glaciers, and diverse fluvioglacial deposits, and areas covered by glacier, snowfields, and water.
- Volcanic and volcaniclastic rocks that include rocks of the Nikolai Creenstone and Station Creek Formation and basal flows of Wrangell Lava.
- Detrital clastic rocks, mainly sandstone, shale, and mudstone. These rocks are largely Cretaceous, but they include subordinate Permian, Triassic, Jurassic, and Tertiary rocks.
- Carbonate rocks of the Chitistone and Nizina Limestones.

- 5. Gabbro,
- 6. Intermediate intrusives, mainly granodlorite.
- 7. Felsic intrusive rocks of Tertlary age.

Summary of Economic Geology

The general region is best known for the massive copper sulfide lodes at the Kennecott mines, which are mainly in the nearby McCarthy C-5 guadrangle. For many years before 1938, when large-scale mining ceased at Kennecott, these mines were among the world's premier copper producers with a total production of about 1.2 billion pounds of copper and a significant byproduct of silver. The Kennecott lodes formed near the base of the Childstone Limestone within a few hundred feet of its contact with the subjacent Nikolal Greenstone, Several small copper mines and prospects are localized in the basal Chitistone strata in the 8-4 and B-5 quadrangles (fig. 2), but none have yielded significant production. Other copper deposits in these quadrangles consist of chalcopyrite, bornite, or chalcocite-rich veins in the Nikolai Greenstone, as exemplified by the Nikolai mine and the Radovan greenstone prospect, and of native copper and tenorite lodes localized between Nikolai Greenstone flows and in amygdules at the Erickson mine (fig. 2). Production from these deposits has been negligible. Notive copper is sparsely distributed in a few of the Nikolal Greenstone amygdaloids, and copper sulfides are scattered along a fault zone that cuts Chitistone Limestone and Nikolai Greenstone at the Radovan low-contact prospect (fig. 2). Chalcopyrite is a minor to trace constituent at the Taylor, Porphyry Mountain, and Crumb Gulch prospects (fig. 2).

Gold valued at close to a million dollars has been recovered from the placers of Dan and Chititu Creeks and their tributaries. The few known gold lodes are in Tertiary intrusive rocks or in adjacent hornfelsed Cretaceous rocks.

Antimony has not been recovered from either the B-4 or the B-5 quadrangles, but stibulte is the major ore mineral of the Crumb Gulch lodes and a minor constituent of the Radovan low-contact prospect.

Molybdenite occurs in a lenticular quartz vein cutting Tertiary intrusive rocks at the Porphyry Mountain prospect (fig. 2) and as a sparse constituent of a few small quartz veins that cut Cretaceous rocks south of Dan Creek, Molybdenite-quartz float is widespread in the moraines of Canyon Creek Glacier, but its lode source probably is in the McCarthy B-3 quadrangle.

Silver is associated with the copper-sulfide and copper-iron-sulfide lodes and with the native copper and gold deposits. No commodities other than the aforementioned are known to exist in potentially recoverable quantities in the mines and prospects of the Mc-Carthy B-4 and B-5 quadrangles.

Distribution of Metals

The significant metals in the quadrangles, gold, copper, silver, antimony, molybdenum, and arsenic, are discussed with regard to their distribution in (1) previously known deposits, (2) virgin outcrops, including veins, altered zones, and rocks, and (3) stream sediments. Analytical data for the rock, veins, and altered zone samples are given in table 1; similar data for the stream-sediment samples are given in table 2. The sample locations are shown in figure 2.

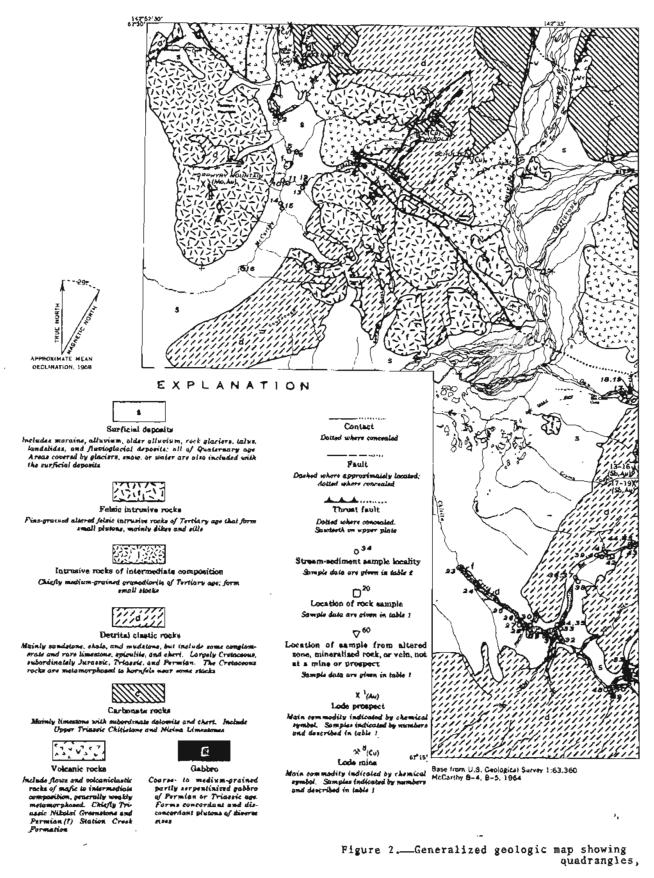
Samples from the known deposits do not necessarily represent the highest grade material available from the deposits. Several of these samples were taken to determine the extent of mineralized rock away from the lodes or to test structures that are not obviously mineralized. Most samples of rocks, altered zones, and veins were grab samples, although several chip or channel samples were taken at the mines and prospects and from the altered zones. The stream-sediment samples represent the finest grained material available at the sample site. Not enough sample information is available to determine adequately the background distribution of metals in the diverse rocks of the quadrangles. Consequently, the designation of anomalous values is somewhat arbitrary and is based on limited analytical data for the local rocks and on information obtained from the literature.

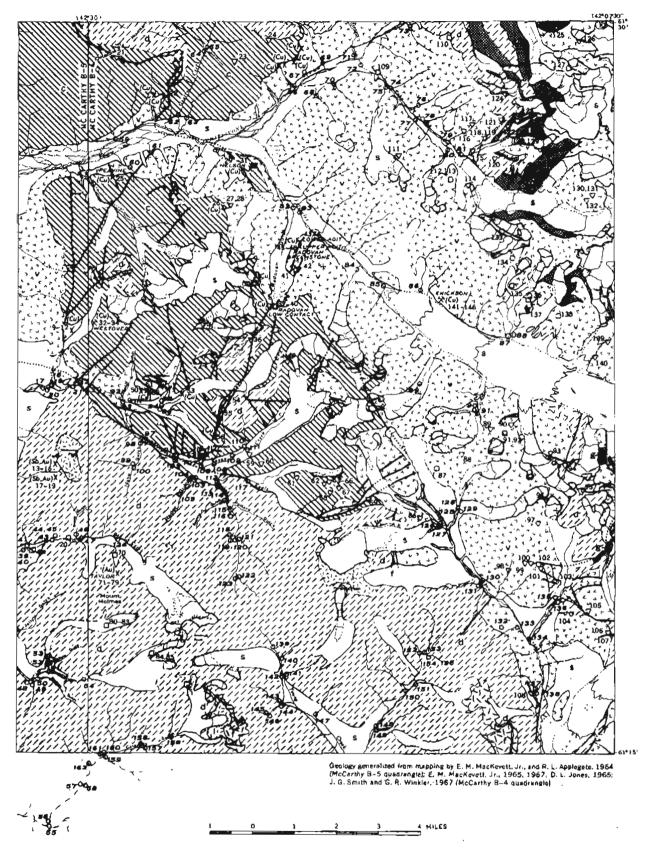
Gold

The highest concentration of gold, 66.0 ppm (parts per million), was detected in a channel sample $(16)^{1/2}$ from the prospect north of Crumb Gulch. A few other samples from this prospect also contained anomalous amounts of gold. Samples from other known deposits that contained abnormal concentrations of gold are from the Taylor prospect (as much as 15.4 ppm (74)), and the Porphyry Mountain prospect.

The richest sample from a deposit not previously known is from slightly altered Station Creek volcaniclastic rock collected northeast of Canyon Creek. This sample contained 5.2 ppm gold (103). Samples from altered zones near Canyon Creek (87, 108) and from stibnite-quartz veins north of Eagle Creek (63) contained gold in excess of 1 ppm. Several lesser gold anomalies, reflected by samples that contained between 0.1 and 1 ppm gold, are from altered zones elsewhere in the quadrangles.

Stream-sediment sampling detected small anomalous concentrations of placer gold in most of the main drainages. Samples from several of the streams that have been worked for placer gold and from which gold can be panned fairly readily yielded surprisingly low gold values. This is probably attributable to the vagarles of sampling and possibly to the size distribution of the placer gold.


Some draInages not previously known to contain placer gold, such as those of Canyon and Toby Creeks and the Chitistone River, showed minor gold anomalies in their stream sediments. The highest gold concentration detected in the stream-sediment samples, 9.6 ppm (86), was from a stream along the north side of the Giacier Creek Glacier west of the Erickson mine.


Copper

Copper is the major valuable metal at most mines and prospects in the quadrangles. Many samples from copper deposits contained copper in excess of 20,000 ppm, the upper limit reported in the analytical results. Undoubtedly, samples that contain similar quantities of copper could be obtained by selective sampling at any of the known copper deposits. Minor and probably insignificant amounts of copper were detected in samples from some of the prospects for other metals.

Four deposits that contain possibly significant amounts of copper were found in Nikolai Greenstone terrane in the southeastern part of the B-4 quadrangle. The first of these deposits consists of secondary copper minerals that locally coat fractures in sheared greenstone adjacent to an altered zone 250 feet wide. A sample from this deposit contained 15,000 ppm copper (91), but a composite grab sample from the altered zone revealed only negligible amounts of ore metals (90). At the second locality, several narrow shear zones contain sporadically distributed secondary copper minerals. A sample of the richest appearing material in these zones carried 20,000 ppm copper (94). The third deposit comprises chalcocite and secondary copper minerals that form intermittent fracture fillings throughout a fault zone 6 feet wide. A selected sample from this deposit carried more than 20,000 ppm copper (96). The fourth deposit contains secondary copper minerals throughout a mineralized zone 1-2 feet thick that is enclosed in a fault zone 15 feet thick. A sample from the mineralized zone contained more than 20,000 ppm copper (108).

 $[\]frac{1}{N}$ Numbers in parenthese refer to sample numbers given in table 1 or 2.

sample locations in the McCarthy B-4 and B-5 Alaska.

Two copper deposits were found in the northeastern part of the B-4 quadrangle. One consists of spottily distributed azurite and malachite in a fault zone 1-4 feet thick that cuts the Nikolai Greenatone. A sample selected from the copper-enriched part of the fault zone contained 20,000 ppm copper (111). The other deposit consists of copper-stained patches that are scattered throughout an altered aureole of Station Creek volcaniclastic rocks contiguous to a gabbro pluton. A composite grab sample representative of the mineralized patches contained 20,000 ppm copper (129). A few other samples from altered zones in the B-4 quadrangle carried minor anomalous amounts of copper.

Native copper is concentrated in some of the gold placers of the region, generally in the form of small nuggets, but rarely as large slabs weighing from several tens to several hundred pounds. The placer deposits, however, probably do not contain enough copper to be exploited.

Many of the stream-sediment samples contained anomalous amounts of copper in concentrations of as much as 300 ppm. Most of the anomalous samples were from Toby Creek and from Glacier Creek and its tributaries,

Silver

Silver is chiefly associated with the copper deposits of the region. Except for the uncommon native silver associated with native copper, no discrete silver minerals were recognized in the deposits. The highest detected silver concentration, 100 ppm, was in a sample of float collected below the Radovan low-contact prospect (40). The second richest silver sample, from the native copper-tenorite lode at the Erickson mine, contained 70 ppm silver (142). Some samples from the Nelson prospect, Westover mine, the Radovan greenstone prospect, and the prospect west of Boulder Creek contained 50 ppm silver (29-33, 45, 46, 48). Other samples from these and other known copper deposits, from the prospect north of Crumb Gulch, and from the Taylor prospect carried lesser anomalous amounts of silver.

The highest silver content detected in the newly found deposits, 50 ppm, was from a copper deposit in the southeastern part of the B-4 quadrangle (108). Samples from the other copper deposits found in the eastern part of the B-4 quadrangle carried subordinate amounts of silver.

Four of the stream-sediment samples contained anomalous amounts of silver. The highest silver concentration, 5 ppm, was in a sample from Glacier Creek below the Erickson mine (85). Samples that contained 0.7 ppm silver were collected from the Chitlstone River near the northern border of the B-4 quadrangle (73), from Toby Creek (79), and from Rader Guich, a tributary of Dan Creek (105).

Antimony

Stibnite is the major ore mineral at the prospects north and south of Crumb Gulch. It occurs mainly in veins localized in a contact-metamorphic aureole of Cretaceous shales that have been converted to hornfels, or less extensively, in veins that cut granodiorite. Several samples representative of the veins at the Crumb Gulch prospects contained more than 10,000 ppm antimony, the upper limit that was reported in the analyses (13, 14, 17-19). Stibnite has been reported from veins at the Radovan low-contact prospect (Sainsbury, 1951, p. 15), and tetrahedrite probably is a rare constituent of many of the copper lodes.

Several subparallel stibuite-quartz veins as much as 2 feet thick and a few antimony-bearing altered zones as much as 6 feet thick were found cutting Nizina Limestone north of Eagle Creek. The stibuite forms scattered needlelike crystals or local high-grade masses in the veins. The extent of the veins along their strikes could not be determined because of surficial cover. Samples representative of the higher grade parts of these deposits contained more than 10,000 ppm antimony (62, 65, 66). A sample of altered material from a fault zone, 10 feet wide, cutting Nizina Limestone north of Texas Creek contained 1,500 ppm antimony (55). Samples from several other altered zones and from a few mines and prospects contained between 100 and 200 ppm antimony. A sample of mineralized breccia float collected from Texas Creek contained more than 10,000 ppm antimony (59). No anomalous concentrations of antimony were found in any of the stream-sediment samples.

Molybdenum

The only significant concentrations of molybdenum were in samples from the Porphyry Mountain molybdenum-gold prospect. At this prospect, molybdenite forms large flakes that generally are localized along selvages of a lenticular quartz vein that cuts Tertiary intrusive rocks. Most samples from the Porphyry Mountain prospect contained molybdenum in excess of 2,000 ppm, the highest concentration reported in the analyses (1-3, 6, 7). Molybdenum in amounts between 7 and 50 ppm was reported in samples from many of the mines, prospects, and altered zones of the region. A float sample of altered hornfels laced with quartz veinlets that was collected on a rock glacier southeast of Andrus Peak contained 100 ppm molybdenum (83).

Five of the stream-sediment samples contained 5 or 10 ppm molybdenum. Two of these samples are from tributaries of the Chitistone River near the western boundary of the B-4 quadrangle (60, 64). One is from a tributary of Canyon Creek (136), and the two others are from the headwaters of Young Creek (141, 142).

Arsenic

Anomalous amounts of arsenic were detected in samples from many of the known mines and prospects and from a few of the altered zones. Several samples from the Crumb Gulch antimony-gold prospects, where realgar and subordinate orpiment are localized in the veins, contained arsenic in excess of 10,000 ppm, the highest concentration reported in the analyses (14-17, 19). A sample from the Nelson prospect also contained more than 10,000 ppm arsenic and probably indicates enargite and tennantite in the deposits (31). Other high concentrations of arsenic were found in samples from the Westover mine, where arsenic probably is a constituent of sulfosalts, from the Radovan low-contact prospect, which contains realgar, and from a copper prospect south of Nikolai Butte (52).

The richest arsenic sample from a deposit not previously known contained 7,000 ppm arsenic; this sample was from a copper deposit in sheared Nikolai Greenstone (91). Only two of the stream-sediment samples revealed anomalous amounts of arsenic. One, from Toby Creek near its junction with the Chitistone River, contained 700 ppm arsenic (72); the other, from Rader Gulch, contained 300 ppm arsenic.

Other metals

Minor anomalous concentrations of many of the other metals that were sought in the semiquantitative spectrographic analyses were found both in mineralized rock samples and stream-sediment samples. Probably the most significant of these anomalous concentrations is tungsten that is associated with antimony deposits at the Crumb Gulch prospects and north of Eagle Creek. A sample from the prospect south of Crumb Gulch contained 10,000 ppm tungsten (19), and a sample from the stibnite-rich veins north of Eagle Creek contained 7,000 ppm tungsten (65).

A selected sample from a narrow altered zone in basal Chitistone Limestone at a copper prospect south of Nikolai Butte yielded 15,000 ppm lead, 10,000 ppm zinc, and 300 ppm cadmium (52).

SUMMARY AND SUGGESTIONS FOR PROSPECTING

The McCarthy B-4 and B-5 quadrangles contain numerous copper deposits, many of which carry subordinate amounts of silver, and a few deposits of gold, antimony, molybdenum, and arsenic. The geochemical and related geological investigations in the quadrangles provide additional information on the distribution of metals in known deposits as well as data on the newly found deposits. The investigations also indicate a few areas that probably merit additional examination.

Samples from some of the known deposits revealed concentrations of a few metals not previously reported, such as tungsten at the Crumb Gulch prospects and lead and zinc at a prospect south of Nikolai Butte. The apparently most significant of the previously unknown deposits are the copper lodes in the eastern part of the B-4 quadrangle and the stibuite lodes north of Eagle Creek. Our investigations do not provide adequate data on the size and grade of these deposits nor accurate appraisals of their potentials. Some of these deposits may justify further examinations. Other potential exploration targets in the B-4 quadrangle are the numerous altered zones, some of which are extensive, and the basal conglomerate of the Nikolai Greenstone, which contains abundant pyrite. Most of our samples from the altered zones and the conglomerate had low metal contents, but detailed sampling might disclose altered zones or parts of the conglomerate that have economic potential.

The minor gold anomalies in streams not previously known to contain placer gold, such as Toby and Canyon Creeks and the Chitistone River, and in altered rocks from near Canyon Creek, might warrant additional study as possible clues to large, low-grade bedrock gold sources. Likewise, more thorough streamsediment sampling of the drainages of Toby, Canyon, and Giacier Creeks may lead to the discovery of additional copper deposits. Additional sampling and a thorough assimilation of all available sample data could conceivably disclose pathfinder elements that would aid in prospecting the region.

REFERENCES CITED

- Jones, D. L., and MacKevett, E. M., Jr., 1968, Summary of Cretaceous stratigraphy in part of the McCarthy quadrangle, Alaska: U.S. Geol. Survey Bull. 1274-K (in press).
- MacKevett, E. M., Jr., 1965, Preliminary geologic map of the McCarthy B-5 quadrangle, Alaska: U.S. Geol. Survey Misc. Geol. Inv. Map I-438, scale 1:63,360.
- Moffit, F. H., 1938, Geology of the Chitina Valley and adjacent area, Alaska: U.S. Geol. Survey Bull. 894, 137 p.
- Moffit, F. H., and Capps, S. R., 1911, Geology and mineral resources of the Nizina district, Alaska: U.S. Geol, Survey Buil. 448, 111 p.
- Sainsbury, C. L., 1951, Geology of the Nelson and Radovan copper prospects, Glacier Creek, Alaska: U.S. Geol. Survey open-file report, Oct. 1951, 18p.
- Smith, J. G., and MacKevett, E. M., Jr., 1968, The Skolai Group in the McCarthy B-4, C-4, and C-5 quadrangles, Wrangell Mountains, Alaska: U.S. Geol. Survey Bull. 1274-Q (in press).

[Analyses by semiquantitative spectrographic methods, except for Au which was analyzed by 0.5, 0.3, 0.2, 0.15, 0.1, and so forth. N, not detected; L, detected but below limit of by C. L. Forn, D. J. Grimes, R. T. Hoskins, and E. L. Moiser. Atomic absorption analyses Looked for, but not detected: Cd, Hg, La, Pd, Pt, Ta, and Te; exceptions: Cd, 300 ppm in and 140; 20 ppm in several other samples. Sample locations shown in fig. 2. Sc was

Sample							Part	s p	er 1	nill :	ion				
	No. ACI	No.	Ag	As	Au	В	Ba	Be	Bi	Co	Cr	Cu	Мо	Mn	NЪ
1 2 3 4 5	027 028 029 030 031	67AMK55 56 57 58 59	L L 0.5 L L	200 L 200 200	0.2 .3 <.02 .2 .6	L L 10 10 10	20 200 200 30 10	N L 1 N N	N N 10 10 L	N N 5 N N	N N N N	20	>2,000 >2,000 >2,000 2,000 2,000 500	10 100 70 20 30	10 L L L L
6 7 8 9 10	032 033 009 082 083	60 61 .2+23 67ASj228 229	1 1 3 5	200 L N N N	2.4 .9 <.02 .02 .04	10 10 15 10 L	30 30 70 50 20	N N L N	10 N N N N	N 50 50 70	N N 500 30 30		N	50 15 1,000 1,000 1,000	
11 12 13 14 15		230 67AWK60 67AMK99 100 101	L 50 1 2 15	N 7,000 >10,000 >10,000	<.02 .1 3 11 2.8	10 10 150 50 50	N 70 700 500 500	N N L N N	N N N N	15 70 10 5 50	10 30 70 30 50	100 >20,000 20 30 200	N 10 7 5 N	500 1,000 700 50 500	L L 10 L L
16 17 18 19 20	064 058 059 060 146	104 93 95 98 67ASj294A	N N	<pre>>10,000 >10,000 10,000 >10,000 >10,000 N</pre>	66.0 .08 .1 .2 <.02	150 70 70 70 30	700 700 700 500 700	1 1 1	N N N L	5 15 20 5 10	70 50 30 30 20	30 50 50 20 100		70 700 700 1,000 1,000	10
21 22 23 24 25	144	67AMK230 67AWK120 67AMK242 271 237	N N 1 L N	2,000 N 200 N 500	.03 <.02 .03 .04 <.02	N 20 N 150 N	>5,000 50 15 150 10	N N N N	N N N N	100 70 N 10 5	50 200 20 70 N	100 300 500 200 1,500	5	1,500 1,500 700 100 200	N
26 27 28 29 30	094 092 093 137 138	188 186 187 248 250	1 1.5 50 50	1,000 N N 3,000	.1 <.02 <.02 .2 .1	N 10 L N N	20 50 50 N N	N N N N N	N N N N			2,000 100 500 >20,000 >20,000	N N 5 10	500 700 700 50 100	N L L L
31 32 33 34 35	139 068 069 070 065	252 130 131 132 110	50 50 50 20 L	>10,000 2,000 2,000 500 500	.1 .1 .1 .2	N 10 N 15 N	20 10 <10 30 20	N N L N	N N N N	5 30 100 15 N	- 7 N	>20,000 >20,000 >20,000 >20,000 >20,000 20	5 5 N N	200 200 200 50 150	L L L N
36 37 38 39 40	034 163 164 165 166	69 302 303 304 305	N 3 100	1,000 N 2,000 700 N	. 2 N N N N	10 50 20 70 L	30 15 30 30 70	N N N N N N	N N N N	10 30	150	7 500 >20,000 700 >20,000	20 N 7 N N	150 500 300 500 1,000	L L L L
41 42 43 44 45	129	278 277 67ASj277 278 67AMK196	N N 3 50	N N N N	N .01 <.02 <.02	L 20 20 10	10 7 L 20 N		N N N N N			30 70 10,000 >20,000 >20,000	N N N N	700 700 1,500 2,000 700	L L L L
46 47 48 49 50	096 097 098 025 180	197 199 201 49 347	50 30 50 N 1	N N N N	.05 .03 .07 .2 <.02	20 50 15 N 10	L N L N 7	N N	N N	50 10 30 N 150	5 30 10	>20,000 >20,000 >20,000 10 >20,000	N	1,000	L N

See description of samples on pages 14-16.

8

from the McCarthy B-4 and B-5 quadrangles, Alaska

atomic absorption methods. Analyses reported to the nearest number in the series 1, 0.7, determination; >, greater than; <, less than. Semiquantitative spectrographic analyses by W. L. Campbell, A. L. Meier, R. L. Miller, M. S. Rickard, T. A. Roemer, and R. B. Tripp. sample 52; La, S0 ppm in samples 127, 132, and 138; 30 ppm in samples 63, 85, 87, 103, 125, detected in amounts between 5 and 30 ppm in most samples]

	Parts per millionContinued									Percent					
Ni	Рb	Sb	Sn	ST	v	W	Y	2 n	Zr	Mg	Fe	Ся	Ti		
և Ն Տ Լ Ն	א א ג א א	א א א א א	30 30 30 20 N	N 100 100 N N	10 20 20 10	100 100 L N N	N N N N N N	N N N N	N 30 30 N N	0.02 .2 .05 .02 .02	0.1 .7 1 .07 .1	0.1 .3 .3 .1 .05	0.02	1 2 3 4 5	
L L 100 30 50	N N L 10	N N 100 N N	30 15 N N	ドドド スズズ	15 15 300 200 300	100 N N N N	₩ N 15 20 30	N N N N	א N 50 50 70	- 0 2 - 0 2 5 3 3	, 15 , 2 15 10 15	.5 .07 1 7 7	- 02 - 02 - 7 1 1	6 7 8 9 10	
15 50 30 10 50	N 20 15 15 20	N N >10,000 >10,000 700	N N N N	100 150 150 150 150	70 300 200 70 100	ม พ 50 พ พ	10 20 15 N 10	N N N 200	30 50 70 30 50	1 2 1 - 2 L	3 15 7 3 15	7 5 2 .7 3	. 3 1 . 5 . 2 . 2	11 12 13 14 15	
15 30 30 15 15	15 L N 15	5,000 >10,000 >10,000 >10,000 >10,000 N	N N N N N	100 150 100 200 500	150 100 100 100 70	N 50 300 10,000 N	15 20 15 15 10	N 200 N N N	70 70 50 20 100	- 5 1 - 2 - 3 1 - 5	10 5 3 5 5	、2 、5 、2 、15 S	. \$. 3 . 2 . 2 . 2	16 17 18 19 20	
500 50 10 20 10	30 N L 10 10	א א א	とえん	500 150 700 2,000 500	30 300 30 200 30	א א ג ג	10 30 N 50 N	ととと	N 70 20 150 20	2 1,5 .5 .7	>20 15 .1 10	>20 7 >20 .5 >20	.2 1.03 >1 .03	21 22 23 24 25	
10 50 50 N N	L 20 10 10	א א א	ススス	500 200 100 200 300	150 500 200 15 15	N N N S 0	15 30 15 א N	N 200 N N N	20 70 30 N 10	1 5 2 3 5	2 10 15 .2 .5	> 20 7 2 20 20	.07 .7 .5 .01 .01	26 27 28 29 30	
10 30 100 15 18	15 15 20 10 L	N N N 100	א א א א	N N N 300	50 30 50 50	50 พ พ พ	N N N N L	N 200 500 N N	15 20 30 70 10	.7 .07 .02 .2 >10	.2 5 7 2 2	3 2 . 2 > 20	.05 .05 .03 .15 .05	31 32 33 34 35	
5 70 30 70 70	とととと	N	N 20 15 30 30	1,000 100 50 70 70	50 200 100 300 150	N 70 N 50 N	15 20 15 30 15	とととと	N 70 30 70 30	, 3 1, 5 , 7 , 5 2	.7 15 15 7	20 2 1.5 2 2	.03 .5 .3 .7 .5	36 37 38 39 40	
70 30 30 50 30	N N L N	א א א א	ズズズ	100 100 N 100 N	200 70 300 300 150	א א א א	15 15 15 20 15	N N N N N N N N	70 20 30 30	2 1,5 1,5 7 1	7 5 10 20 7	5 10 10 10 3	.5 .2 .7 1 .3	41 42 43 44 45	
50 10 20 5 100	L N L 70	N N N N N N N N N N N N N N N N N N N	スメスズ	א א 700 70	200 70 150 30 300	א א א א	20 L 15 L 30	とないな	30 10 50 10 70	2 .7 1.5 1 1.5	10 3 10 1 10	5 10 7 >20 2	.3 .1 .3 .02 .7	46 47 48 49 50	

-

Sample	Lab No.	Field No.					Parts y	per	nil	llon					
	ACI-		Ag	As	Au	B	Ba	Be	Bi	Co	Ст	Cu	Мо	Mn	ND-
\$1 52 53 54 55	178 045	67AMK 346 345 67AWK42 67AMK39 41	N 10 30 N N	N 7,000 N 200 300	<0.02 <.02 <.02 <.02 <.02 <.02	100 L L 10 10	70 20 L 50 30	1.5 L N N	パススズ	10 150 20 N	150 15 30 30 30	\$00 1,000 >20,000 5 7	N 30 10 N N	500 200 500 100 100	L N
56 57 58 59 60	175 176 177 019 018	340 341 342 31 29	א א א 1	N N 500 200	<.02 <.02 <.02 <.02 <.02 <.02	20 50 20 10 15	20 30 30 30 100	N N N N	とといろ	15	100 200 150 15 50	300 200 500 15 10	א 15 5 10 א	700 1,000 700 150 200	N N
61 62 63 64 65	036	22 11 67AWK40-1 40-2 67AMK9	, 5 พ พ ท	N 700 N L 700	<.02 .1 1.2 .2 .2	L 10 15 20 10	15 300 700 300 50	N N L L N	ととれて	15 N 7 15 N	30 30 30 20 10	20 20 15 20 10	א 7 20 10 15	500 100 500 500 500	
56 67 58 69 70	014 012 026 010 147	10 8 52 3 67ASJ297	N N N 2	500 N 500 N N	-1 <.02 -2 <.02 -03	10 30 30 20 20	50 70 30 200 500	L N N L 1	とちょい	א א 50 5	5 70 20 30 15	70 30 10 150 700	30 N N N N		10 15 10 L
71 72 73 74 75	049 050 051 052 053	174 175 176 177 178	.5 א ג5 5	x	<.02 <.02 <.02 15.4 5.0	10 L 10 10 10	200 20 500 150 70	L	10 10 N 50 N	20 50 20 10 15	50 30 30 100 30	500 2,000 50 200 2,000	10 5 30	1,500 1,000 700 1,500 1,500	L L L L
76 77 78 79 80	113 114	179 67AMK212 213 214 67AWK99A	N 1 5 N	N N N N N	3,2 <,02 ,1 6-8 <,02	10 10 20 10	150 700 200 100 500	L L N 1	N N 70 20 N	15	100 30 50 20 70	50 200 1,500 500 30	10 20 10	2,000 500 2,000 1,000 1,000	L
81 82 83 84 85	123 124 125 120 121	998 99C 99D 98E 98H	N N N N	א א א א א	.03 .03 .1 .07 <.02	15 10 1,000 10 50	1,000 700 1,000 1,000 700	્રા	とととい		70 100 100 70 5	50 50 100 70 20	N 7 100 N N	700 500 700 700 700	10 10 L
86 87 87 88 88 89		67AMK6 67ASj95C 95C 198 182	א א א	500 N N N N	<.02 <.02 3.6 <.02 .02	20 150 50 20 30	10 300 70 100 20	N 1.5 L N N	とととと		30 5 L 300 300	30 10 30 30 100	N N N	1,500 700 700 1,500 1,000	
90 91 92 93 94	055 056 078 048 047	180B 180C 186B 171 169B	N 2 N N 2	N 7,000 N N 300	.04 .04 <.02 <.02 <.02	10 70 50 50 30	15 10 150 50 200	L N L L	X	20 30 50 50 20	70 70 50 150 50	70 15,000 300 100 20,000	N	1,000 700 1,000 700 700	L
95 96 97 98 99	042 004 005 003 002	161 25A 16 13 11	א 7 א א	N 1,000 N 200	.02 <.02 .4 <.02 <.02	70 10 30 L 70	300 10 10 20 100	1 N L L	オオオオ	30 30 50	200 100 70 70 200	200 200 200 200 70	N N N	1,000 1,000 1,000 1,000 2,000	10 10 L
100 101 102 103 103*	001 007 006 020 037	9 18C 18A 85 85	N . 5 L N	N N 200 N N	<.02 <.02 <.02 5.2 .8	30 50 20 30 50	1,000 3,000 1,000 500 500	2	オメズメル		200 150 15 30 15	50 70 50 20 30	N	1,000 1,000 1,000 700 700	L 10 10

Duplicate.

the McCarthy B-4 and B-5 quadrangles, Alaska--Continued

		Pa	rts	per mi	llion	Cont	inu	 ed		F	Percent			ample
- Ni	Pb	Sb	Šn	Sr	v	Ŵ	Ŷ	2n	Zr	Mg	Fe	Ca	Tì	
100 300 10 10	50 15,000 100 Ł Ł		NNNNN		200 20 70 70 50	N N N	50 N N 10 10	1,000 10,000 N N N	150 20 20 10 20	1 .15 .3 .3 .3	2 15 15 15 ,7 1.5	0,2 3 >20 >20 >20	1 .07 .15 .05 .07	51 52 53 54 55
50 100 70 10 15	30 L 10 10 L	N N >10,000 150	とととと	150 200 300 500 300	70 300 300 20 70	N N N		ととと	30 70 70 10 20	5.0 1.5 1.5 .5 .5	3,0 5.0 7.0 .7 1.5	10 5 5 20 20	.3 .5 .02 .07	56 57 58 59 60
50 10 20 30 5	ե Լ	N >10,000 N 100 >10,000	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	500 200 500 200 300	100 70 100 70 10	500 N	15 10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 30 100 20 10	,5 ,05 1,5 2 .03	10 2 3 3 1	20 .2 3 7 1	, 1 , 5 , 3 , 2 , 1	61 62 63 64 65
7 7 10 50 5	N L N L 10	>10,008 א 200 א N	L N N 10	150 300 500 150 200	10 200 50 200 50	100	N 10 N 20 N	N N L N	10 150 100 30 70	.03 .15 .07 3 1	,7 10 2 15 5	.2 1.5 .5 20 .1	.03 >1 .3 .5 .2	66 67 68 69 70
30 50 20 20	N N L N	א א א	N N 20 N	150 100 500 300 N	100 50 100 200 50	א א א	15 15 15 20 10	N N N N	30 20 150 70 20	1.5 1.5 1.5 2 1.5	15 >20 5 15 15	7 5 15 10	. 2 . 1 . 3 . 1	71 72 73 74 75
20 30 30 5 20	L 10 N N 15		オンンン	200 500 150 N 200	150 100 100 70 150	א	20 L 10 L 15	N N N N N	50 200 30 30 70	2 2 1、5 .7 3	15 5 20 20 7	15 3 20 7 5	. 3 . 2 . 15 . 5	76 77 78 79 80
20 50 50 20 5	15 L N L 15	N N N N	オオオス	500 300 700 200 500	150 200 200 150 50	N N N	15 20 20 15 10	N N N N N N N	100 100 150 70 100	2 3 2 2 1.5	7 10 10 7 5	2 5 3 2 3	. S . S . 3 . 3	81 82 83 84 85
50 5 15 100 50	L 10 10 ኒ ኒ		ブスメン	150 300 150 150 150	200 20 30 200 200	N N N	30 20 1 15 20	א א א א א	30 200 50 20 30	1.5 .7 2 5 3	10 3 10 10	20 5 7 10 15	- S - 3 - 1 - S - S	86 87 87 * 88 89
30 30 50 50 30	נ א א א	150 150	とととと	150 150 150 N 700	100 200 200 200 200	N N 50	10 20 20 20 15	N N N N N N N N	30 50 50 50 30	7 2 5 1.5 1.5	7 10 10 10	15 10 15 7 10	, 3 , 7 , 7 1 , 5	90 91 92 93 94
70 70 70 100	ม ม ม ม	N 150	N N N 30 N	100 N 100 150 100	300 200 200 200 300	N L א	20 15 20 15 30	N N N N N N N N N N N N N N N N N N N	70 50 70 10 10	2 3 2 5 1、5	15 10 15 10 15	5 7 10 20 2	1 7 1.0 .2	95 96 97 98 99
70 70 50 20 5	L N 20 10 L	100	N N N N N N N N N N N N N N N N N N N	150 200 150 100 100	200 300 200 150 70	א א א	15 20 20 30 30	N N 200 N N	50 50 30 150 150	2 2 .15 .7 .7	15 10 2 10 7	7 3,5 3 5	1 1 . 15 . 5 . 5	100 101 102 103 103*

.

*Duplicate

.

Sample							Parts	per	mil	lion					
13.	No. ACI-	No.	Ag	As	Au	B	Ba	Be	Bi	Co	Cr	Cu	Мо	Mn	Nb
104 105 106 107 108	039 046 161 162 040	67ASj97 96 315 316 133	N N N 50		<0.02 < .02 N .02 1.3	20 70 30 50 15	70 100 150 700 50	א א א א	とととい	50 20 30		100 300 150 100 >20,000	N N N N N	700 1,000 1,000 700 500	և Ն Լ
109 110 111 112 113	079	67AMX19 67ASj196A 67AWK64 87 88	L L 2 N N	N N 500 N N	<.02 <.02 <.02 <.02 <.02 <.02	10 20 10 30 100	300 70 10 20 10	N N L N	א א א א א	S0 70 10 100 70		100 100 20,000 300 100	5 5 א א א	1,000 1,000 700 3,000 1,000	10 L L
114 115 116 117 138	145 109 135 134 107	127A 67A51267 293 292 266B	א א א	N 500 N N N	.03 <.02 .02 <.02 <.02 <.02	70 200 100 50 70	700 700 70 1,000 500	1 N N L	N N N N	50 70 70 70 15	70 300 100 15 N	50 100 300 500 20	7 5 N N N	1,000 3,000 2,000 2,000 2,000	ւ 10 Ն
119 120 121 122 123	108 110 130 104 103	266C 268A 280 247 246A	N N N N	* * * *	<.02 <.02 .04 <.02 <.02	30 70 70 50 15	300 3,000 1,500 200 2,000	ר א גא ג	N N N N	70 10 50 30 50	300 N 100 70 30	150 20 100 100 50	N N N N	2,000 2,000 1,500 2,000 2,000	L L L
124 125 126 127 128	132 127 133 111 099	285A 274B 290A 270C 232B	ג א א א	א א א א א	<.02 .06 <.02 <.02 <.02	100 50 20 10 50	2,000 500 200 700 70	2	х И И И		100 150 50 20 7	100 30 50 100 200	N N 5 N 5	2,000 1,500 3,000 1,000 1,500	10 L 50
129 130 131 132 133		67AWK77 67ASj303A 303B 304A 282	2 N N . 5	N N N N	.06 <.02 <.02 <.02 <.02 <.02	30 70 50 50 30	200 500 200 700 500	L L 3 L	и И И И	100 20 30 10 70	5 300 200 5 100	20,000 50 50 300 100	N 5 5 5 5	2,000 1,000 1,500 2,000 1,500	10 10 20
134 135 136 137 138	043 044 100 101 102	164 165 236 237 240B	և Խ Լ Խ Լ	N N N N N N N N N N N N N N N N N N N	<.02 .02 <.02 <.02 <.02 <.02	20 30 20 20 20	500 200 700 1,000 700	L L L 1.5	N N N N N N N	30 30 50 50 10	70 70 100 70 20	150 150 100 100 100	N N 7. N N	1,000 1,000 1,000 2,000 1,000	L 10 L
139 140 141 142 143	105 106 148 172 173	2648 265 298 325 326	N N L 70 20	N N N N	<.02 <.02 <.02 N N	10 10 20 N	2,000 1,000 50 30 20	L L N N N	N N N N	30	20 5 300 150 200	50 50 500 >20,000 >20,000	N 15 N N N	1,000 500 2,000 1,000 1,500	ւ 10 Լ
144 145 146	174 167 168	327 67AMK318A 318B	7 15 30	N N L	<.02 N N	10 N N	L 10 20	N N N	И И И	50	300	20,000 >20,000 >20,000	N N N	1,500 2,000 1,500	L
								_						Limit	of
			0,5	200	0.02	10	5	1	10	5	5	5	5	10	10

the McCarthy B-4 and B-5 quadrangles, Alaska--Continued

		Parts	s per	mil)	lion	Contin	ued			P	erce	nt		Sample
Ni	Pb	Sb	Sn	Sr	v	W	Y	Zn	Zr	Mg	Fe	Ca	Tí	
50 50	א א	100 N	א א		300	N N	20 20	N N	70 30	2 1.5	10 10	7 7	>1	104 105
30 70	N א	N N	N N		200 300	N N	15 20	N N	70 100	1.5 1.5	7 7	3 3	.7	106 107
50	L	100	N		150	N	20	Ň	70	1.5	5	3	. 7	108
100	L	100	м	150	300	N	20	N	30	3	10	5	. 5	109
70	L	א	N		200	N	20	N	70	3	15	10	1	110
20	N	N	א		200	N	20	N	50	3 7	10	20 20	.5	$ 111 \\ 112 $
100 70	N L	א א	N א		150 500	N N	20 20	N N	30 50	3	20 15	20	1	112
	10	N	N	500	150	N	30	200	100	3	10	10	.7	114
\$0 100	Г 10	N	N		200	N	30	200 N	ŠÕ	5	20	20	.7	115
100	L	N	N	200	500	N	20	200	S 0	7	15	10	1	116
100	20	N	N		300	N	20	L	50	7	15	10	۰ <u>۶</u>	117
S	L	א	м	500	100	N	30	N	100	2	10	7	. 5	118
100	L	И	М		700	N	30	N	200	5	15	10	>1	119 120
5	15	א א	И И	500	70 300	N N	20 20	500 ይ	30 50	5 2	7 15	15 10	.2	120
50 30	L 10	N N	N		150	N	20	N	50	5	10	10	. 5 . 5	122
50	N	N	N		150	N	15	N	20	3	ĩ.5	îŏ	.2	123
70	10	N	N		500	N	20	200	70	7	20	15	.7	124
50	150	N	N		200	N	30	И	150	3	10	20	. 5	125
30	20	N	N		200	N	20	200	50	7	15	10	. 3	126 127
15 15	20 L	N 100	L N		100 200	N N	70 20	N L	1,000 50	. 2	10 15	. S	. 5 [.] . 7	128
S0	10 10	א א	א א		300 100	N N	20 10	N N	30 100	5 3	15 7	10 10	.7 .3	129 130
70 100	15	N N	N	700	70	N	Ĺ	N	50	3	7	10	.3	131
10	20	N	N	200	20	N	30	L	300	1.5	10	7	.15	132
70	20	N	N	N	500	м	20	200	100	3	15	7	1	133
50	L	N	N		200	N	20	N	50	3	10	7	. 7	134
30	L	N	N		200	א א	20	א	50 70	3 3	$10 \\ 10$	7 5	- 5 . 7	135 136
50 30	L L	N N	N N		200 150	א א	20 10	א א	30	5	10	20	.3	130
15	50	N			100	N	30	N	300	. s	5	. 7	.15	138
15	10	N	N	N	100	N	15	N	70	1.5	5	2	.15	139
5	15	N	N	М	70	N	20	N	150	1	5	. 5	. 5	140
100	10	N	N		500	И	20	.N	70	7	15	7	>1	141
70 70	N N	N N	N N		300 300	N N	20 15	א N	70 50	3 3	7 7	1.5 .7	.7 .7	142 143
100 70	Ĺ N	א א	N N		300 300	א א	20 20	א א	70 150	3 3	7 10	2.0 1.5	.7.7	144 145
50	N	N	N	Ň	300	N	15	א	50	2	7	î.s	. 7	146
etermi	ination					_					_			
2	10	100	10	50	10	50	10	200	20	0.02	0.0	5,0,0	5 0.001	

Description of samples given in table 1

[Unless otherwise noted, all samples are grab samples. Sample locations are shown in fig. 2]

Sample	Prospect or	Description	Sample	Prospect or mine	Description
1	Porphyry Mountain molyb-	12-in. channel sample	32	Westover mine No. 1	24-in, chaunelsample
	denum-gold prospect	across molybdenite- quartz vein.	33	adit.	across lode. 18-in, channel sample
2	do	18-in, channel sample scross molybdenice- quartz vein,	34	North of portal of West- over No. 1 adit.	across lode. Chip sample, 15 ft long, spaced at 1-ft invervals
3	do	Molybdenite-quartz vela			across copper-stained al-
4	do	12-in, channel sample across molybdenite~ quartz vein,	35	••••••	tered zone. Altered zone, 2 ft thick, cutting Chilistone Lime-
5	do	9-in, channel sample scross molybdenite-quartz vein.	36		stone. Altered zone, 10 ft thick,
6	do	10-In, channel sample scross molybdenite-	30		cutting lower member of McCarthy Formation.
7		quartz vein, Molybdenite-quartz vein,	37	Radovan low-concact	Altered zone, 12 ln. thick, in basal Chitistone Lime-
8	Nikolai mine	12-in, channel sample		prospect.	stone,
		across altered zone.	38		Float from main shear zone.
9	Copper prospect west of	9-in. channel sample across	39	do	Main shear zone 10 ft wide,
	Boulder Creek,	mineralized sbear zone.	40	do	High-grade float.
10	da	Chip sample, 12-in, long, spaced at 2-in, intervals across mineralized shear zone,	41		Chip sample, 8 ft long, spaced at 6-in, intervals across altered zone cut- ting Nikolai Greenstone,
11	do	12-in, channel sample scrossquartz-calcite vein.	42		Altered zone, 15 ft thick, cutting Nikolal Green- stone.
12	do	Bornice-rich pod in ehear zone.	43	Radovan greenstone pros- pect lower adit,	12-in. channel sample across mineralized fault
13	Antimony-gold prospect north of Crumb Gulch.	12-in. channel sample across vein and gouge.			zone cutting Nikolai Greenscone,
14	do	3-in. cheonel sample across vein.	44		15-in, channel sample across mineralized fault
15	do	12-in. channel sample across shear zone.			zone cutting Nikolal' Greenstone
16	do		45	Radovan greenstone pros-	14-in, channelsample
17	Antimony-gold prospect south of Crumb Gulch,	12-in channelsample across vein.	46	pect upper adit,	acrose vein. 8-in, channel sample across
18	do	(6-in, chaone) sampic scross vein.	47	do	vein. 6-in. channel sample across
19	qo	Vein,			vein,
20		Felsic dike,	46	=do	12-in, channel sample
21		Altered zone, 30 ft thick, cutting Chilletone Lime- stone,	49		across vein, Altered zone, 10 ft wilde, cutting Nizina Limestone,
22	Prospect north of Chitistone River,	Altered Nikolai Greenstone.	50	Prospect south of Nikolai Butte.	Chip sample, 10 ft long, spaced at 6-in, intervals
23		Altered zone cutting Nizina			across mineralized zone.
24		Limestone, Altered zone, 8ft thick, cut- ting Nizina Limestone,	\$1	·····do·····	Thin altered zone along contact between Nikolai Greenatone and Chiti-
25	Peavine prospect	Vein 1 in. wide.			stone Limestone,
26	Prospect southwest of Nelson prospect,	Composite grab sample from calcito-rich altered zone, 3 ft thick, in Chill-	\$2	do	Altered zone a few inches thick in basal Chitistone Limestone,
27		stone Limestone. Altered zone, 2 ft thick, at NikolaiGreenstone- Chilistone Limestone	53	Prospect east of Nikolai Butte.	Scattered copper minerals in sheared Nikolai Green- stone.
		contact,	54 55	*************************	Altered fault zone 50 ft thick, Altered zone, 10 ft thick,
28		Altered and leached Nikolai Greenstone,	56	Prospect in thick altered	cutting Nizina Limestone,
29	Nelson prospect, No. 4 adit.	Chip sample, 12-in. long, spaced at 1-in. intervals	30	20ne north of Hancock Pass.	
30	do	across vein. Chip sample, 24 in. long, spaced at 1-in. intervals across vein.	57	Prospect south of Hancock Pase,	Chip sample, 12 ft long, spaced at 4-in, intervals across altered zone.
31	d a				

Description of samples given in table 1-Continued

Sample	Prospect or mine	Description	Sample
58	Prospect south of Hancock Pass.	Composité grab sample from an altered zone, 8 ft wide.	90
59 60		Breccia float. Fault zone, 10 ft wide, cut- ting Nizina Limestone.	91
61		Altored fault zone, 20 ft thick, cutting Nizina Limestone.	_
62	,	Altered zone, 6 ft thick, cutting Nizina Limestone.	92
63		Quartz vein, 6 in. th Lck, cutting Nizina Limentone,	93
64 65		Stibnite-quartz-calcite vein, 6 in. thick, cutting Nizina Limestone,	94
6 6		Stibnite-bearing quartz vein and silicified zone, 3 ft thick, cutting Nizina Limestone,	95
67		Altered zone, 6 ft thick, cutting Nizina Limestone.	96
6 8		Altered zone, 8 ft thick, cutting Nizina Limestone,	
69		Altered fault zone, 15 ft thick, separating Chiti- stone Limestone and	97 98
70	·	Nikolai Greenstone. Felsic dike cut by quartz	99
71	Taylor prospect ~	veinlets, Chip sample, 20 ft long, spaced at 9-in, intervals across altered zone,	100
72	do	Composite grab sample se- lected from altered zone 20 ft wide,	101
73	do	Felsic dike,	102
74	do	Chip sample, 30 ft long, spaced at 9-in, intervals along exposed length of altered zone,	103 104
75	do	Quartz-rich pod (n altered zone,	105
76	do	Chip sample, 10 ft long, spaced at b-in, intervals across weakly altered hornfels,	106
77 78	do	Pyritlzed Intrusive rock. Altered zone, 6-in. wide, in hornfels.	107
79	do	Goasan,	
80 81		Hornfels, float. Tertiary intrusive rock, float.	
82	_/	Hornfels, float.	
83		Altered hornfels cut by quartz veinlets, float.	108
84		Hornfels, float. Tertiary intrusive rock,	
85		float.	109
86		Altered zone, 6 ft thick, in Nikolai Greenstone.	109
87		Altered dike.	110 111
88		Chip sample across al- tered zone, 10 ft wide, spaced at 6-In. intervals;	
		altered zone cuts Nikolas	112 113
89		Greenstone, Altered {ault zone, 10 ft thick, cutting Nikolai Greenstone,	113

ample	Prospect or mine	Description
90		Composite grab sample from altered zone about 250 ft wide that cuts Nikolai Greenstone.
91		Copper minerals in sheared Nikolai Greenstone adja- cent to altered zone of sample 90.
92		Sheared Niko)ai Greenstone in altered fault zone,
93		Altered fault zone, 4 (t wide, separating Nikolai Greenstone and volcanic rocks of the Station Creek
9 4		Formation. Thin mineralized shear zone in Nikolai Green- stone.
95		Altered zone, 20 ft wide, cutting Station Creek vol- canic rocks,
96		Copper minerals in fault zone, 6 ft thick, cutting Nikolai Greenstone.
97	•••••	Altered zone, 10 ft wide, cutting Nikolai Green- stone.
98 99		Altered zone, 2 ft thick, cutting Nikolai Green- stone.
100		Altered zone, 50 ft thick, cutting Nikolai Green- stone,
101		This altered zone near base of Nikolai Greenstone,
102		Black abale of Hasen Creek
103		Altered Station Creek vol- caniclastic rock.
104		Altered zone, 5 ft wide, in Nikolai Greenstone,
105		Chip sample spaced at 6- in, intervals across al- tered zone 20 ft wide cut- ting Nikolaj Greenstone.
106		Altered zone, 6 ft thick, cutting Nikolai Green- atone,
107		Composite grab sample from altered fault zone, 20 ft wide, separating Nikolai Greenstone and rocks of the Hasen Creek Formation.
108		Composite grab sample representative of copper- bearing zone 1-2 ft wide within an altered zone 15 ft wide.
109		Conglomerate from basal Nikolal Greenstone.
110		Mineralized fault zone, 1-4 It thick, cutting Nikolai Greenstone.
112 113		Altered Nikolai Greenstone.
114		Altered zone, 10 ft wide, in Nikolai Greenstone,

Description of samples given in table 1-Continued

		or oumples gi			
Sample	Prospect or mine	Deecription	Samp)e	Prospect or mine	Description
115		Shear zone, 1 ft wide, near contact between N1k01a1 Greenstone and Hasen Creek Formation.	129		Composite grab sample from altered contact zonc, 3-10 ft wide, be- tween gabbro and Hasen
116	*******	Altered zone, 10-20 ft thick, in Nikolal Green- stoge.	130 131		Creek rocks. Altered felsic dike.
117		Composite grab sample from altered zone, SO ft thick, near base of Nikolal Greenstone.	132		Chip eample, 6 ft long, epaced at 6-in. Intervals, of altered Station Creek volcanic rock.
118		Thin calcite-quartz veinlets. In altered zone is baseal conglomerate of Nikolai	133	*****	Basal conglomerate of Nikolai Greenstone.
		Greenstone.	135		
119		Basal conglomerate of	136		
120		Nikolal Greenstove. Thin altered zone along con-	137		Altered zone, 3 in. thick, cutting basal conglomer-
121		tact of felsic sill cutting Hasen Creek Formation, Composite grab sample	138		ate of Nikolai Greenstone. Volcaniclastic rock from Station Creek Pormation.
141		of altered zone, 20 ft thick, nearcontactbe- tween Middle Triassic	139		Altered zone, 6 in, wide, cutting Station Creek rocks.
122		rocks and Nikolsi Green- stone. Altered zone, 10 ft wide,	140		Composite grab sample from altered zone, 50- 200 ft wide, that cuts Sta-
123	*******	cutting gabbro sill. Altered zone, 3ft wide, cut-			tion Creek volcaniclastic rocks.
124		ting gabbro. Composite grab sample from altered zone, 20 ft	141	Erickeon mine	Nikolai Greenatone that con- tains mineralized amyg- dules.
		thick, cutting basal conglomerate of Nikolai Greenstone,	142	do	Rubbly basal part of a Nikolal Greenstone flow that contains native cop-
125		Thin altered zone cutting gabbro.	143	- do	per and tenorite. Copper-rich lode from
126		Altered zone, 10 ft wide, cutting Tertiary lavas.	144	do	stope. Copper minerals in basel
127		Altered Station Creek vol- caniclastic rock.			part of a Nikolal Green- atone flow.
128	*****	Altered contact zone, 3-10 ft wide, between gabbro	145	do	Native copper-bearing Nikolai Greenstone.
		and Hasen Creek rocks.	146	do	do

· · · · · · · ·

-

[Analyses by semiquantitative spectrographic methods, except Au which was analyzed by atomic 0.1, and so forth. N, not detected; L, detected but below limit of determination; >, greater Forn. Atomic absorption analyses by A. L. Meler, R. A. Miller, and T. A. Roemer. Looked for, 5 ppm in sample 85, 0.7 ppm in samples 73, 79, and 105; As, 700 ppm in sample 72, 300 ppm in sample 124; Zn, 300 ppm in sample 105, 200 ppm in samples 73, 85, 99, 100, and 137. Where are shown in parentheses]

					P	arts j	per mil	lion			
Sample	Lab. No. ACP∽	Field No.	Au	В	Ba	Be	C٥	Cr	Cu	La	Мп
1 2 3 4 5	243 242 229 228 241	67ASjS6 SS 42 41 S4	ն Լ Լ Լ Լ	50 50 70 70 50	700 700 1,500 700 700	L L L L	15 5 10 15 15	100 70 70 70 70	50 50 50 50 50	L N L N L	500 300 500 300 700
6 7 8 9 10	240 232 231 230 236	53 45 44 43 49	L L L L L	30 50 70 50 50	300 2,000 3,000 700 700	և Լ Լ Լ	10 15 15 15	70 70 70 70 70	50 300 300 50 30	N N N N	700 700 700 500 700
11 12 13 14 15	235 234 233 238 237	48 47 46 51 50	և Լ Լ Լ	50 50 30 50 30	700 700 700 700 700	L L L L	20 20 10 15 20	100 100 50 100 150	70 70 30 50 70	N N N L	500 500 700 700 700
16 17 18 19 20	239 287 285 286 288	52 101 99 100 102	L L L L	20 20 30 \$0 50	700 300 200 700 500	L N N N N	10 15 20 15 20	100 200 300 200 200	50 70 200 100 150	N 50 N พิ	700 700 1,500 700 700
21 22 23 24 25	289 290 208 207 206	103 104 8 7 6	L L L L L	50 100 50 50 50	500 300 1,000 700 2,000	N N N N	20 15 15 20 20	300 200 150 150 150	100 150 _70 70 70	N N N L	700 1,000 500 500 500
26 27 28 29 30	205 204 203 201 202	5 4 3 1 2	L L L N	30 50 30 70	500 1,000 700 1,000 500	N L L N L	15 20 20 20 20	150 100 100 150 100	100 70 70 70 70	N L L	500 700 700 700 500
31 32 33 34 35	244 245 246 248 249	\$7 58 59 61 62	L 0.06 .02 .02 L	100 100 100 150 100	3,000 1,500 1,500 1,500 1,000	L L L L	15 15 15 20 15	150 200 150 200 200	30 30 30 30 30 30	70 70 50 70 50	1,000 700 1,000 1,000 7,000
36 37 38 39 40	219 220 218 216 217	32 33 31 29 30	L .06 L L N	70 50 50 70 20	1,000 1,000 1,000 1,000 700	1 L L N	20 30 30 20 15	100 150 100 100 70	70 70 70 100 50	L 30 N L N	700 700 700 700 300
41 42 43 44 45	215 214 211 212 213	28 27 24 25 26	.04 L L .02 L	50 50 50 50 70	1,000 1,000 1,000 1,000 1,000	L 1 L 1	20 20 20 30 30	150 150 150 150 150	100 70 70 70 100	20 L L 20	700 700 700 700 700
46 47 48 49 50	210 209 227 226 225	23 22 40 39 38	L L (.1) L L (.1) L	50 20 70 50 50	1,000 500 3,000 700 700	L 1 L L L	30 5 30 15 20	100 30 150 70 150	100 30 70 50 50	20 N L N L	700 300 700 500 700

the McCarthy B-4 and B-5 quadrangles, Alaska

absorption. Analyses reported to the nearest number in the series 1, 0.7, 0.5, 0.3, 0.2, 0.15, than. Semiquantitative spectrographic analyses by K. J. Curry, Arnold Farley, Jr., and C. L. but not detected: Ag, As, Bi, Cd, Hg, Mo, Pd, Pt, Sb, Sn, Ta. Te, W, and Zn; exceptions: Ag, sample 105; Mo, 10 ppm in sample 64, 5 ppm in samples 60, 136, 141, and 142; W, 100 ppm in the limits of determination differ from those indicated at the end of the table, their values

	Par	ts per	million-	-Continu	¢d			P	ercent		
Nb	Ní	Рb	Sr	ν	Y	Zr	Mg	Fe	Са	Ti	Sample
L L L L L	30 30 30 30 30 30	15 10 15 15 15	300 1,000 200 150 700	100 70 100 100 100	20 15 15 15 20	150 70 100 100 150	1.5 .5 .7 .5 1.5	3 1 • S 3 3 5	2 5 1.5 .5 3	0.3 _2 _3 _3 _5	1 2 3 4 5
L L L L 10	30 30 30 30 30 30	10 10 15 15 15	300 300 200 300 500	100 100 100 70 70	15 15 15 15 20	100 100 150 100 100	1 1 .7 .3 1.5	3 5 5 3 3	3 1 - 5 1 , S 3	- 5 - 5 - 3 - 3	6 7 8 9 10
L L L L	30 30 30 30 30	15 15 10 15 15	500 300 300 700 500	150 100 70 70	20 15 10 20 15	150 100 100 100 150	1.5 1.5 .7 1.5 1.5	5 5 3 7 5	1.5 1.5 .7 3 3	, 5 , 5 , 3 , 3 , 5	11 12 13 14 15
N 10 10 10 10	30 70 70 70 70	10 10 15 10 15	700 300 300 500 200	100 300 500 500 500	15 15 20 20 15	100 70 70 70 100	1 3 3 3 3	5 10 10 10 10	3 20 7 10 7	,3 ,5 1,0 1,0 1,0	16 17 18 19 20
10 10 L 10 L	70 70 50 50 70	10 30 20 20 30	500 300 300 300 300	500 500 100 150 100	30 15 15 20 15	100 100 150 150 150	3 3 1,5 1.5 1.5	10 10 5 7 5	10 10 1 2 .7	1.0 1.0 .3 .7 .3	21 22 23 24 25
և Լ Լ Լ	30 50 50 50 30	15 20 15 30 20	300 300 200 200 100	150 150 150 100 100	15 20 15 20 15	100 150 100 150 100	1.5 1.5 1.5 1.5 1.5	3 5 3 3 2	2 1.5 1.5 .7 1.5	- 5 - 5 - 3 - 3	26 27 28 29 30
L (20) L (20) L (20) L (20) L (20) Z0	50 50 50 70 50	10 Ł 15 15 10	300 300 200 150 100	150 100 150 150 150	15 15 15 25 15	150 200 150 200 150	1 1 1.5 1.5	7 7 7 7 15	1_5 .7 1.5 .7 .7	. 3 . 7 . 5 . 5	31 32 33 34 35
և Լ Լ Լ	70 70 70 70 50	30 30 30 30 10	200 300 300 200	150 150 150 150 70	30 30 20 20 10	150 150 150 150 70	1,5 1,5 1,5 1,5 1	7 7 7 3	.5 .7 .5 .1	• 5 • 5 • 5 • 5 • 2	36 37 38 39 40
L L L L	50 50 30 70 70	30 20 20 30 30	300 300 200 200 200	100 100 100 150 150	30 15 15 15 20	150 150 150 150 150	1.5 1.5 1.5 1.5 1.5	7 7 5 7 7	1 .5 .5 .7	、5 、3 、3 、3 、5	41 42 43 44 45
L L L L	70 20 50 30 50	70 30 20 20 20	200 50 500 108 200	100 70 150 70 100	30 15 20 15 20	150 70 150 70 150	1 1.5 .7 1.5	7 1 7 2 5	. S . 7 . 1 . 7 . 7 . 7	- 5 - 2 - 5 - 3	46 47 48 49 50

.

Table 2 .- Analyses of stream-sediment samples from the

					P	arts j	per mil	lion			
Sample	Lab. No. ACF-	Pield No.	Au	В	Ba	Be	Ço	Cr	Cu	La	Μn
51 52 53 54 55	222 223 224 221 340	67ASj35 36 37 34 142	έ L (.1) Ν L L	50 50 70 50 70	700 1,000 1,000 1,000 1,000	L 1 L L L	20 20 15 30 15	70 70 100 150 150	70 70 70 70 100	L L N L N	700 700 700 700 700
56 57 58 59 60	341 342 343 251 250	143 144 145 64 63	և Լ Լ Լ	50 70 70 30 100	2,000 1,500 1,000 200 100	L L א N	20 50 15 10 10	150 150 150 150 100	70 100 30 20 30	ւ 20 Լ Լ Լ	700 700 700 300 500
61 62 63 64 65	252 256 253 376 377	65 67 66 67 A W k 65 66	L 0.03 .2 L L	50 70 20 70 100	100 1,000 300 700 700	N L N L 1	20 50 15 15 20	300 200 200 150 150	30 30 30 30 70	L 30 20 20 20	500 700 500 700 1,000
66 67 68 69 70	255 256 257 259 258	67ASJ68 69 70 72 71	.06 .03 L .06	50 50 20 70 30	300 500 200 700 300	א ג א א	50 50 70 70 70	300 300 300 300 300 300	100 70 150 70 100	L L L L	1,500 1,500 1,500 700 1,500
71 72 73 74 75	260 261 378 263 284	73 74 67AWk67 67ASj77 94	ե .04 Ն Ն	30 50 150 20 30	500 700 1,500 200 70	א א א א	10 70 50 20 150	70 150 300 300 500	15 70 200 70 300	L L 20 N N	200 1,000 1,500 1,000 2,000
76 77 78 79 80	280 279 278 282 283	88 87 86 92 93	և Ն Ն Ն Ն Ն	50 100 100 150 70	100 30 300 >5,000 150	N N L N	50 50 70 15 70	200 150 300 150 300	300 150 300 300 300	N N N N N N N	1,500 1,000 1,500 1,500 2,000
81 82 83 84 85	281 379 380 375 339	90 67AWk68 69 58 46	.02 L L .03	20 20 70 50 100	700 50 1,000 70 1,500	N L N L N	50 15 20 30 30	70 200 150 300 300	300 100 300 300 300	N L N L N	2,000 1,000 1,500 1,500 1,500
86 87 88 89 90	381 382 383 338 374	70 71 72 45 54	9.6 L L L L	50 70 30 70 200	500 700 500 100 50	L L N N	30 30 50 50 50	150 300 300 300 300	200 150 300 300 300	L 20 N N 20	1,500 1,000 1,500 1,000 1,500
91 92 93 94 95	373 291 292 294 295	53 67ASj105 106 108 109	ե Լ Լ Լ	200 30 10 L	70 50 10 20 10	N L N N	70 15 N N	300 150 30 50 20	150 150 15 20 15	20 N N N	1,500 700 100 100 70
96 97 98 99 100	293 297 296 352 355	107 111 110 154 155	L L L L (.1) L	L 20 70 150 70	10 200 700 1,000 1,000	N N 1.5 1	N 15 20 20 30	30 200 150 150 150	30 100 100 150 100	N N 20 20	100 700 1,000 1,500 1,500
101 102 103 104 105	308 309 299 298 384	116 117 113 112 67AWk73	L L L .06	100 100 50 50 150	£ 700 1,000 1,000 1,500	N N L L L	30 30 15 20 70	300 100 150 100 150	30 50 100 100 200	N 30 N 30	500 500 700 700 5,000

McCarthy B-4 and B-5 quadrangles, Alaska -- Continued

Parts per millionContinued								P	ercent		_
Nb	Ni	рь	Sr	v	Y	Zr	Mg	Fe	Ca	Ті	Sample
L L L L 15	50 70 30 70 70	30 30 30 30 30	200 200 100 300 150	150 150 150 200	20 20 15 20 15	100 150 100 150 150	1.5 1.5 1.5 1.5 1.5	7 7 3 7 7	0.5 .5 .7 .7	0.3 .5 .3 .5 .5	51 52 53 54 55
15 20 15 N (20) N (20)	70 70 50 30 30	20 20 15 N N	150 200 150 500 700	200 300 200 70 70	20 30 20 10	150 150 150 70 50	1.5 1.5 1 10 5	7 7 3 5	1.5 1.5 1.5 >20 >20	.5 .7 .5 .15 .15	56 57 58 59 60
N (20) L (20) N (20) 10 15	70 100 30 50 70	א א 10 10	700 700 700 1,000 500	150 150 100 200 300	7 15 7 50 20	70 150 70 150 150	2 1 1.5 1.5 1.5	7 10 5 7 7	>20 10 >20 3 .5	.2 .7 .2 .7 1.0	61 62 63 64 65
L (20) L (20) L (20) 20 20	150 150 150 150 150	ととびと	500 700 100 700 150	150 150 150 200 200	15 10 15 7 10	100 100 100 200 150	2 2 1.5 1.5	15 10 15 15 15	20 10 7 >1 >1	1.0 1.0 1.0 >1 >1	66 67 68 69 70
L (20) 20 L N (20) 10	30 70 100 100 150	N N 15 N L	150 200 300 150 100	100 200 300 100 700	7 1\$ 30 20 30	150 150 70 100 100	.7 1 3 3 3	3 7 10 15 10	.7 -3 10 5 7	.3 >1 1. .7 >1	71 72 73 74 75
10 10 15 10 10	100 70 150 100 150	L L 15 10	300 100 200 200 200	500 500 700 700 700	30 20 30 30 30	150 70 150 150 150	3 3 3 3 3	10 10 15 10 10	7 5 7 5 7	1 >1 1 >1	76 77 78 79 80
15 L 15 10 15	50 50 100 70	15 15 10 30	200 300 200 200 300	1,000 200 500 500 700	50 20 20 30 30	150 50 200 100 100	3 7 2 3 2	15 5 15 10 15	7 20 3 10 3	>1 .7 >1 1 >1	81 82 83 84 85
10 15 10 15 L	70 100 70 100 100	15 15 15 L 10	300 200 300 200 150	300 300 500 500 500	30 30 20 20 30	150 200 150 100 150	3 3 3 3 3	10 10 15 10 15	7 5 7 7 10	1 >1 3 >1	86 87 88 89 90
10 10 N N	100 30 7 5 5	10 L L L	200 700 700 1,500 700	500 150 70 70 30	30 10 10 10	100 30 L 20 L	3 7 5 2 3	15 7 .7 .5 .3	7 15 20 20 20	> 1 .5 .07 .05 .03	91 92 93 94 95
N 10 10 15 10	5 50 70 70 70	L 30 50 30	700 300 200 200 150	30 500 300 200 200	10 15 20 30 20	20 70 150 150 100	3 3 1.5 1.5 1.5	.3 10 15 10 7	20 15 1.5 1.5 7	.03 1 .7 .5	96 97 98 99 100
N (20) N (20) 10 10 15	30 30 50 70 100	N 10 30 50 70	300 300 150 100 300	100 150 300 300 200	5 10 20 30 30	150 150 150 100 150	10 1 2 1.5 2	5 5 10 10 15	20 3 5 2 .7	.5 .5 .7 .7 1.0	101 102 103 104 105

. .

、

Table 2.--Analyses of stream-sediment samples from the

					F	arts p	er mil	lion			
Samp1e	Lab. No. ACF-	Field No.	Au	В	Ba	Be	Co	Cr	նս	La	Mn
106 107 108 109 110	306 307 305 304 302	67AMk36 37 35 34 32	L L L L 0.02	10 70 10 L 10	30 150 30 30 30	N N N N	15 N 15 10 15	300 300 300 150 200	100 70 70 50 70	N N N N	700 700 700 700 700 700
111 112 113 114 115	303 300 301 313 311	33 67ASj114 115 121 119	L L L .02	10 50 70 100 70	50 200 1,500 700 500	N L N 3	15 15 15 30 30	200 100 150 100 150	70 100 100 50 30	N 20 20 1	700 700 700 700 500
116 117 118 119 120	312 310 318 317 316	120 118 126 125 124	L L L L	100 70 30 50	1,000 700 1,000 1,000 1,500	N N L N 1	20 30 50 70 20	100 150 150 150 150	30 50 70 30	20 20 50 30 20	500 500 1,000 700 500
121 122 123 124 125	315 319 320 351 268	123 127 128 153 67AWk5	L L L (.1) L Ł	100 50 50 70 100	1,500 1,000 1,000 1,000 N	N N L I N	50 30 30 30 70	150 150 150 150 500	30 50 100 200 70	30 30 30 20 N	500 1,000 700 1,000 1,500
126 127 128 129 130	267 266 264 265 270	4 3 1 2 8	L .7 L .05	100 L 70 70 15	700 300 200 200 300	N N N N	30 50 50 50 50	300 300 500 500 300	70 30 50 150 30	20 N N 30	700 700 1,000 1,000 1,000
131 132 133 134 135	269 277 271 274 276	7 18 9 13 15	.7 L L L L	10 70 70 70 70	300 700 300 700 1,000	N 1 N 3 3	50 30 30 30 30	500 100 300 150 150	30 50 50 30 30	N 50 50 50 70	1,000 1,000 700 1,000 700
136 137 138 139 140	275 272 273 337 336	14 10. 11 39 38	.03 L .09 L L	100 70 50 100 100	1,000 300 200 1,000 1,000	3 N N N N	30 30 50 50 30	150 150 300 150 100	100 50 30 70 30	70 50 30 30	1,500 1,000 1,000 100 700
141 142 143 144 145	335 334 333 332 331	37 36 35 34 33	.08 L L L L (.1)	70 100 70 70 70	700 1,000 1,000 1,000 1,000	N N N N	30 50 70 50 50	150 150 150 150 150	70 30 70 70 70	50 30 50 30 30	1,000 1,000 2,000 2,000 1,500
146 147 148 149 150	330 329 328 327 326	32 31 30 29 28	և Ն Ն Ն	70 30 70 50 50	1,000 1,000 1,000 1,000 700	N N N N	50 20 50 50 50	150 150 150 150 150	50 30 30 30 30	30 20 30 30 20	1,000 1,000 1,000 1,000 1,000
151 152 153 154 155	325 321 322 323 324	27 23 24 25 26	L L 1.5 L L	\$0 50 30 30 50	500 1,000 500 500 500	l L N N	50 50 30 50 50	150 150 150 150 150	30 50 30 30 100	20 30 L L L	1,000 700 700 1,000 1,000
156 157 158 159 160	348 349 350 346 345	67ASj150 151 152 148 147	L L L L	100 100 100 70 70	1,000 1,500 1,500 700 2,000	L L L L	20 50 20 15 15	150 150 150 200 150	150 150 100 70 50	L 20 20 20 20	700 1,000 1,000 700 700

22

McCarthy B-4 and	1 8-1	quadrangles,	AlaskaContinued

	Pa	rts per	million	-~Contin	ued			Р	ercent		
Nb	Ni	РЪ	ST	v	Y	Zr	Mg	Fe	Ca	Τì	Sample
N N (20) N N N	50 100 50 30 50	10 N L L	300 500 300 300 300	300 150 300 150 500	15 5 15 15 15	20 N 10 10 20	5 10 5 5 7	10 10 10 3 10	>20 >20 20 20 20 20	0.5 .3 .5 .2 1.0	106 107 108 109 110
N 10 10 N (20) N (20)	50 50 70 30 30	L 30 20 30 15	300 150 150 150 500	200 200 500 150 150	15 20 20 10 10	20 100 70 150 150	5 2 2 1 1.5	10 10 10 5 5	20 5 .15 .7 2	.5 .7 .5 .5	111 112 113 114 115
N (20) N (20) N (20) N (20) N (20) N (20)	30 30 50 70 30	30 N 30 20 30	150 300 150 200 100	100 150 150 100 100	10 7 30 30 15	150 150 150 150 150	1 1 1.5 1	5 7 7 7 5	.7 5 .5 .7 .7	.5 .7 .3 .3 .5	116 117 118 119 120
N (20) N (20) N (20) 15 N (20)	30 30 30 100 70	30 20 20 70 N	200 150 200 150 150	150 100 100 200 150	10 20 20 30 10	150 150 150 150 70	1 1 1.5 3	7 7 10 15	, 5 , 7 1 1 7	.5 .3 .5 .5 1.0	121 122 123 124 125
N (20) N (20) N (20) N (20) N (20) N (20)	70 50 70 70 70	N N N N	200 700 200 150 700	100 200 150 150 150	20 N 15 N 15	100 100 150 100 150	2 3 3 2 3	15 15 15 15 10	3 5 5 7	1.0 1.0 .7 1.0 .7	126 127 128 129 130
N (20) N (20) N (20) 30 N (20)	70 70 70 70 70	N 20 20 10	\$00 150 150 150 200	150 150 100 100 150	N 15 20 20 30	150 200 150 200 200	3 .7 1 .7	15 10 10 7 10	7 .5 1 3 3	1.0 .5 .7 .5 .5	131 132 133 134 135
30 N (20) 20 N (20) N (20)	70 70 70 30 30	N 30 30 30	150 150 700 150 150	100 100 100 100 100	30 20 15 15 15	200 150 200 150 150	1 1 3 .7 .7	10 10 10 10 7	2 1.5 10 .7	.7 .5 .7 .5 .3	136 137 138 139 140
N (20) N (20) N (20) N (20) N (20) N (20)	30 30 50 50 70	N 20 20 30	300 300 200 150 200	70 70 100 100 100	10 20 20 20 20	200 150 150 150 150	.7 .7 1.0 1.0 1.0	15 7 7 7 7	1.5 .7 1 .5 .7	۱ 5 5 5 5	141 142 143 144 145
N (20) N (20) N (20) N (20) N (20) N (20)	50 30 50 50 50	30 30 20 20 20	200 300 150 200 150	70 70 100 100 100	15 20 15 20 15	150 150 200 150 150	.7 1.0 1.0 .7 .7	7 7 7 7 7	.5 .7 .7 .7	.3 .5 .2 .5	146 147 148 149 150
L (20) N (20) N (20) N (20) N (20) N (20)	50 50 50 30 50	20 30 20 30 30	200 150 100 150 150	100 100 100 100 100	15 20 15 15 15	150 150 150 150 150	1.0 1.0 .7 .7 .7	7 7 5 7 7	. 7 . 7 . 7 . 7 . 7	. 5 . 3 . 3 . 3	151 152 153 154 155
15 15 10 15 15	70 70 70 50 70	30 20 30 20 15	150 200 200 200 200	200 300 300 200 200	15 30 30 20 20	100 150 150 150 150	1.5 1.5 1.5 1.5 1	10 10 7 7 7	1 1.5 1.5 1	. 5 . 7 . 7 . 7 . 5	156 157 158 159 160

- - -

_

· · · · · ·

Sample											
	Lab. No. ACF-	Field No.	Au	B	Ba	Be	Co	Cr	Си	La	MM
161 162	347 344	67ASj149 146	L L	70 70	5,000 2,000	L L	100 20	300 150	70 70	L L	1,000 700
										 ٤	imit of
			0.02	10	5	1	5	5	5	20	10

Table 2. -- Analyses of stream-sediment samples from the

	Pa	irts por	million	Contin							
мЪ	Ni	Pb	Sr	v	Y	2 r	Mg	Fe	Ca	Ті	Samp1e
15 15	100 50	15 30	300 150	300 200	30 20	150 150	1.5	10 7	I.5 1.5	0.7	161 162
determi	nation	*****									
10	2	10	50	10	10	20	0.02	0,05	0.05	0.001	

McCarthy B-4 and B-5 quadrangles, Alaska--Continued

GP 0 668 071