Increasing interest in potentially harmful substances utilized and discarded by man has raised questions about the normal distribution of chemical elements in the natural environment. This interest prompted a baseline study of a pristine region off the northern coast of Alaska currents, water clarity, nutrients, temperature and salinity, zooplankton, benthic communities, neritic fauna, bird and mammal population and pesticide residues, sediment composition and chemistry of the sediments and their inter-stitial waters. This information will provide a base for ascertaining and evaluating future changes and for assessment of the potential hazard in this region and ecosystems elsewhere. ## SAMPLING PROCEDURE During September and October 1970, samples were collected with either a Van Veen grab, which collects over a surface area of about 1/7 m² and samples to a depth of about 20 cm, or a Shipek grab, which samples to a depth of about 10 cm over 1/25 m². Analytical samples were taken of surficial sediments (2-10 cm), which were readily selected on the basis of the orientation and disposition of the fauna and their markedly lighter color. # ANALYTICAL PROCEDURES After someoning out materials over 2 millimeters, splits were air dried and gently disaggregated in a mortar and pestle to reduce mercury evaporation. These samples were analyzed using a wet chemical method outlined by Ward and others (1963) for arsenic, an atomic absorption technique of Vaughn and McCarthy (1964) for mercury, and atomic absorption methods outlined by Ward and others (1969) for copper, lead and zinc. The limits of detection for these techniques are 10 ppm for arsenic, 5 ppm for copper, zinc and lead and 0.01 ppm for mercury. Standard sieve and hydrometer techniques were used in determining the textural distribution. #### ELEMENTAL DISTRIBUTION Concentrations of copper, lead and mercury were near or below the limit of detection and had a minimal range (Table 1). This, coupled with the errors encountered in obtaining a representative sample of the sediment and particle sparsity effects, wherein analysis in a particular sample depends more upon the random occurrence of an element in the analyzed portion of the sample than on the actual elemental abundance in the sample (Clifton and others, 1969), would imply that individual values may be suspect; however, averaging and grouping as done in this report increases confidence in the general trend of values and their meaning. The distribution of these elements can be considered from several aspects. The areal distribution of elemental concentrations of copper, lead and zinc (Figs. 1-3) appears to be related to the sediment type, with concentrations highest in muds, intermediate in sand and lowest in gravels (Fig. 6, Table 1). A similar relationship has been recognized between coarse- and fine-grained rocks and is ascribed to organic enrichment and absorption on clays (Krauskopf, 1967, p. 592). The distribution of mercury appears more random and less influenced by sediment textures Arsenic is least abundant in relict gravels (Figs. 5-6, Table 1), while higher values occur in areas of modern sand and silt sedimentation (McManus and others, 1969; Barnes, 1971). This would suggest that either this element may be derived from a more modern source or that the distribution reflects the fact that arsenic tends to be tied up with iron (Rankama and Sahama, 1949, p. 741) which may be less abundant in the gravels. The lack of baseline studies at this time, wherein many aspects of the environment are outlined and compared, makes for a formidable problem of integrating source, transport mechanism and depositional regime at this stage in our The averages reported here are close to values found in other marine sediments, except that arsenic is somewhat higher (Wedepohl, 1969), and would appear to be background concentrations for these elements for the region studied. #### ACKNOWLEDGMENTS Ship time for collection of the sediment samples was provided by the U.S. Coast Guard. We gratefully acknowledge the help and cooperation of the officers, crew and fellow scientists aboard the U.S.C.G.C. GLACIER, during the Western Beaufort Sea Environmental Cruise, 1970. ## REFERENCES Barnes, P., 1971, Preliminary results of geologic studies in the northeastern Chukchi Sea: U.S. Coast Guard 373 Oceanographic Report Series (in press). Clifton, H. E., Hunter, R. E., Swanson, F. J., and Phillips, R. L., 1969, Sample size and meaningful gold analysis: U.S. Geol. Survey Prof. Paper 625C. Krauskopf, K. B., 1967, Introduction to geochemistry: New York, McGraw-Hill Book Company, 721 p. McManus, D. A., Kelley, J. C., and Creager, J. S., 1969, Continental shelf sedimentation in an arctic environment: Rankama, K., and Sahama, Th. G., 1949, Geochemistry: University of Chicago Press, Chicago, Illinois, 926 p. Vaughn, W. W., and McCarthy, J. H., Jr., 1964, An instrumental technique for the determination of sub-microgram concentrations of mercury in soils, rocks, and gas, in Geological Survey Research, 1964: U.S. Geol. Survey Ward, F. N., Lakin, H. W., Canney, F. C., and others, 1963, Analytical methods used in geochemical exploration by the U.S. Geological Survey: U.S. Geol. Survey Bull. 1152. Ward, F. N., Nakagawa, H. M., Harms, T. F., and Van Sickle, G. H., 1969, Atomic-absorption methods of analysis useful in geochemical exploration: U.S. Geol. Survey Bull. 1289. Wedepohl, K. H., ed., 1969, Handbook of geochemistry: Vol. II/1, Berlin, Springer-Verlag, p. 33. Table 1. Concentration of elements in different sediment types (Concentrations in parts per million) | | No. of Samples | Average | Range | | No. of Samples | Average | Range | | |--------|----------------|---------|---------------------------|-------------------|------------------|--------------|----------------|--| | | | | | | | (see note | a) | | | | COPF | | - H- 10 14-12-11-10-10-11 | The second street | ARSENIC | | | | | Gravel | 13 | 10 ppm | 5 - 20 ppm | Gravel | 13 | 14 ppm | <10 - 25 ppm | | | Sand | 32 | 11 | 10 - 15 | Sand | 32 | 27 | 20 - 30 | | | Mud | 19 | 19 | 15 - 30 | Mud | 19 | 27 | 20 - 30 | | | Total | 64 | 13 | 5 - 30 | Total | 64 | 24 | <10 - 30 | | | | | | | | м | ERCURY | | | | | LEA | AD | DC () | Exclus | ive of values be | low 0.01 ppm | (see note b) | | | Gravel | 13 | 10 ppm | 5 - 20 ppm | Gravel | 12 | 0.020 ppm | <.01 - 0.4 ppm | | | Sand | 32 | 15 | 10 - 25 | Sand | 23 | 0.017 | <.0103 | | | Mud | 19 | 17 | 10 - 20 | Mud | 15 | 0.017 | <.0104 | | | Total | 64 | 14 | 5 - 25 | Total | 50 | 0.017 | <.0104 | | | 10 | | | | | 0.01 ppm | Percent | | | | Gravel | 13 | 47 ppm | 25 - 80 ppm | Gravel | 1 | 88 | | | | Sand | 32 | 44 | 25 - 80 | Sand | 9. | 28% | | | | Mud | 19 | 92 | 65 - 160 | Mud | 4 | 214 | | | | Total | 64 | 59 | 25 - 160 | Total | 14 | 21% | | | a) Values measured as less than 10 ppm were averaged in as 5 ppm. b) Only samples with values greater than or equal to 0.01 ppm were used in average. MISCELLANEOUS FIELD STUDIES MAP MF - 316 PROPERTY OF DGGS LIBRARY DISTRIBUTION OF COPPER, LEAD, ZINC, MERCURY, AND ARSENIC IN THE SURFACE SEDIMENTS OFF THE COAST OF NORTHWESTERN ALASKA > by Peter Barnes and Kam Leong 1971