	*	LOCA	7100			ATC	MIC ABSO	DTTON A	NAL VCCC		···						502836D3	· ~ ******	uc F C	·-··									
Map Locality	Locality V Name		Longitude	Cobb Locality	Field Station Number	Au	Cu	Pb		Aq	As B	Ba	Se Be	<u>MIQUANT</u> Bi Cd			ROGRAPHI La	Mo		Ni	Pb	Sc S	r V	Y	Zr	Zr	Samp	ople .	LOCALITY
(13)	Northern Copper Company	56°53'13"	133°22'15"		79DG140A 140B 140C	N N N	50 7,100 2,000	H15 90 10	29,000 480 88,000	N 5 N	N 20 N 30 N 20) 70) 200	5	N N	15 <i>I</i>	N 500 N 5,000	N	N N	N N	5 , 5	L 30	N I	N 30 N 10	L N		00 20 50 20	Mass	oxene rock with sphalerite and magnetite from trench sive pyrrhotite and chalcopyrite from trench	Mineralization occurs as pods and irregular masses of sulfides in a locally garnet-bearing equigranular to pyroxene-porphyritic (phenocrysts to 2cm) greenstone with minor white
		56°53'15"	133°22'19"	-	- 140D 79BG071A 071B 071C 071D 071E 071F	N N N N N	3,000 80 9,000 120 75 55 N	5 L N N L	3,100 650 1,100 150 10	N N 5 N N N	N 30 N 10 N L N L N 10	2,000 70 50 100) N) N) N) 3	N N N N N N N N N N N N N N N N N N N	10 1 15 3	10 2,000 30 70 50 2,000 N 100 H 20	N N N N	N N N N N	N N N N N	5 30 20 5 5 70 30	N N L N N		N 50 N 150 DO 150 N 30 N 30 N 10 DO 200 N 100	20 10 30 10 N 20	5.0 5	00 50 00 70 00 70 00 N N 100	Rock Fine Green Pyros Quart Phyll	oxene rock with sphalerite and pyrrhotite from shaft dump k with garnet, magnetite, and sphalerite from pit dump e grained greenstone enstone oxene granulite with pyrrhotite, magnetite, and sphalerite rtz vein litic greenstone very greenish gray phyllite	coarse grained marble. Sulfides are either interstitial to pyroxene or show replacement textures where the greenstone is more massive. The minefalization does not appear to be veinlike or tabular, and tends to occur at the base of a massive, flat-lying greenstone layer underlain by green siliceous phyllite, which is underlain by black carbonaceous argillite. Mineralization in the fine grained layers in the greenstone occurs in bands parallel to the compositional layering. Mineralization consists of mag, sl, po, cp. The prospect was trenched and drilled by private interests in 1978 and 1979.
(14)	Maid of Mexico		133°01'57"		79DG141A 141B 141C* 79BG072A 072B 072C	5.5 N 5.5 N N	680 65 1,800 10 180 160	1,300 15 43,000 H30 H10 H10	1,400 70 48,000 15 45 85	1 N 200 N N	N N N N N 100 N L N 100				5 ! 5 1 30 ! N 2 30 10 20 M		N N N	N 30 N N N	N N N N	10 50 50 20 15 70 10	200 L D,000 L L		4 20 4 70 8 10 90 50 60 300 90 200	N N N 20 20	1,50 30,00 >10,00 N N	N 00	Quart Quart Pyrit Calca	ical sulfide-bearing quartz vein rtz-slate "ribbon rock" with abundant pyrite from mine dump rtz with abundant galena and sphalerite from mine dump itic black carbonaceous phyllite careous felsic metatuff sic dike with pyrite, galena, molybdenite	Gold- and galena-bearing quartz veins, typically banded parallel to vein walls, cut black carbonaceous argillite with minor limestone and mudstone. 1%-5% of the sulfides in the vein sampled include gn, sl, cp, py. The carbonaceous unit is associated with rusty weathering, sulfidebearing calcareous felsic metatuff and felsic dikes, and is overlain by greenstone, greenschist, and marble. Several stopes were mined in the 1930's. The mine currently consists of several caved adits being reopened and worked privately. *79DG141C contains 10 ppm Au and 200 ppm Sb by SS
(15)	Harvey Creek		133°03'46"	16	79DG142A 142B 79BG073A	0.10 N N	15 180 190	Н60 30 5	40 75 80	N 0.5 พ	N 10 N 10 N L	150 500 100	N P	N N N N	5 N 30 20 20 15	20 0 200 0 100	N	N N N		10 70 50		5 M 15 M 20 15		N 20 30	N 20 N	N 00 100 150	Pyrit	rtz with pyrite and arsenopyrite itic metatuff careous felsic metatuff	~Gold- and massive sulfide-bearing quartz veins cut phyllitic, py-bearing light greenish gray felsic metatuff. The prospect was worked during the Depression with a small Pelton wheel and hammer mill, and is currently being worked privately.
(16)	Cornwallis Peninsula	56°54'52"							,																				Mineralization consists of sl-bearing calcite-cemented fossiliferous (crinoids, brachiopods) Carboniferous limestone breccia. Drilled by private interests in 1979 (E. M. MacKevett, oral communication, 1980).
(17)	Port Camden	56°48'19"	133°56'32"	1							, ,																	·	Tertiary Kootznahoo Formation, consisting of light brown, poorly sorted, very dolomitic sandstone, which contains clay clasts, carbonized wood fragments, and dolomitic concretions, ranges
		,					-																						from silty fine grained thin-bedded sandstone to medium and coarse grained partly conglomeratic, medium and thick bedded sandstone. Siderite, mag, py, and apatite are present in some samples. All carbonized wood fragments show radioactivity when tested in place; readings range from 2 to 50 times background. Sample 7127911 yields 8 µ of 1300+400 ppm uranium and α µ of 2300+700 ppm uranium (Dickinson, 1979a).
(18)	Hamilton Creek	56°05'52"	133°39'27"								1											,							Fragments of laminated phosphatic rock are suspended in white calcite veins in fine grained, light to dark gray, silty laminated apatite-
											;																		bearing dolomite. Samples contain 30% to 50% U-bearing apatite. Radioactive anomaly reaches 20 times background for 0.5 m thick bed. One sample indicated β μ of 80 ± 24 ppm uranium (Dickinson, 1979b).

i