UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY GEOCHEMICAL DATA FROM THE NABESNA A-1 QUADRANGLE, ALASKA Ву N.A. Matson, Jr. and D.H. Richter Property of RAPS Open-file report 1971 This report is preliminary and has not been edited or reviewed for conformity with Geological Survey standards or nomenclature. #### MAP EXPLANATION Nabesna A-l quadrangle, Alaska Stream sediment sample locality with map number on upstream side. Darkened quadrants indicate anomalous concentrations of Ag and/or Au, Cu, Mo, Pb and/or Zn in clockwise order from top. Example 89 is anomalous in Cu and Pb. See Table 1 for analytical values. Rock sample locality and map number. See Table 2 for analytical values and description of samples. Altered zone characterized by limonite staining from the weathering of disseminated sulfides. Approximate contact of Klein Creek batholith, dashed where covered. (7) Localities described in "Economic Geology Notes" section of this report. TABLE 1 Analyses of stream sediments Nabesna A-l quadrangle, Alaska Limits of determination shown in parentheses under element. | | | | | | | Concentra | | | | | | |----------------------------|--|------------------------|--------------------|---------------------------------|---------------------------------|--------------------------------|-----------------------|--------------------------------|----------------------------|---------------------------------|---------------------------| | Map
No. | Field
No. | Ag
(.5) | Au
(.02) | B
(10) | Cr
(5) | Cu
(5) | Mo
(5) | Ni
(5) | Pb
(10) | (10) | Zn
(200) | | 1
2
3
4
5 | 69-DW-75
69-PL-152
69-PL-149
69-PL-151
69-PL-150 | N
L
L
L | L
L
L
L | 70
150
70
50
300 | 70
300
150
150
700 | 70
150
100
200
150 | L
L
L
L | 70
150
100
100
150 | 15
N
L
15
N | 200
300
300
300
300 | L
L
L
L | | 6
7
8
9
10 | 69-PL-132
69-ARh-182
69-PL-134
69-PL-135
69-PL-138 | N
N
N
N | L
L
L
L | 70
N
150
30
150 | 300
10
2000
150
300 | 150
50
150
150
150 | L
N
L
L | 150
5
150
100
100 | L
15
L
L
10 | 300
200
500
500
300 | L
L
200
L
L | | 11
12
13
14
15 | 69-PL-137
69-PL-136
69-DW-72
69-AMn-163
69-AMn-173 | N
N
N
L
.5 | L
L
L
L | 50
70
50
50
50 | 30
150
70
150
150 | 150
100
70
70
70 | L
L
L
5 | 20
100
50
100
100 | L
L
10
L
N | 300
500
200
300
200 | L
L
200
L
L | | 16
17
18
19
20 | 69-DW-73
69-PL-182
69-AMn-164
69-PL-180
69-PL-179. | L
N
N
N | L
L
L
L | 100
300
300
300
300 | 150
300
300
700
300 | 100
100
150
70
200 | L
L
5
L
L | 70
150
150
200
150 | 15
N
N
N
N | 300
300
500
300
500 | 200
L
L
L
L | | 21
22
23
24
25 | 69-PL-178
69-PL-181
69-PL-177
69-PL-183
69-PL-176 | N
L
L
L | L
L
L
L | 70
150
70
100
70 | 300
300
150
500
70 | 150
100
70
150
70 | L
L
5
L | 150
150
70
150
70 | N
N
15
N
20 | 300
300
300
300
300 | L
L
L
200 | | 26
27
28
29
30 | 69-PL-175
69-PL-174
69-PL-173
69-PL-172
69-PL-171 | N
N
N
N | L
L
L
L | 70
20
50
15
10 | 70
30
200
30
L | 70
70
70
70
50 | L
L
N
N | 70
15
100
15
15 | 10
N
15
N
N | 300
300
300
300
70 | 200
L
L
L
N | | 31
32
33
34
35 | 69-PL-170
69-PL-162
69-PL-163
69-PL-164
69-PL-169 | L
N
N
N | <u>L</u>
L
L | 70
70
50
70
70 | 300
150
150
70
150 | 70
100
70
70
100 | N
L
5
L | 100
70
70
70
70 | 30
15
15
20
15 | 200
200
200
300
300 | L
200
L
L
200 | TABLE 1 | | | | | | | oncentrati | | | | | | |------------|--------------|------|----------------|------|-----|------------|-----------|-----------|------|------|-------------| | ' Map | Field
No. | Ag | Au | (10) | (5) | Cu
(5) | Mo
(5) | Ni
(5) | Pb | (10) | Zn
(200) | | No. | No. | (.5) | (.02) | (10) | (5) | (3) | (5) | (5) | (10) | (10) | (200) | | 36 | 69-PL-165 | L | L | 100 | 150 | 70 | L | 100 | 15 | 300 | 200 | | 37 | 69-PL-168 | L, | L. | 100 | 300 | 100 | L | 150 | 15 | 300 | L | | 38 | 69-PL-167 | N | L | 300 | 200 | 100 | 5 | 150 | 20 | 300 | L . | | 39 | 69-PL-166 | N | L | 100 | 100 | 100 | Ļ | 50 | 20 | 200 | 200 | | 40 | 70-RL-165 | N | L | 70 | 100 | 100 | L | 70 | L. | 300 | N | | 41 | 70-RL-166 | N | L | 70 | 100 | 100 | L. | 70 | 10 | 300 | L | | 42 | 70-PCL-152 | N | Ē | 70 | 150 | 100 | Ë | 50 | Ĺ | 300 | Ñ | | 43 | 70-PCL-151 | N | Ŀ | 70 | 100 | 100 | Ĺ | 50 | 15 | 300 | N | | 44 | 70-PCL-153 | N | L. | 70 | 150 | 100 | L | 70 | 10 | 300 | N | | 45 | 70-AMn-176 | N | L | 150 | 150 | 100 | L | 70 | 15 | 300 | N | | 46 | 70-RL-158 | N | L | 70 | 100 | 100 | L | 70 | 15 | 300 | L | | 47 | 70-RL-153 | N | Ē | 70 | 100 | 100 | Ē | 70 | 10 | 300 | Ī. | | 48 | 70-RL-154 | N | L | 30 | 150 | 100 | L | 70 | Ĺ | 300 | Ĺ | | 49 | 70-RL-155 | N | L | 70 | 150 | 150 | 5 | 70 | 15 | 300 | L | | 50 | 70-RL-156 | N | L | 100 | 100 | 100 | L | 70 | 15 | 300 | N | | 51 | 70-RL-157 | N | L | 70 | 100 | 150 | L | 70 | 20 | 300 | L | | 52 | 70-PCL-164 | Ñ | Ĺ | 100 | 200 | 150 | Ē | 100 | 20 | 300 | Ñ | | 53 | 70-AMn-159 | N | L | 50 | 150 | 100 | L | 70 | 15 | 300 | N | | 54 | 70-AMn-160 | N | L | 50 | 200 | 150 | 5 | 100 | 15 | 300 | N | | 55 | 70-AMn-157 | N | L | 100 | 150 | 150 | L | 100 | 10 | 300 | L | | 56 | 70-AMn-158 | N | L | 70 | 150 | 100 | L | 100 | 15 | 300 | L. | | 57 | 70-AMn-143 | L | Ĺ | 100 | 700 | 200 | | 150 | 50 | 500 | 300 | | 58 | 70-AMn-144 | N | . L | 70 | 150 | 100 | 5
5 | 100 | 30 | 300 | Ĺ | | 59 | 70-ARh-191 | L | L | 100 | 150 | 150 | L | 70 | 20 | 300 | N · | | 60 | 70-AMn-145 | N | L | 70 | 150 | 150 | L | 100 | 20 | 300 | L | | 61 | 70-AMn-142 | N | L | 70 | 200 | 150 | L | 100 | 20 | 300 | L | | 62 | 70-ARh-171 | N | L. | 100 | 150 | 150 | L | 100 | 15 | 300 | L | | 63 | 70-ARh-181 | N | L | 100 | 200 | 150 | L | 100 | 15 | 300 | N | | 64 | 70-ARh-168 | N | L | 100 | 150 | 150 | L. | 70 | 15 | 300 | L | | 65 | 70-Amn-150 | N | L | 50 | 300 | 150 | L | 150 | 15 | 300 | L | | 66 | 70-AMn-148 | N | L | 20 | 150 | 150 | L | 70 | 20 | 700 | L | | 67 | 70-AMn-149 | N | L | 20 | 150 | 200 | L | 70 | 20 | 700 | L | | 68 | 70-AMn-138 | N | L | 30 | 300 | 200 | 5 | 70 | 15 | 500 | L | | 69 | 70-AMn-136 | N | .08 | 30 | 300 | 500 | 5 | 70 | 50 | 300 | 200 | | 70 | 70-AMn-137 | N | . 7 | 30 | 300 | 700 | 5 | 100 | 70 | 300 | 300 | | 71 | 70-ABS-2 | .7 | .1 | 20 | 300 | 700 | 15 | 100 | 50 | 500 | L | | 72 | 70-ABS-7 | 5 | .1 | 20 | 200 | 700 | 30 | 70 | 500 | 500 | 300 | | 73 | 70-ARh-147 | L | L __ | 30 | 150 | 300 | Ļ | 70 | 20 | 300 | L | | 74 | 70-ARh-145 | N | .2 | 20 | 150 | 300 | Ļ | 100 | 30 | 500 | L. | | 7 5 | 70-ARh-146 | N | L | 20 | 200 | 150 | L | 100 | 15 | 500 | L | TABLE 1 | p. | | | | | | <u>centratio</u> | | | | | | |---------------------------------|--|------------------------|---------------------------|-----------------------------|---------------------------------|---------------------------------|------------------------|--------------------------------|-------------------------------|----------------------------------|-------------------------------| | Map
No. | Field
No. | Ag
(.5) | Au
(.02) | B
(10) | Cr
(5) | Cu
(5) | Mo
(5) | Ni
(5) | РЬ
(10) | V
(10) | Zn
(200) | | 76
77
78
79
80 | 70-ARh-142
70-ABS-8
70-ARh-160
70-ARh-192
70-AMn-139 | N
N
N
L | .08
L
L
L
L | 20
15
70
70
150 | 150
150
300
500
150 | 500
500
150
150
150 | 7
7
L
L
5 | 70
70
150
150
70 | 15
10
15
15
20 | 700
1000
500
300
300 | L
L
L
N | | 81
82
83
84
85 | 70-ARh-156
70-ARh-149
70-ARh-150
70-ARh-154
70-ARh-152 | N
N
N
N | L
.1
L
L | 50
15
15
15
15 | 200
200
150
30
150 | 300
300
500
150
200 | 5
7
7
L
L | 100
100
100
10
70 | L
N
N
L | 300
300
700
300
700 | N
N
N
N
L | | 86
87
88
89
90 | 70-AMn-127
70-ARh-137
70-ARh-136
70-ARh-124
70-AMn-151 | N
L
.7
N
1 | L
L
L | 30
20
20
30
30 | 150
150
700
700
500 | 150
700
300
150
150 | L
15
5
L
L | 70
70
100
150
100 | 30
50
30
30
30 | 300
300
300
500
500 | L
L
300
L
200 | | 91
92
93
94
95 | 70-ARh-119
70-ARh-120
70-ARh-121
70-PCL-126
70-PCL-124 | .5
L
N
N
N | L
L
L*
L | 30
30
30
15
15 | 150
200
700
150
150 | 300
150
150
200
150 | L
5
L
5 | 70
100
100
70
70 | 50
50
70
15
100 | 500
300
500
500
500 | 200
L
200
N
300 | | 96
97
98
99
100 | 70-PCL-123
70-PCL-132
70-ARh-109
70-ARh-110
70-PCL-112 | L
N
L
L
N | L
L
.06
L
L* | 15
10
20
15
15 | 150
70
100
150
300 | 150
150
2000
50
200 | 5
7
70
L
5 | 70
30
70
50
150 | 100
70
15
20
20 | 300
300
700
300
500 | L
N
N
N | | 101
102
103
104
105 | 70-PCL-116
70-PCL-122
70-PCL-117
70-ARh-94
70-ARh-92 | L
L
N
L | L*
.1
L
L | 20
15
20
15
20 | 300
700
200
150
700 | 300
150
200
150
500 | 5
L
L
L | 150
150
150
70
150 | 30
70
70
30
70 | 500
300
500
300
300 | 1500
300
L
L
300 | | 106
107
108
109
110 | 70-ARh-93
70-PCL-89
70-PCL-85
70-ARh-89
70-ARh-88 | N
N
N
N | L
.04
.06
L
L | 15
20
15
20
10 | 300
150
70
50
30 | 150
150
70
300
70 | L
L
L
L | 70
70
30
15
15 | 30
70
20
50
20 | 300
300
500
300
200 | L
L
L
N | | 111
112
113
114
115 | 70-ARh-101
70-ARh-100
70-ARh-98
70-ARh-97
70-ARh-96 | N
N
N
N
.5 | և
Լ
Լ
Լ | 15
15
15
10
15 | 30
150
50
70
50 | 150
150
200
200
200 | L
5
5
L | 7
20
30
30
30 | 20
70
300
300
500 | 700
700
500
300
300 | L
200
300
700
700 | TABLE 1 | | | | | | (| Concentrat | ion (pp | m) | | | 1 | |---------------------------------|---|------------------|------------------------|----------------------------|--------------------------------|---------------------------------|-------------|-------------------------------|----------------------------|---------------------------------|---------------------------| | Map
No. | Field
No. | Ag
(.5) | Au
(.02) | B
(10) | (5) | Cu
(5) | Mo
(5) | Ni
(5) | Pb
(10) | V
(10) | Zn
(200) | | 116
117
118 | 70-ARh-95
70-PCL-108
70-PCL-109 | .5
N
N | L
L
.04 | 10
15
70 | 70
50
300 | 150
150
200 | L
L | 30
30
150 | 200
150 | 300
300
500 | 700
200
N | | 119
120 | 70-PCL-102
70-PCL-101 | N
N | .04
L | 70
20 | 150
70 | 70
150 | L
Ł | 70
50 | 15
15 | 300
300 | N
L | | 121
122
123
124
125 | 70-ARH-85
70-ARh-84
70-ARh-81
70-ARh-80
70-PCL-80 | N
N
L
N | L
L
IS
L
L | 70
15
20
50
15 | 500
700
300
700
70 | 150
100
150
150
150 | L
L
L | 70
100
100
150
30 | 10
30
50
50
70 | 500
300
500
700
700 | L
L
200
L
200 | | 126
127
128
129 | 70-PCL-81
70-PCL-82
70-PCL-79
69-PL-200 | N
L
N
N | L
L
L | 30
30
15
15 | 150
50
150
70 | 150
70
150
70 | L
L
L | 70
15
70
30 | 20
30
30
30 | 500
300
700
300 | N
300
L | L = detected but below limit of determination; * = usual limits of determination do not apply due to use of different sample weight; N = not detected; IS = insufficient sample. Gold by atomic absorption. Analysts: King, H.D.; Miller, R.L.; Murrey, D.G. Other elements by semiquantitative spectrographic analysis. Analyst: Curry, K.J. TABLE 2 Analyses of rocks and vein material Nabesna A-1 quadrangle, Alaska Limits of determination shows in parentheses under elements. | | | | | | | Concent | ration (p | pm) | | | | |---------------------------------|---|--------------------------|-------------------------|----------------------------|-------------------------------|--|-------------------------|-----------------------------|--------------------------|---------------------------------|----------------------------| | Map
No. | Field
No. | Ag
(-5) | Au
(.02) | B
(10) | Cr
(5) | Cu
(5) | Mo
(5) | Ni
(5) | Pb
(10) | V
(10) | Zn
(200) | | 130
131
132
133
134 | 69-Amn-171
69-AMn-166
69-ARh-181
69-ARh-204
70-ABS-10 | N
L
N
L | L
L
L | 20
50
10
10
20 | 150
150
10
70
150 | 70
150
500
700
200 | 7
L
5
L
100 | 100
70
5
150
20 | L
N
10
10
L | 300
200
150
150
300 | L
N
L
N | | 135
136
137
138
139 | 70-ABS-9
70-ABS-3a
70-ABS-3b
70-ABS-6
70-ABS-4 | N
N
.5
1.5
N | L
L
L
L | 10
10
15
10
L | 10
20
15
70
70 | 150
150
1000
3000
700 | 5
L
L
7
5 | 7
15
7
15
20 | L
N
50
700
L | 500
700
300
150
300 | N
N
L
1500
N | | 140
141
142
143
144 | 70-ABS-5
70-ARh-126
70-ABS-13a
70-ABS-13b
70-PCL-140 | N
5
N
7 | L
.4
L
L | 15
L
N
15
15 | 150
L
L
700
30 | 100
300
300
15,000
1000 | 5
L
N
L
L | 30
L
L
150
15 | L
7000
N
N
N | 300
30
20
300
300 | N
7000
N
200
N | | 145
146
147
148
149 | 70-ARh-107
70-PCL-119
70-PCL-113
70-ABS-18
70-ABS-19 | N
.5
N
L
L | L
L
L
L | L
10
10
10
15 | 30
50
150
70
20 | 150
300
150
1500
1500 | և
L
L
7
L | 20
30
70
15
15 | L
L
15
N
N | 700
700
500
500
500 | N
N
N
N | | 150
151
152
153
154 | 70-ABS-20
70-ABS-14
70-ABS-15
70-ARh-112
70-PCL-103 | L
L
30
N | L
L
L
.04
L | L
10
N
L
20 | L | 1500
10,000
700
10,000
100 | L
7
N
L
L | 15
20
L
L
200 | N
N
N
7000
N | 500
300
100
70
500 | N
N
N
700
N | | 155 | 70-PCL-105 | N | L | 70 | 700 | 150 | L | 150 | N | 700 | N | L = detected, but below limit of determination; N = not detected. Gold by atomic absorption. Analysts: King, H.D.; Miller, R.L.; Murrey, D.G. Other elements by semiquantitative spectrographic analysis. Analyst: Curry, K.J. ### Description of Samples | Map No. | Elevation | Description | |---------|-----------|---| | 130 | 5180' | Chip sample across 5 feet of sheared and stained conglomerate. | | 131 | 4620' | Chip sample across 5 feet of stained basalt. | | 132 | 6350' | Chip sample of stained diorite. | | 133 | 5350' | Grab sample across 200 feet of talus from pyrite-pyrrhotite-bearing hornfelsed argillite. | | 134 | 5300' | Grab sample of stained fractured diorite. | | 135 | 50001 | Grab sample of pyrite-bearing diorite. | | 136 | 5350' | Grab sample of pyrite-bearing diorite. | | 137 | 5350 | Grab sample of pyritized and epidotized diorite dike. | | 138 | 5000' | Grab sample of copper-stained, gypsiferous crushed zone along dike wall. | | 139 | 5200' | Grab sample of copper-stained dike. | | 140 | 6150' | Grab sample of fractured iron-stained diorite. | | 141 | 5200' | Grab sample of galena-chalcopyrite-tetrahedrite-
bearing barite veins. | | 142 | 4000' | Grab sample of quartz-calcite vein. | | 143 | 4000' | Grab sample of copper-bearing quartz-calcite vein. | | 144 | 4860' | Grab sample of altered diorite. | | 145 | 7000' | Grab sample of copper-stained diorite. | | 146 | 6880' | Grab sample of stained diorite. | | 147 | 5040' | Grab sample of sheared and hornfelsed graded bedded sedimentary rocks. | | 148 | 5400' | Grab sample of metasomatized dark diorite. | | 149 | 5200' | Grab sample of copper-stained diorite. | | 150 | 50001 | Grab sample of breccia pipe. | ## Description of Samples | <u>Map No.</u> | Elevation | Description | |----------------|-----------|---| | 151 | 5440' | Grab sample of copper stained monzonite. | | 152 | 5540' | Grab sample of monzonite. | | 153 | 5820' | Grab sample of a 2 foot copper-bearing quartz vein. | | 154 | 6740' | Grab sample of stained hornfels. | | 155 | 7110 | Grab sample of epidotized hornfels. | #### ANALYTICAL NOTES #### Nabesna A-1 quadrangle, Alaska - 1. All stream sediment analyses performed on -80 mesh fraction. - 2. In all analyses, excepting gold, the results are reported to the nearest number in the series 0.1, 0.15, 0.2, 0.3, 0.5, 0.7, 1, . . . - 3. Copper, lead, molybdenum, and zinc are considered anomalous if they are reported in concentrations approximating, or greater than, 3 times their mean background. With the exception of amygdaloidal basalt terrane, mean background in the area closely approximates average crustal abundance: i.e. copper, 55 ppm; lead, 12.5 ppm; molybdenum, 1.5 ppm; zinc, 70 ppm. Background concentrations for copper and certain other elements in amygdaloidal basalt terrane are considerably higher than crustal average, hence samples 2, 4-6, 8, 18, 20, 21, 24, 57, 60-62, 104, 107, 123 and 124 from streams draining amygdaloidal basalts and with copper contents of 150 200 ppm probably should not be considered anomalous. - 4. Gold and silver are considered anomalous for all values at or above their limits of determination since these limits are greater than 3 times the average crustal abundance for these metals. - 5. As, Ba, Be, Bi, Ca, Cd, Fe, La, Mg, Mn, Nb, Sb, Sc, Sn, Sr, Ti, W, Y and Zr were also looked for and significant anomalies are as follows: | Sample No. | Anomalies (values in ppm) | |------------|---------------------------| | | | | 113 | Mn G(5000), Zr 700 | | 138 | Sr 1500 | | 747 | Ba G(5000), Sr 2000 | G = greater than the value shown #### **ECONOMIC GEOLOGY NOTES** # Nabesna A-1 quadrangle, Alaska (numbers refer to localities on accompanying map) - 1. O'Hara (Sulzer) prospect. Caved adit at 5400' in Triassic basalt and volcanic conglomerate with iron and copper sulfides scattered along joints and fractures. Referred to as O'Hara prospect by Moffit (U.S.G.S. Bull.989-D,p.204-205). Now held under a number of unpatented mining claims. - 2. Reynolds prospect (approximate location) as reported in Moffit (U.S.G.S. Bull.989-D, p.205). A network of small bornite and chalcocite-bearing veins in fractured basalt. - 3. Scattered lenses and layers of gypsum (var. alabaster) up to 2-1/2 feet thick occur in sheared amygdaloidal basalt over a distance of 1000' along this ridge. - 4. Baultoff Creek porphyry copper-molybdenum deposit. Large mineralized area on the margin of the Klein Creek batholith discovered in the late 1960's and now held under a number of unpatented mining claims. The deposit consists of disseminated iron and copper sulfides in diorite. Extensive alteration, locally gypsiferous, and mineralization is possibly related to northwest-trending shear zones within the batholith. - 5. Horsfeld Creek porphyry copper-molybdenum deposit. Large mineralized area on the margin of the Klein Creek batholith discovered in the late 1960's and now held under a number of unpatented mining claims. Contains disseminated iron and copper sulfides in granodiorite and monzonite. - 6. Horsfeld Creek. Reported (as Horsfall Creek) by Cairnes (G.S.C. Mem.50, p.132) to have been worked for placer gold. - 7. Eureka Creek. Reported by Moffit and Knopf (U.S.G.S. Bull.379, p.177-178) to be an argentiferous galena-sphalerite-bearing crushed zone in a porphyry dike on which a 60-foot adit had been driven.