
77-169-D



MAP SHOWING COAL FIELDS AND DISTRIBUTION OF COAL-BEARING ROCKS
IN THE EASTERN PART OF SOUTHERN ALASKA

BY C.D. HOLLOWAY

EXPLANATORY NOTE

INTRODUCTION AND METHODOLOGY

This table provides brief summaries and objective descriptions of the known coal fields in the eastern part of southern Alaska. The table and accompanying map are part of the Regional Mineral Resource Assessment Program for southern Alaska. A companion publication (Molloway, 1977) describes the coal fields in the western part of southern Alaska. Together, they represent the results of a literature search by the author, utilizing publications from federal, state, and other sources. By far the most comprehensive of these is the summary by Barnes (1967) of the coal resources of Alaska.

A deliberate attempt was made to avoid interpretative or subjective statements in the compilation of the table. In many instances, however, discrepancies exist between the various reports. In these cases, the most recent or best-documented figures, or those which appeared to have been derived according to a methodology commensurate with U.S. Geological Survey guidelines were chosen. Averitt (1961) and Barnes (1967) discuss these guidelines in detail.

EXPLANATION OF TABLE HEADINGS

COAL FIELD AND DISTRICT — Names used to designate coal fields are those which are most commonly used in the literature. This is also true for the most part of names used for districts, although in some cases a nume was used which does not have as wide a currency, for example, "Kenai Offshore". In these cases the term "district" is not appended.

GEDLOGIC AGE OF COAL-BEARING ROCKS -- All known coal fields in the eastern part of southern Alaska are found in rocks of Tertiary age.

AREA UNDERLAIN BY COAL-BEARING ROCKS -- Detailed explanations of the criteria used in U.S. Geological Survey resource estimates to calculate the areal extent of coal beds are given by Averitt (1961).

Briefly, the areal extent of coal-bearing rocks is inferred from information from outcrops, mines, prospects, and drill holes.

OVERBURDEN -- Coal-bearing rocks throughout much of the area of eastern southern Alaska's coal fields are mantled by a cover of younger rocks or surficial deposits ranging from a few tens of feet to several thousand feet in thickness. It is standard practice in coal resource estimates of the U.S. Geological Survey to report the resource data in the following three catagories, according to the thickness of overburden in feet: O-1,000; 1,000-2,000; 2,000-3,000. It was decided not to convert these intervals, to their metric equivalents. The footnote at the end of the table gives further information and factors for conversion to the metric system.

ESTIMATED ORIGINAL RESOURCES -- "Original resources" refers to coal in the ground prior to the beginning of mining operations; this figure is essentially a constant and provides a base figure from which resources remaining at any given time can be calculated. Under this heading, resources for each coal field have been classified according to the relative abundance of information and the reliability

Formation and factors for conversion to the metric system.

ESTIMATED ORIGINAL RESOURCES -- "Original resources" refers to coal in the ground prior to the beginning of mining operations; this figure is essentially a constant and provides a base figure from which resources remaining at any given time can be calculated. Under this heading, resources for each coal field have been classified according to the relative abundance of information and the reliability of data concerning the amount of coal within each of the overburden catagories. U.S. Geological Survey usage defines these subheadings as follows: "measured resources" are those for which tonnage is computed from dimensions revealed at closely spaced points of observation and measurement, such as outcrops, trenches, mine workings, and drill holes; "indicated resources" are those for which tonnage is computed partly from specific measurements and partly from projection based on geologic evidence; "inferred resources" are based on broad knowledge of the geologic character of the bed or region, with only a few measurements of bad thickness. Where no other data were available, resource estimates which were reported in the literature as "hypothetical" or "speculative" were utilitzed, but were not included in the grand total of coal resources for the region as a whole.

RANK -- The standard classification of coals by rank in the series from lignite to anthracite is that established by the American Society for Testing and Materials (1965), and is based upon limits of fixed carbon, volatile matter, and calorific value. These in turn are related to the degree of metamorphism, or progressive alteration, of the deposit. Proximal analyses are not available for some coal basins, and rank may be based on subjective interpretations.

COMMENTS -- Additional information, including geologic setting, number and thickness of coal beds, and production.

REFERENCES -- Cites sources of information for the table and map. A list of references cited in the table and used in the compilation of the map is given below.

## REFERENCES CITED

- American Society for Testing and Materials, 1965, Specifications for classification of coals by rank (tentative), ASTM designation D388-641, <u>in</u>, pt. 19, Baseous fuels; coal and coke: 1965 Book of ASTM Standards, p. 73-78.
- Averitt, Paul, 1961, Coal reserves of the United States -- A progress report, January 1, 1960: U.S. Geol. Survey Bull. 1136, 116 p.

  Barnes, F. F., 1951, A review of the geology and coal resources of the Berning River coal field, Alaska: U.S. Geol. Survey Circ. 146, 11 p.
- ----, 1967, Coal resources of Alaska: U.S. Geol. Survey Bull.
  1242-B, 36 p.

  Barnes, F. F., and Cobb, E. H., 1969, Geology and coal resources of
  the Homer district, Kenai coal field, Alaska: U.S. Geol. Survey
  Bull. 1058-F, p. 217-260.
- the Homer district, Kenai coal field, Alaska: U.S. Geol. Survey Buil. 1058-F, p. 217-260. Barnes, F. F., and Payne, T. G., 1956, The Wishbone Hill district, Matanuska coal field, Alaska: U.S. Geol. Survey Bull. 1016, 88p-
- Barnes, F. F., and Sokol, Daniel, 1959, Geology and coal resources of the Little Susitna district, Matanuska coal field, Alaska: U.S. Geol, Survey Bull, 1058-0, p. 121-138.
- Holloway, C. D., 1977, Map showing coal fields and distribution of coal-bearing rocks in the western part of southern Alaska: U.S. Geol. Survey Open-file Map OF 77-169-1, I sheet, scale 1:1,000,000.

  Hopkins, D.M., 1951, Lignite deposits near Broad Pass station, Alaska, in Coal investigations in south-central Alaska, 1944-46: U.S. Geol. Survey Bull. 963-E, p. 187-191.
- Magoon, L. B., Adkison, W. L., and Egbert, R. M., 1976, Map showing geology, wildcat wells. Tertiary plant fossil localities. K-Ar age dates, and petroleum operations, Cook Inlet area. Alaska: U.S. Geol. Survey Map I-1019, 3 sheets, scale 1:250,000.
   May, R. R., and Warfield, R. S., 1957, Investigations of subbituminouscoal beds near Houston, westward extremity of Matanuska coalfield, Alaska: U.S. Bur. Mines Rept. Inv. 5350, 20 p.
- Alaska Div. Geological and Geophysical Surveys Open-file Rept. 30, 7 of McGee, D. L., and O'Connor, K. M., 1975, Cook Inlet basin subsurface coal reserve study: Alaska Div. Geological and Geophysical Surveys Open-file Rept. 74, 18 p.

  Plafker, George, 1967, Geologic map of the Gulf of Alaska Tertiary province, Alaska: U.S. Geol. Survey Map I-484, I sheet, scale 1:500,000.
- Richards, R. W., and Waring, G. A., 1933, Progress of surveys in the Anthracite Ridge district: U.S. Geol. Survey Bull. 849, p. 5-27. Rutledge, F. A., 1948, Investigations of the W. E. Dunkle coal mine, Costello Creek. Chulitna district, Alaska: D.S. Bur. Mines Rept. lnv. 4360, 9 p.
- ders. R. R. 3076.
  MINL Rept. 37, p. 54-58.

  Bureau of Mines, 1973, Alaska 1:250,000 scale que
- U.S. Bureau of Mines, 1973, Alaska 1:250,000 scale quadrangle map overlays showing mineral deposit locations, principal minerals, and number and type of claims: U.S. Bur. Mines Open-file Rept. 20-73, Wahrhaftig, Clyde, 1973, Coal reserves of the Healy Creek and Lignite Creek coal basins, Nenana coal field, Alaska: U.S. Geol. Survey Open-file Rept.
- Wahrhaftig, Clyde, and Hickcox, C. A., 1955, Geology and coal deposits, Jarvis Creek coal field, Alaska: U.S. Geol. Survey Bull. 989-G, p. 353-367.
   Wahrhaftig, Clyde, Wolfe, J. A., Leopold, E. B., and Lanphere, M.A., 1969, The coal-bearing group in the Nenana coal field, Alaska: U.S. Geol. Survey Bull. 1274-D, 30 p.
- Warfield, R. S., 1967, Resume of information on Alaskan bituminous coals with particular emphasis on coking characteristics: U.S. Bur. Mines Open-file Rept. , 2D p.

| COAL FIELD AND DISTRICT                         | GEOLDGIC<br>AGE OF<br>COAL-BEARING<br>ROCKS | AREA UNDER-<br>LAIN BY<br>COAL-BEARING<br>ROCKS #12 1/ | OVERBURDEN<br>feet 1/                      | at I                          | ATED ORIGINATIONS OF ST   | WAL RESOURCE<br>HOST tons 3 | Z<br>Z                | rank                                               | COMMENTS REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------|---------------------------------------------|--------------------------------------------------------|--------------------------------------------|-------------------------------|---------------------------|-----------------------------|-----------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MENANA COAL FIELD                               |                                             |                                                        | 0)                                         |                               |                           |                             | 100                   | subbttuminous                                      | Paul baseing Obers committee the Guideante Researce 1027 - D35 033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Rex Creek Ofstrict<br>Tatlanika Creek           | diig. and Mio,<br>Miocene                   | 29                                                     | 0-1,000                                    | ->                            | 9.5                       | 77.1<br>76.4                | 123                   | subbituminous                                      | Chal-bearing group comprises the Grubstake, Barnes, 1987, p. 8)2-8)3, Lignita Creek, Suntrana, Sanctuary, and Marky Treek Consulton, Sanctuary, and provided the Birch Creek, Tobelanita, and Marketin, 1973, 199, p. D. 1973, 1914, 1914, p. 1914, p. 20-9-1914, p. 20-9-19  |
| District<br>Wood River                          | do                                          | 276                                                    | 1,000-2,000                                | 15                            | 12<br>15                  | 76.4                        | 76.4<br>268           | do                                                 | age: the coal-bearing tedimentary rocks 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| District                                        |                                             | 1                                                      | 2,000-2,000<br>2,000-3,000                 |                               | 18                        | ====                        | 15<br>16              |                                                    | form a series of synclinal Dasins in a discontinuous belt from 1 to 30 miles wide and about 150 miles long; the properties were originally developed in 1988 as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Savage River<br>District                        |                                             | 55                                                     | 0-1,000                                    | ******                        |                           | 12                          | 15                    |                                                    | consequence of construction of the Alaska railroad: wirtually all production has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lignite Creek<br>District                       | do                                          | )                                                      | 0-1,000<br>1,000-2,000<br>2,000-3,000      | 282.7                         | 1,482.7                   | 1,557.8<br>351<br>327       | 3,317.4<br>793<br>327 | dp                                                 | come from Healy and Lightte Creeks, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Healy Creek<br>District                         | do                                          | 218                                                    |                                            |                               | 94,5                      | 141.2                       | 529.7                 |                                                    | Coder organizations permy arganization of the code of   |
| 10/36/102                                       |                                             | 1                                                      | 0-1,000<br>1,000-2,000<br>2,000-3,000      | 294<br>274                    | 69<br>245                 | 128.4<br>110.8              | 471,4<br>355.8        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| California Creek<br>District                    |                                             | )                                                      | 0-1,000<br>1,000-2,000                     | 6                             | 231.6                     | 379.9<br>132                | 619.5<br>139          | de                                                 | Emma, McAdam, Bonanza, and Lower Marguerite<br>Creeks, which are tributary to California<br>Creek; figures for Mood River do not in-<br>clude the eastern part of the basin, be-<br>tween Mood River amon by Creek.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       |                                                    | twen Wood River and Dry Craek.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total                                           |                                             |                                                        | 9-1,000                                    | 597.7                         | 1,949.9                   | 2,516.5                     |                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                 |                                             |                                                        | 1,000-2,000<br>2,000-3,000                 | 274                           | 533<br>263                | 687.8<br>437.8              |                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Total Nenena                                    |                                             |                                                        |                                            |                               |                           |                             | 7,259.7               |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| JARVIS CREEK COAL                               | Mincene                                     | 16                                                     | 0-2,000                                    |                               | 5.9                       | 71.5                        | 77.4                  | subbituminous                                      | Coal-bearing rocks are a sequence of inter-<br>bedded lenses of poorly compatidated gand-<br>stone, sittsiane, Claystone, and conglow-<br>Sone, sitesiane, Claystone, and conglow-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FIELD                                           |                                             |                                                        | (most coal is<br>in 0-1,000<br>foot inter- |                               |                           |                             |                       |                                                    | bedden, eltestum, sluytone, and complom-<br>erate: call occurs in 36 thm, leatibulm, 1607, pl. 156, Barnes,<br>erate: call occurs in 36 thm, leatibulm, 1607, pl. 1,<br>discontinuous beds, most of which are less<br>than 7.5 feet thick; coal field is a shaffow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                 |                                             |                                                        | val)                                       | ĺ                             |                           |                             |                       |                                                    | than 2.5 feet thick; coal field is a shellow<br>owal basin transfer porthorn-west; minor<br>reserves of stripping coal; coal-bearing<br>pocks are correlated with those on Healy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                             |                                                        | -                                          |                               |                           |                             |                       |                                                    | rocks are correlated with those on Healy<br>Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Takal                                           |                                             |                                                        | 0-2,000                                    | No. No.                       | 5.9                       | 71.5                        |                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Total Jarvis Creek                              |                                             |                                                        | u-2,000                                    |                               | 3.9                       | 71.3                        | 77.4                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BROAD PASS COAL FIELD                           |                                             |                                                        |                                            |                               |                           |                             |                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Broad Pess Station                              | Miccene                                     | 1,5                                                    | U-1,000                                    |                               | .3                        | 63.3                        | 63.6                  | lignite                                            | Coal forms 5-10 foot thick beds in simple structures; coal-bearing rocks are 71th-ologically similar to those on Costell pl. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       |                                                    | ologically shmilar to those on Costello pl. I<br>and Healy Creeks; total area underlain by<br>these prote is probably much larder than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                 |                                             |                                                        |                                            |                               | 1                         |                             |                       |                                                    | given, as indicated by coal outcrops farther south on the Chalitma River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Contact of                                      |                                             | 2                                                      | 0 / 24                                     |                               |                           |                             | . 3                   | subhi ha                                           | Onal is found in Tenses and discontinuous Butledge, 1940, p. 3, 4; beds with a maximum thickness of 9 feet; Barnes, 1967, b. 817, B24,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Costella Creek                                  | do                                          | 7                                                      | 0-1,000                                    |                               | .3                        |                             | .3                    | subbituminous                                      | heds with a maximum thickness of 9 feet;<br>host rocks are poorly consolidated, by<br>only slightly compressed, with gentle dips;<br>total reported production, 1940-1954, of<br>6/,000 short troos resources estimated in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       |                                                    | total reported production, 1940-1954, of<br>64,000 short tons; resources estimated in<br>1943 as, 33 million tons, most of which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | * 6                                         |                                                        |                                            | {                             |                           |                             |                       | {                                                  | 1943 s. 35 million tons, most of which<br>have since been removed or lost by under-<br>ground and strip mining; however, total area<br>under lain by coal-bearing rocks is probably<br>much larger tran indicated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 |                                             |                                                        |                                            |                               |                           | 1                           |                       | }                                                  | much larger than indicated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total                                           |                                             |                                                        | U-1,000                                    |                               | .5                        | 63. 3                       |                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Total Broad Pass                                |                                             |                                                        | Q-1,000                                    |                               | 1                         |                             | 63.9                  | }                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ~~~~~                                           |                                             |                                                        |                                            |                               |                           | <del> </del>                |                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SUSITNA COAL<br>FIELD                           |                                             | ,                                                      |                                            |                               |                           |                             | f                     |                                                    | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Yentna River                                    | Miocene                                     | approx.<br>1,865                                       | 0-1,000                                    |                               | 55.9                      |                             | 55.9                  | subbituminous<br>and lignite                       | Coal-bearing rocks may underlie as much as 7,400 mi2 now overlain by unconsoli-<br>ateg diachal and alluval deposits; 5, 6: Magoon, Abkison, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Skwentna River                                  | **********                                  | }                                                      | 0-1,000                                    |                               | 123                       |                             | 123                   | do                                                 | Doline and Chaites wiven facing probably Fabort, 1976, Sheet 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Beluga River<br>Capps Glacter                   | Late Paleocen<br>to<br>early Miocene        | 7                                                      | 0-1,000                                    |                               | 550                       |                             | 550                   | do                                                 | contain most of the potentially valuable containing the potentially valuable cost ineposities; cost is contained in heds of the West Foreland and Tymont formations; beds are raintively files or pently folded,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chuitna River                                   | Early and<br>middle<br>Miccene              | 51<br>60                                               | 0-1,000<br>0-1,000                         |                               | 1,560                     |                             | 1,860                 | do                                                 | ercapt locally along a few major faults;<br>because of extensive cover, the total<br>posmetral resources of the field may be<br>much preser; blow shown here: Magings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Beluga Lake                                     | MIDCERE                                     | 50                                                     | 9-1,400                                    |                               | 240.1                     |                             | 200.1                 |                                                    | much greater than Shown here; maxinum<br>thickness to Quaternary overburden it about<br>300 feet, glyang a favorable ratio of coa?<br>thickness to overburden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                 |                                             |                                                        |                                            |                               |                           |                             | 1                     | 1                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Total<br>Total Susitna                          |                                             |                                                        | 0-1,000                                    |                               | 2,699                     |                             | 2,699                 |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                 |                                             |                                                        |                                            |                               | -                         |                             |                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MATAMUSKA COAL FIELD                            | Oligocene                                   | 33                                                     | 0-1,000                                    | hypothet                      | lcal resou<br>lion short  | rces of                     |                       | subbitumingus                                      | Boorly exposed coal, generally in thin and impure best; these generally dip gently to the acoutement, but locally are moderately folled and faulted; several abandoned prospects; commercial operations, with 1976, p. 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Little Susitna<br>District                      | *********                                   |                                                        |                                            | 14.6 mil                      | lion short<br>{           | tons                        |                       |                                                    | folded and faulted; several abandoned p. 611, pl. 1; banders, prospects; commercial operations, with minor production, carried on intermite-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       |                                                    | (olided and Faulted); severed absolutes (1, 101, 101, 103, 100) in the control of  |
|                                                 |                                             |                                                        |                                            |                               |                           | }                           |                       |                                                    | of surface; resource estimate based on drill cores from limited area in western part of district                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Wishbone Hill<br>District, Incl.<br>Moose Creek | Paleocene                                   | 75                                                     | 0-2,000<br>(coal beds<br>are largely       | 6,6                           | 51.7                      | \$3,1                       | 112.0                 | bituminous                                         | Rocks in the coal-bearing Chick-Zoor formation range from coarse sandstone and p. 18: Barnes and Payre, 1856, conglowerate to claystone; desfrant p. 18: Barnes, 1967, p. 811, 825 structural feature is the WishBone Hill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                 |                                             |                                                        | the upper<br>1,400 feet)                   |                               |                           |                             |                       |                                                    | structural feature is the Wishbone Hill<br>syncline, which is cut into segments by<br>several major transverse failts, with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       |                                                    | Structural resource is the assumer of the symbol of the sy  |
|                                                 |                                             |                                                        |                                            |                               |                           |                             | 1                     |                                                    | are not notably persistant, tending to thin<br>or intergrade within relatively short dis-<br>tances, continuous production from 1918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       |                                                    | are not motably persissant, tenning to trin the control of the con  |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       |                                                    | man had a state of the state of  |
| Chickaloon<br>District                          | Paleocene                                   | 12                                                     | 0-2,000                                    |                               | .7                        | 24.3                        | 25                    | bituminous                                         | Coal occurs in the Chickaloon formation in Barnes, 1967, p. Bll, 826, a large number of lenticular bods ranging pl. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                 |                                             |                                                        |                                            |                               |                           |                             | }                     |                                                    | From a few inches to 14 feet in thickness;<br>structure is synclinal, with locally super-<br>imoused belts of tight folding and crum-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       | }                                                  | ling; further complicated by faulting and intrusion of differ and sills; coal is difficult and symptote control to the coal of  |
|                                                 |                                             |                                                        |                                            |                               | Ì                         | 1                           |                       | }                                                  | complex structure and lateral discontinuity of the coal beds; history of exploration and development dating from the april 1900's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 |                                             |                                                        |                                            |                               | }                         | 1                           |                       |                                                    | Cos) occurs in the bricks lost formet lost in Barnes, 1967, p. 811, 826, the Cemmen of Intection beat signs; pl. 1 from a few faches to lifeter in Dickiness; structure is symplicial, with locally super-timoused belts of tight folding and crampolities of the symplectic symplectic structures in a few faces and silist coal is difficult and expensive to when, due to complex structure and letteral disconting complex structure and letteral disconting and development dating from the early 1900's, but very little production; resource estimates are for only the relatively works.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | k                                           |                                                        |                                            |                               | 1                         | į                           |                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Anthracite Ridge<br>District                    | Paleocene                                   | 28                                                     | 0-1,000                                    | hypothe<br>of .75<br>tons     | tical reso<br>million sh  | urces<br>ort                |                       | anthracite and<br>semi-anthracite<br>in north, bi- | e along northern border; coal-bearing rocks p. S, 23; Warfield, 1967,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                 |                                             |                                                        |                                            | 1                             | }                         | 1                           | 1                     | tuminous in<br>south                               | unuer by igneous discs and stills and the coels of higher grade than elsewhere in the Matanuska coal field; the hypothetical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                 |                                             |                                                        |                                            |                               | -                         |                             |                       |                                                    | uninge given is for a KU acre area on the morthwest border of the basin; in general, outcrops are of such imall extent and beds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                 |                                             |                                                        |                                            | }                             |                           |                             |                       |                                                    | of the Chickaloon Formation have been far-<br>trued by Specual Kites and spills and the<br>coals of Higher grade than elsewhere in<br>the coals of Higher grade than elsewhere in cal-<br>tempage silves is for a 20 acres area on the<br>northwest border of the basins in general,<br>outcrops are of such small-settent and beds<br>are so frequilar that accurate reserve<br>estimates could not be made, but could be<br>as high as several mailtion tonts for the<br>district as a whole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       |                                                    | THE STATE OF THE S  |
| Patal (excl, hypoth                             | netical)                                    |                                                        | 0-2,600                                    | 6.6                           | 52.4                      | 78                          |                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Total Metanuska<br>(excl. hypoth                | metical)                                    |                                                        |                                            |                               |                           |                             | 137                   |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       | ļ                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| KEMAI COAL FIELD<br>Kenai Onshore               | Late Mines-                                 | 3,300                                                  | 000, 1-0                                   |                               | 310.7                     |                             |                       | ) towns                                            | The anathers must of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (primarily the<br>Homer District)               | Late Miocene<br>and Pliocene                | 5,000                                                  | -1,000                                     |                               | 318.2                     |                             | 318.2                 | lignite to<br>subbituminous                        | The northern part of the coal fishle, in the Barnes and Cook, 1959,<br>kens distriction, her a several-humand-foot p. 2/2; Barnes, 1967,<br>thick cover of surficial material, but coal-p. B12-B13, 827-826, pl. 1;<br>bearing-rocks are indicated in wel) core; Magoon, Adition, and Eghert,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                 |                                             |                                                        |                                            | }                             |                           |                             |                       |                                                    | bearing rocks are indicated in me) cores; Magoom, Adkison, and Egbert, in the Homer district to the south, coal-<br>bearing rocks of the Sterling and Seluya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                 |                                             |                                                        |                                            | }                             |                           |                             |                       |                                                    | bearing rocks are indicated in aep) corps; "Agooom, Addison, and Egbert,<br>1976, sheet   and 2   about   about |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       |                                                    | in , usunctinuous peos; total production<br>does not exceed a few thousand tons; re-<br>source estimates include only the area with-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       | 1                                                  | in. S miles of the coast in the femer dis-<br>trict; much larger reserves are undoubtedly<br>pretent farther inland, but surface data<br>are insufficient for reliable extreates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       | -                                                  | me wenticions the coupple astimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Kehai Offshore                                  | Oligocene(?)<br>to middle<br>Miscene        | 1,244                                                  | 0-2,000                                    | "speculat<br>of 100.0<br>tons | ive" resou<br>100 million | rces<br>short               |                       | unknown<br>(see text)                              | Bata is from exploratory and production McGee and D'Connor, 1975, we'll drilled for hydrocarbons, described p. 2, fig. 2-6, pl. 1 without reference to econemics of coal re-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                 | Junealle                                    |                                                        |                                            | LUITS                         |                           |                             |                       |                                                    | without reference to economics of coal ve-<br>covery; district laps onshore, encompassing<br>all or part of Barnes' (1967) "Deach SW of<br>Tyunek" and the "Belupa River" and "Unuitma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                 |                                             |                                                        |                                            |                               |                           |                             | }                     | 1                                                  | Tyonek" and the "Boliupa River" and "Chairna River" districts in the Sustitus coal 'Fledt' coal in these areas is lighte to sub-<br>bluminous; rank of offshore coal is unknown,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                             |                                                        |                                            |                               | 72                        |                             |                       |                                                    | bituminous; rank of offshore coal is unknown,<br>but aperage rank may be higher due to in-<br>creesed temperatures and pressures;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 |                                             |                                                        |                                            |                               | 10                        |                             |                       |                                                    | and average rank may be higher due to In- creaced temperatures and pressures; coliferous rocks are in the Kemaj Broup, with col in lenticular bads pharallel to the firmer direction of the Basic axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       |                                                    | control areas on the book that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Total (excl. specu)                             |                                             |                                                        | 0-1,000                                    |                               | 216.2                     | 1                           | í                     | otte                                               | RUSHICAKA FORMATION; coal seams are 1967; Sanders, 1976b, chartery from by lack of continuity in all P. 54-58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| IGHAL Var-1 / "                                 | (5)                                         |                                                        |                                            |                               |                           |                             |                       | cite, and<br>anthracite                            | numnicate Formation; coel seems are 1967; Sanders, 1976b, characterize by lack of continuity in all off-actions; area is extremely complex structure; by, with a highly compressed seems of storting), chernol. like folial, some faults; continuity and interface of storting characteristic properties of storting characteristic properties of storting and storting sto  |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       |                                                    | into an interfaction of beginning failts; coal outcrops are intimately associated with "Exterior manufaction of all associated with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       |                                                    | "structuren", mostly faults and Yold ANAS. and are greatly devoletized due to low- grade regional meteorophism; resources ere calculated from coal/waste ratefors for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       |                                                    | calculated from coal/waste rations for the<br>Kushtaka formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                             |                                                        |                                            |                               |                           |                             |                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Brand total of chal resources for eastern part of southern Alaska Additional hypochetical or speculative resources

in aggition, four small areas of coal-bearing rocks on Windy, Mystic, Dry, Delca creeks in the Momana coal field are shown on the map, exclosed by the fines. These areas are whom in manifest the state of the manifest of the state of the st

100,051.35



This map is preliminary and has a been reviewed for conformity wit U.S. Geological Survey standards and nomenclature.