The state of

Marine Geological Investigations in the Beaufort Sea in 1981 and Preliminary Interpretations for Regions from the Canning River to the Canadian Border.

Erk Reimnitz, Peter W. Barnes, Douglas M. Rearic, Peter W. Minkler, Edward W. Kempema, and Thomas E. Reiss.

> U.S. Geological Survey 345 Middlefield Road Menlo Park, California 94025

> > Open-File Report 82-974

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS.

Table of Contents

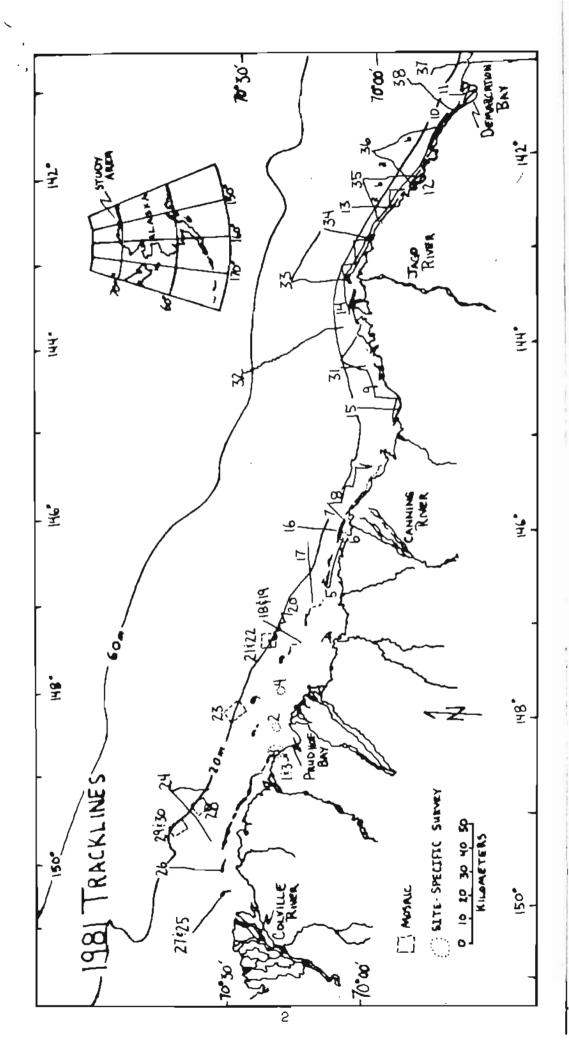
I	Page			
Introduction	1			
Description of Field Operations	1			
Reconnaissance work	1			
Equipment used	3			
Data acquired	3			
Data analysis	5			
Results	10			
Bathymetry Ice gouging Seismic reflection studies Surficial sediment Shoals of the stamukhi zone	10 15 24			
Discussion and Conclusions	37			
Sedimentation	41 43 44			
References	45			
No. of Alice				

Appendix

Table of ice gouge data

INTRODUCTION

The USGS vessel R/V KARLUK ran approximately 1000 km of geophysical tracklines on the inner shelf of the Beaufort Sea, Alaska from July 14 to August 20, 1981. In addition to the trackline surveys, 37 sediment grab samples were collected, one area was investigated by scuba divers, and 5 sites were monitored with Ocean Bottom Seismographs (OBS), three per site. The R/V KARLUK left the Beaufort Sea on August 20 to support investigations by Drs. Ralph Hunter and Larry Phillips in the Chukchi Sea.


In our 1981 field efforts, the emphasis was on reconnaissance data collection from the eastern sector, between the Canning River and the international border. This work was accomplished in two legs, the first one under P.W. Barnes, the second under Erk Reimnitz. Ice and weather conditions were about average to favorable for inner shelf navigation during the first half of the available open-water season. In this report we outline the general scope of our 1981 field efforts in the Beaufort Sea, the types of equipment used, list much of the data gathered, present those parameters and relationships already extracted from the geophysical records, and give preliminary interpretations of our findings.

DESCRIPTION OF FIELD OPERATIONS Reconnaissance work

Our primary goal, a reconnaissance survey from the Canning River to the Canadian border, where almost no inner shelf data had been available, was accomplished (see Fig. 1). Geophysical lines were run as far offshore as ice concentrations allowed. All lines from the Canning River eastward extend seaward into very tight pack ice, beyond which further penetration was impossible. Early in the season this tight pack ice was near the coastline. As the season progressed, lines could extend farther seaward. One bay and one lagoon were surveyed. Thirty-seven grab samples were collected, mainly on the open shelf. For this reconnaissance work navigational control is based on radar fixes and dead reckoning. The probable uncertainty in position ranges from 100 or 200 m near shore, to as much as 3 km under dead reckoning on the seaward ends of several tracklines.

Site-specific work

Between the Canning River and the Colville River, surveys were site specific. Detailed surveys for preparation of side-scan sonar mosaics with bathymetry were run in four small areas, two on Stamukhi Shoal, one on the 18-m bench seaward of Narwhal Island, and another one on the 18-m bench seaward of Reindeer Island. Detailed bathymetric surveys were run around the "West Dock," and around two artificial gravel islands: Niakuk 3 and B.F. 37. Two test lines from previous years were re-run (first run in 1973, see Reimnitz, et al., 1977; and Barnes, et al., 1978) and two new test lines were established with side-scan sonar to determine yearly rates of ice gouging. For all of these detailed surveys, positions were plotted using a Del Norte Trisponder system with a distance measuring accuracy of +3 m. This system provides a position accuracy of +8 m.

. 7

Figure 1.- 1981 geophysical tracklines, side-scan sonar mosaics, and site specific surveys, with line numbers listed in Table 1.

Miscellaneous Studies

Three ocean-bottom seismographs (OBS) were deployed overnight at five different localities in shallow water between longitude 148° West and the Canadian border. The water depth ranged up to about 4 m. The purpose of this work was to monitor reported low-frequency natural seismicity in areas of decaying permafrost.

The diving investigation consisted of a roughly 1.5 km dive sled traverse through the area of the North Stamukhi Shoal side-scan sonar mosaic. Pingers were placed on the sea floor at each end of the traverse to facilitate rerunning of the ship- and diving surveys in later years. A large area around each transponder was seeded with lead birdshot for follow-up studies of sedimentation and shoal migration.

EQUIPMENT USED

Bathymetry was recorded on a Raytheon RTT 1000 dry paper recorder using either a hull-mounted 200 kHz transducer with an 8° beam width, or a 200 kHz transducer with a 4° beam width (narrow beam). All records were corrected for draft of vessel or tow depth. A 7 kHz transducer was used in conjunction with the RTT 1000, recording subbottom reflectors up to 10 m below the sea floor. Deeper penetration high-resolution seismic data were recorded on an EPC model 1400 recorder using 1/4 second sweep and firing rate with a 300 Joule EG&G Model 234 Uniboom as a sound source. The signal was filtered to approximately 600-1600 Hz.

Side-scan sonar records were taken using a Model 259-3 EG&G wet paper system and a Model 272 sonar fish with a 105 kHz 1/10 second pulse at a 20° beam angle depression. Records were also taken on a EG&G Model SMS 960 digital system. The digital data for the mosaics were recorded on magnetic tape on a Kennedy Model 9000 magnetic tape recorder. The Model 272 sonar fish was used for both systems—the digital and the wet paper recorders.

OBS data were recorded on a 3-receiver system designed and built by Polar Research Laboratories of Santa Barbara, California. The three units were deployed in triangular arrays at each of 5 sites, with an internal spacing of about $100~\rm m$. These systems are capable of recording seismic signals in the frequency range from $0~-50~\rm Hz$.

DATA ACQUIRED

Geophysical data acquired (see table 1) consist of approximately 1005 km of trackline bathymetry along with 7 kHz subbottom profiles, 800 km of sidescan sonar records, and 500 km of Uniboom seismic reflection records. The data listed in table 1 are keyed to figure 1. The data are in the form of 29 rolls of bathymetry, 20 rolls of side-scan sonar, 10 rolls of Uniboom records, 5 rolls of Simrad fathometer records, 38 reels of recorded side-scan magnetic

Table 1 - Geophysical data*

ьŢ

Line No. Description	Raytheon	Side-scan	Unlboom	Kilometers
1 West Dock	yes			22
2 Niakuk Island	1			10
3 West Dock	1			22
4 Exxon Island	2			7
5 Outside Leffingwell Lagoon	2		1	24
6 Flaxman Island channel	2		1	6
7 Outside Flaxman Island	3	1		9
8 West Camden Bay	3	1		17
9 East Camden Bay	4	2	1	56
10 East of Jago Spit	6	5		81
ll Demarcation Bay	7	6	2	30
12 Beaufort Lagoon	8	7	3	17
13 Outside Beaufort Lagoon	9	7	3	29
14 East of Jago Spit to Barter Island	10	8	4	43
15 Test Line 7	11	9	4	19
l6 Test Line 8	12	9	5	17
17 East of Pole Island	12			26
18 Test Line 6	13	10	5	17
19 Reciprocal, Test Line 6	13	11		17
20 18-m bench delineation	14			28
21 Mosaic northeast of Narwhal Island	15	12		55
22 Continue mosaic	16	12		
23 18-m bench north of Reindeer Island	16	13		23
24 Cat Shoal	17	~-		45
25 Test Line 1		13		10
26 Test Line 2	18	14		20
27 Test Line 1	18	14		19
28 South Stamukhi Shoal Mosaic	19	14		46
29 North Stamukhi Shoal Mosaic	21	16		
30 Rerun 1977 lines on Stamukhi Shoals	23			65
31 Camden Bay to Barter Island	23		6	9
32 Continental Shelf Run off Barter Is	. 23	17	6	48
33 Seaward leg offshore east of				
Barter Island (+ 14 km run over)	25	18	7	20
34 Shoreward leg east of Barter Island	26	18	7	19
35 Dogleg offshore & back into Pogok Ba	y 26	19	8	41
36 Offshore and back outside Beaufort	27	19	8	52
Lagoon				
37 Line at U.S./Canadian Border	29	20	9	19
38 Offshore Demarcation Bay	29	20	10	24

^{*}Numbers in the Raytheon, side-scan and uniboom columns represent beginning roll numbers and signify data gathered on that line by that system. No number means the system was off.

tape, 120 hours of OBS magnetic tape, 8 field maps, and the ship's log. The ship's log contains important information on systems in use on each line, system settings (scale, filters, etc.), navigational data used in plotting positions, severity of ice conditions and course-holding problems and unique observations or systems difficulties. Copies of all field data are available on microfilm from the National Geophysical and Solar Terrestrial Data Center, NOAA, Boulder, Colorado. The microfilm is a copy of the geophysical records, ship's log and computer print-out of digitized way points. The printout of these way points would allow for reproduction of tracklines at any scale, and correlation to geophysical records through time points. Originals are archived at the U.S. Geological Survey, Deer Creek Facility, 3475 Deer Creek Road, Palo Alto, California 94304.

Surface samples collected are listed in table 2, along with water depth, longitude, and latitude, and shipboard sample descriptions and observations. The locations are shown in figure 2. Almost all samples were obtained with a grab sampler. The bulk of the material is being kept at our facility in Palo Alto, California.

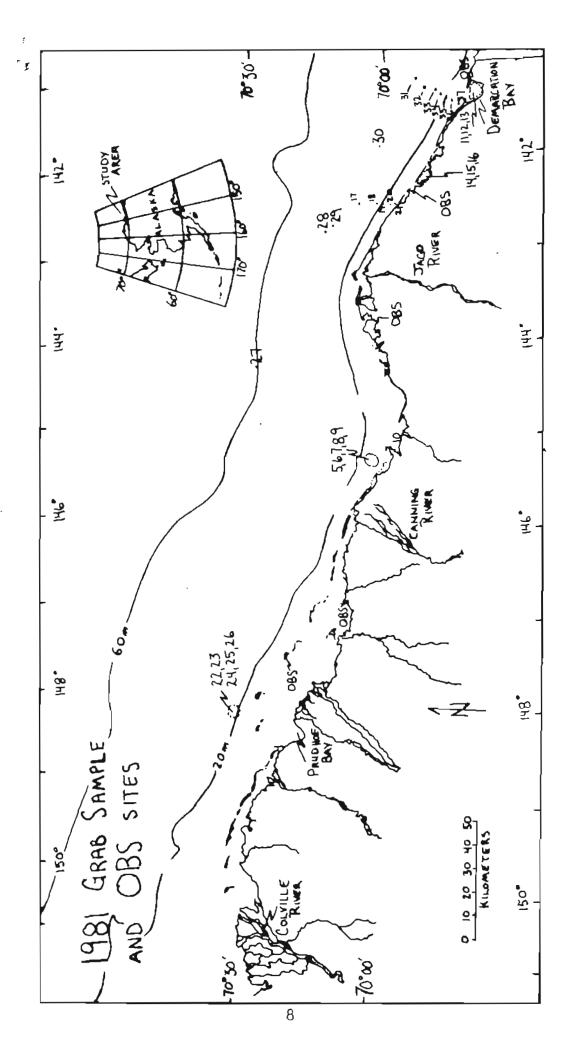
DATA ANALYSIS

In our analysis of the geophysical reconnaissance data obtained between the Canning River and the Canadian border the focus has been on ice gouging. For the analysis we have basically used the shore-normal transects and eliminated shallow-water, shore-parallel lines (Fig. 3). The short time available for analysis required reduction of the number of parameters extracted from sonographs and fathograms, compared to the very thorough analysis completed for the region west of the Canning River (Rearic et al., 1981). A copy of the completed data sheats used in this study is presented here as an Appendix. As in previous work, the tracklines are broken for statistical analysis into 1-km-long segments, as listed in the first column of the data sheets. The parameters we considered most significant for this study are the following:

- 1. Water depth to find relationships to severity of gouging.
- 2. Gouge depth maximum gouge incision depth per km segment.
- 3. Ridge height to allow calculation of total relief from gouging.
- 4. Gouge width maximum per km segment.

. 1

- 5. Gouge density the number of gouges actually counted is to the left of the normalized count listed in this column and separated by a slash.
- 6. Gouge orientation dominant trend with respect to trackline is to the left of the true north orientations and separated by a slash.
- 7. Sediment cohesion an attempt to judge from geophysical records whether the bottom is composed either of sand and coarser non-cohesive material, or of fine and cohesive material, as reflected in the shape and character, of the gouges.


We also measured the depth below sea level of the first continuous subbottom reflector seen on the 7kHz records ("Reflector A"). The main purpose of extracting this data was an attempt to relate ice gouges to the geology of the shelf surface. Subtracting water depth from the structural depth to "Reflector A" gives what we consider the maximum possible thickness of Holocene marine sediments blanketing the inner shelf. Given the fact that

 φ

Station	ion Water Type Reference						
Number	Latitude	Longitude				Description	
4 .	70.387 ⁰	148.515 ⁰	2	^D achunka	W. Dock	Core length 37.5 cm. Very thin soup on top overlying mud with gravelly mud at base.	
5	70.1050	J45.324°	15.5	Grab	Line 8	On seaward flank of shoal. Sand	
6	70.1040	145.3260	12.5	Grab	Line 8	On seaward flank of shoal. Clean sand	
7	70,1030	145.3280	9.5	Grab	Line 8	On crestof shoal. Coarse sand	
8	70.1020	145.3300	13	Grab	Line 8	Inside shoal. Coarse sand and pea gravel (1-2 cm) over grey mud.	
9	70.1010	145.3330	13	Grab	Line 8	Inside shoal. Sandy mud. Few pebbles	
10	70.0200	145.3150	on beach		Camden Bay	Outcrop of stiff silty clay (?)	
n	69.6750	141.3190	5	Grab	Demarcation Bay	Sandy mud with bivalves.	
12	69.656°	141.2810	4	Grab	Demarcation Bay	Organic mud, silt and clay with trace of sand.	
13	69.6550	141.3560	4	Grab	Demarcation Bay	Organic mud w/worm tubes.	
14	69.8590	142.1630	2.2	Grab	Beaufort Lagoon	Sandy organic-rich mud. Peaty material - brown to black	
15	69.8980	142.2530	3	Grab	Beaufort Lagoon	Muddy organic sand	
36	69.9090	142.3150	2-5	Grab	Beaufort Lagoon	Muddy organic sand	
17	70.1270	142,5000	35	Grab	Offshore Pokok Bay	Muddy sand. Soft!	
18	70.0560	142.4880	23.5	Grab	Offshore Pokok Bay	Sandy mud	
19	70.0310	142.5360	18.5	Grab	Offshore Pokok Bay	After 3 lowerings muddy gravel. Gravel w/benthic growth Stiff, silty clay below?	
20	70.0170	142.5220	16	Grab	Offshore Pokok Bay	Fairly clean sand overlain by 1-2 cm of muddy sediments.	
21	69.9890	142.5180	7	Grab	Offshore Pokok Bay	Clean fine sand	

Station			Water		Reference	
Number	Latitude	Longitude	Depth(m)	29mb le	Location	Description
22	70.633	148.160°		Ice	N. of Reindeer	Stamukhi ice
23	70.6330	148.1690		ice	N. of Reindeer	Gravelly mud on only one surface of blocky ice floe.
24	70.6200	148.1270	18	Grab	18-m bench/Reindeer	Crest of ridge. Muddy gravel, overcon6011dated?
25	70.6200	148.1460	18	Grab	18-m tench/Reindeer	Samples 24,25,26 at top of break in slope on 18-m bench all muddy gravel of various consistencies, from soupy on
26	70.6200	148,1670	18	Grab	18-m bench/Reindeer	the west to stiff on the east.
27	70.4980	143.2030	52	Grab	Line 32	Gravel, up to 3 cm diameter w/bryoznans and other small growth in big gouge terrain with rounded relief. Between pebbles apparently is a trace of trapped transient mud.
28	70.3570	143.2920	40		∭ishore Barter is.	Medium firm grey mud w/ a few scattered very small pebbles.
29	70.2300	142.7470	40	Grab	Offshore Pokok Bay	Firm mud w/ a 5-cm layer of soft mud on top. No shells or pebbles.
30	69.8730	141.7170	23	Grab	Line 36	Pebble rich, sandy mud, soft. Pebbles up to 5 cm w/coral growth, bryozoans.
31	69.8820	141.1470	34	Grab	Line 38	Soft mud, perhaps even transient layer separated by thin black line from finer mud below. No pebbles, probably no sand.
32	69.8850	141,2420	32	Grab	Line 38	Slightly salty clay, increasing very gradually from soupy on surface to slightly firmer below. Several small shells, no pebbles.
33	69.816°	141.2590	30	Grab	Line 38	Silty clay, grey as sample 32 w/gradual increase in strength downward, no sand, small brittle star.
34	69.7860	141.3700	23	Grab	Line 38	Slightly pebbly, sandy mud. Soft at surface (5 cm) and firmer at bottom (15 cm).
35	69-7540	141.4440	16.5	Grab	Line 38	Peubly, slightly moddy sand. One large pebble (6 cm), subrounded, with much growth, including bryozoans, coral, etc
36	69.7390	141.4640	12.5	Grab	Line 38	Clean peobly sand, one clast 6 cm. No growth, no mid.
37	69.7190	141.4790	7.5	Grab	Line 38	Arter J lowerings: muddy gravel, clast to 10 cm, no growth.
	'	i }		I	1	

~

' [

Figure 2. 1981 station locations for grab samples and Ocean Bottom Seismographs (OBS).

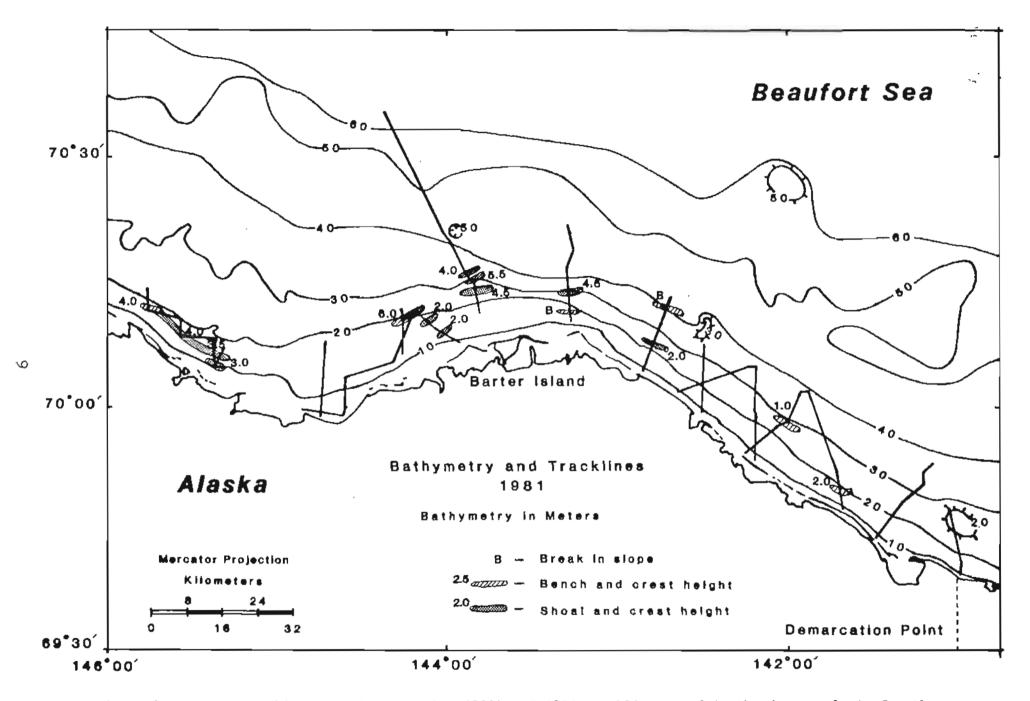
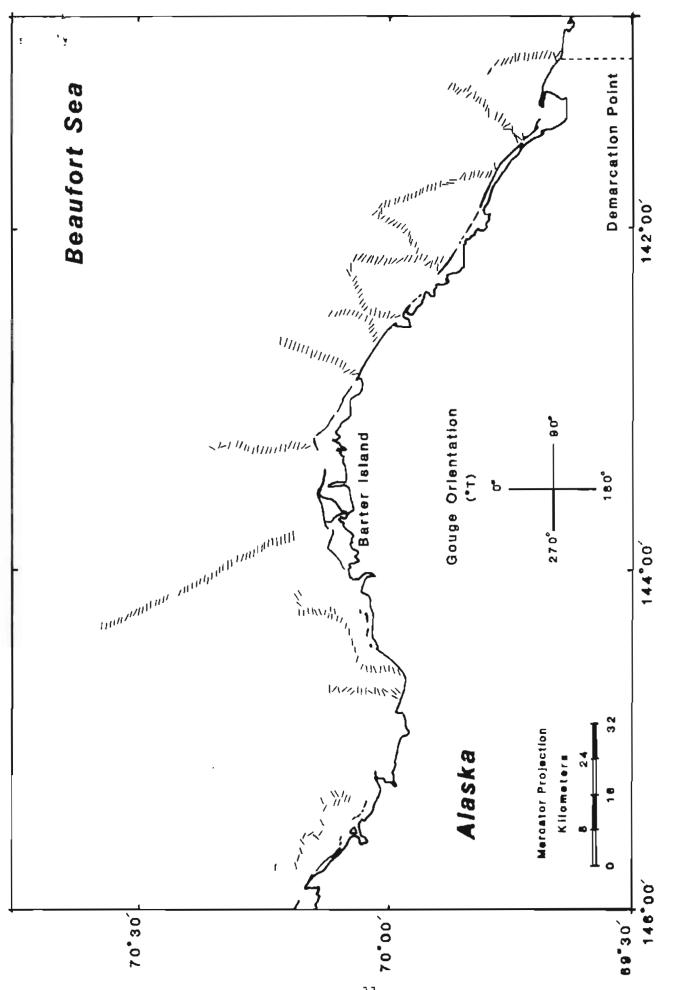


Figure 3.- Bathymetry (from Greenberg et al., 1980) and 1981 tracklines used in the data analysis for the present study area. Shoals and benches, with relief in meters above the surrounding sea floor, are shown.

ice gouging has repeatedly disrupted the sediments here since the last transgression, the Holocene marine sediments should not contain continuous internal reflectors in seismic records, an assumption that has strong support from detailed studies done in the Prudhoe Bay region. But until more detailed work allows us to correlate through the entire region of this reconnaissance survey, we can not put much emphasis on this data.

A computer was used for plotting certain gouge parameters on maps, for simple statistical analyses, and for preparing scatter plots of gouge parameters.

RESULTS


Rathymetry

The bathymetry shown in figure 3 is from Greenberg, et al. (1980), and we generally found no major disagreements with the water depths recorded along our tracklines. However, the trackline off the Canadian border should have crossed a broad shoal suggested by published data, but we found no indications of this feature. Previous work has shown the important role played by shoals in ice dynamics and in controlling ice zonation (Rearic and Barnes, 1980; Reimnitz et al., 1978), and we therefore indicate the major topographic highs crossed by our survey lines, along with the relief above the surrounding sea floor. We assume that these features are oriented generally shore parallel as suggested in figure 3. Only the shoal off the Canning River was surveyed by a zigzag trackline pattern and is well defined.

Ice Gouging

The pattern of dominant ice gouge alignment parallel to regional isobaths as mapped west of the Canning River (Barnes et al., 1981) continues eastward to the Canadian border (Fig. 4). The Barter Island region, forming a major promontory jutting out into the pack-ice drift of the clockwise rotating Beaufort Gyre, separates two regions with distinctly different isobath trends and ice-gouge trends. In figure 5 we plotted water depth against dominant gouge orientation. A clear break is shown at 18-20 m water depth, with considerable orientation scatter shoreward, and parallel alignment seaward. The mean gouge orientation of 103°T in the study area is heavily weighted by trend determinations corresponding to the NW-SE trending isobaths east of Barter Island. By comparison, the mean gouge orientation west of the Canning River is 90°T.

Ice gouge density values (adjusted gouge counts per km of trackline) have been contoured in figure 6. A very well defined zone with over 150 gouges per km of trackline lies in water 18-36 m deep. This zone has been defined by Reimnitz et al. (1978) as the stamukhi zone. The scattergram (Fig. 7) shows a clear trend of increasing gouge densities from the shore to the stamukhi zone, and decreasing gouge densities from there to 58 m water depth. The greatest depth at which a gouge was seen was at 58 m on line 32, which extends to the edge of the shelf. The mean gouge density in the survey area is 108, compared to a value of 63 for the region west of the Canning River. We believe that these higher gouge counts are explained largely by the fact that mean water

Each line represents the dominant gouge orientation measured over 1 km of trackline. Figure 4. Gouge orientations in the Barter Island area.

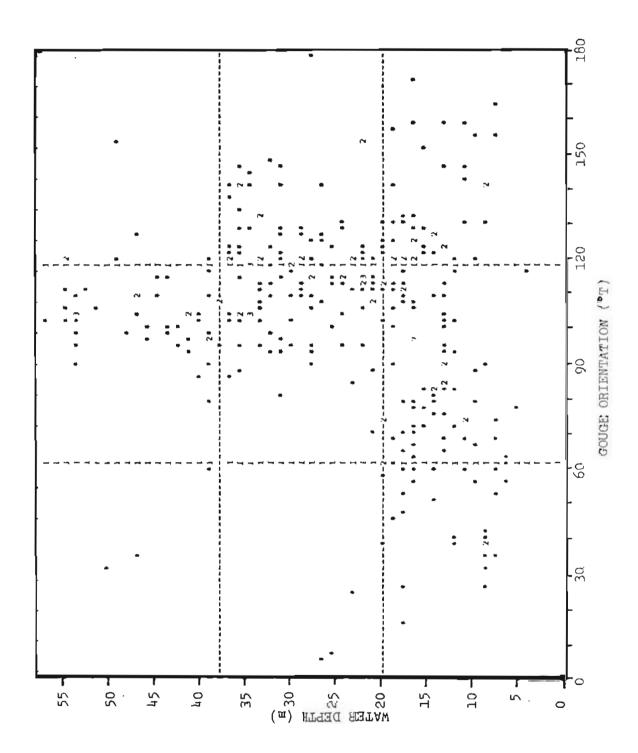


Figure 5.- Scattergram of gouge orientation versus water depth, showing wide scatter at water depths shallower than 18 meters.

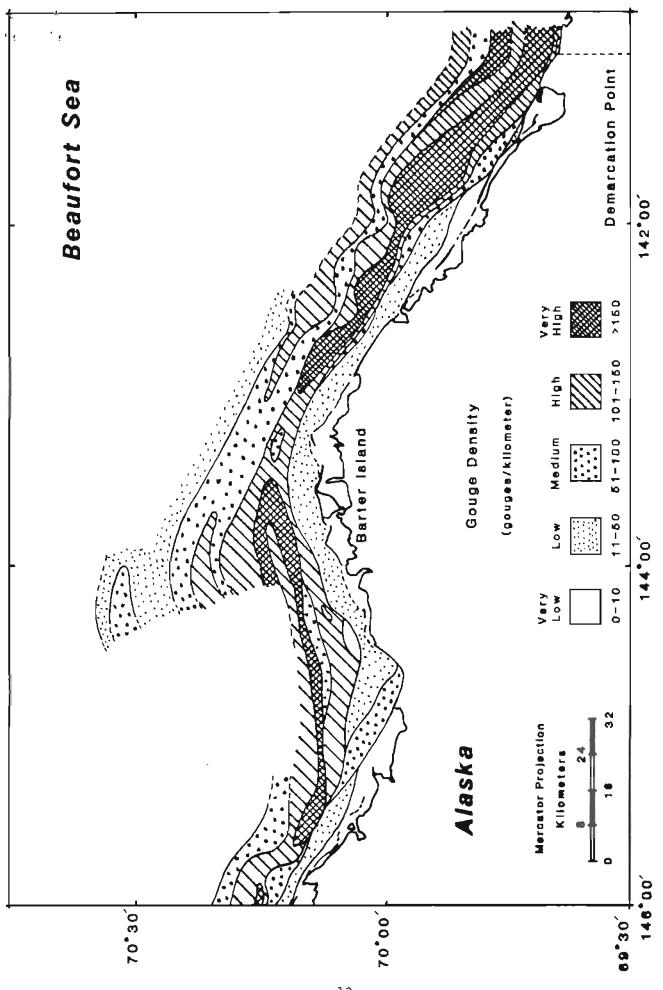


Figure 6.- Contours of ice gouge density values from Camden Bay to the Canadian border.

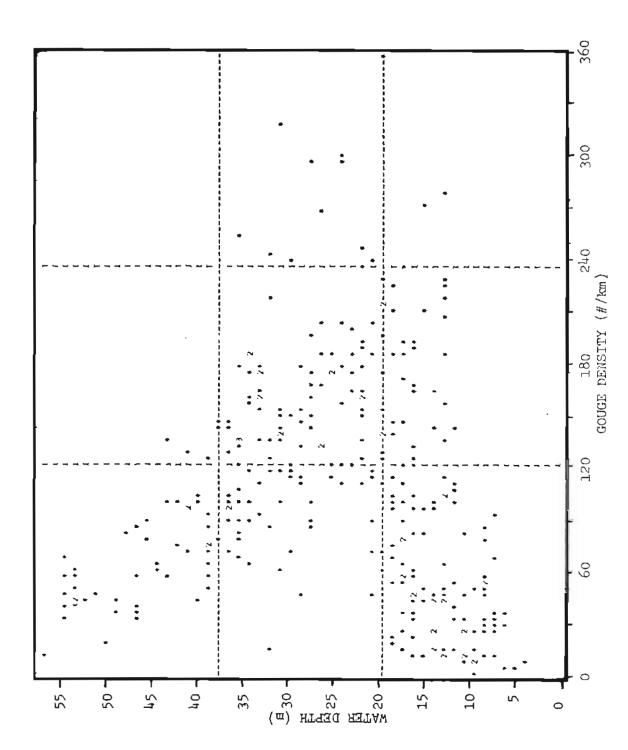


Figure 7.- Scattergram of gouge density versus water depth.

depth for the areas surveyed here is 25 m, which places them largely within the Stamukhi Zone, whereas west of the Canning River the mean depth is 17 m, so that much of the area is shoreward of the Stamukhi Zone.

The maximum gouge incision depths have been contoured in figure 8. Again the 18 m isobath is a dividing line between maximum incision depths of less than 1 m inshore and greater than 1 m offshore, as also shown on the scattergram in figure 9, but the maximum incision depths and the maximum gouge widths (Fig. 10) continue to increase seaward and do not begin to decrease until the very outer ice-gouge limit observed on lines 32 and 33. The mean for all maximum incision depths in the study area is .8 m, compared to .5 m for the western region. The mean of the maximum incision widths is 10 m, versus 8 m for the western region. Again the larger gouge size can be explained in part by the greater average water depth in the present study area.

Figure 11 is a scattergram of ridge height versus water depth. This shows that shoreward of the 18 m isobath ridges are no higher than 1 m. Ridges are highest between the 25-m and 45-m isobaths, and decrease from there seaward. This is contrary to the continuous increase in gouge depth and width measurements with increasing water depth. This is most likely due to the greater age of gouges in deep water, because ridges are first to disappear in the process of gouge obliteration, as is shown by years of monitoring specific gouges. Total ice gouge relief (incision depth plus ridge height) was plotted against water depth in figure 12 and shows an increase offshore with a slight drop near the outer limit of ice gouging. Barnes et al. (1980), based on the highest ridges and greatest incision depths seen in the western area, speculated that total relief could reach 8 m in a single gouge. In the present study the greatest value for total relief seen in a single gouge was 8 m and found in water 38 m deep.

Figures 13 and 14 are scattergrams of gouge density plotted against maximum incision depth and maximum incision width respectively. Both scattergrams show that with increasing gouge density there is a corresponding decrease in gouge size. This inverse relationship is partly an artifact, due to the fact that large gouges take up more space in each counting interval than smaller gouges and correspondingly fewer large gouges can be fit into such an interval. Many small gouges may also be reworked by the formation of one large gouge.

Figure 15 shows a plot of gouge density versus gouge orientation. A correlation between these two parameters is not as apparent as the correlation between water depth and orientation (Fig. 5) and water depth and gouge density (Fig. 7).

Seismic reflection studies

The central portion of the study area is interpreted by Grantz and Dinter (1980) as being tectonically and seismically active during the Holocene and as having been uplifted during the Quaternary. The geology here is more favorable for seismic profiling than in most of the regions west of the Canning River, where the data are very difficult to decipher. Figure 17 is a

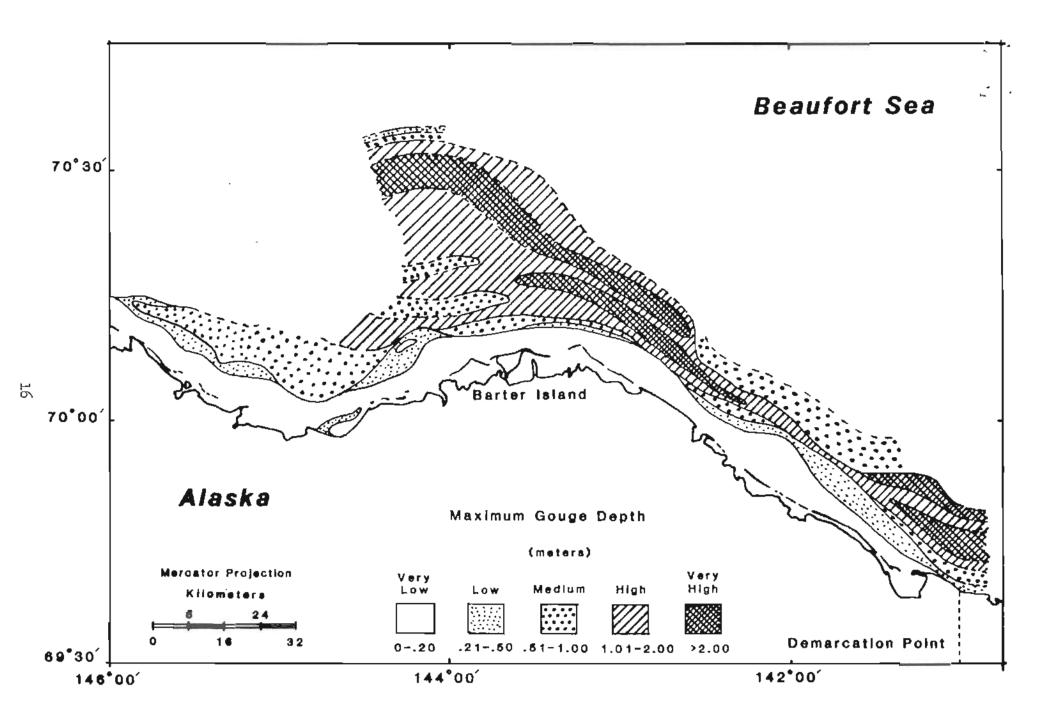


Figure 8.- Contour map of ice gouge maximum incision depth for the area from Camden Bay to the Canadian Border.

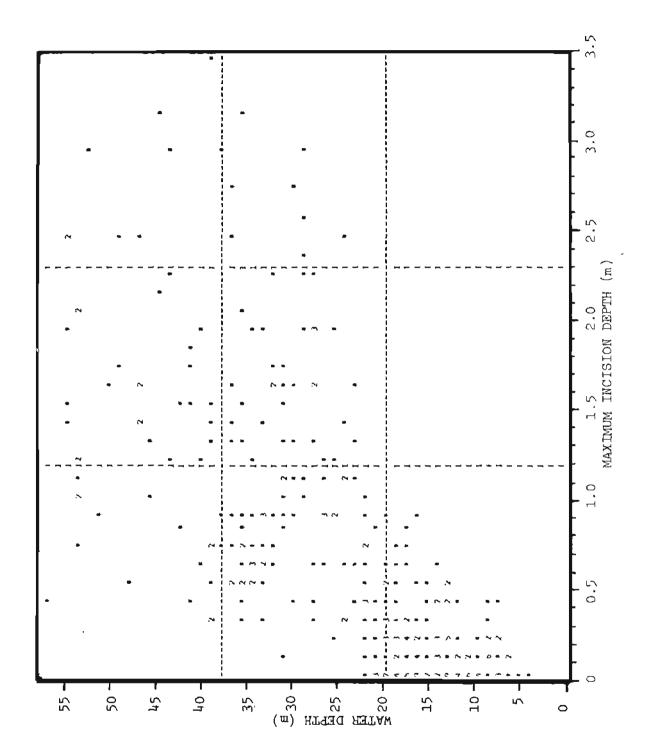


Figure 9.- Scattergram of ice gouge maximum incision depth versus water depth.

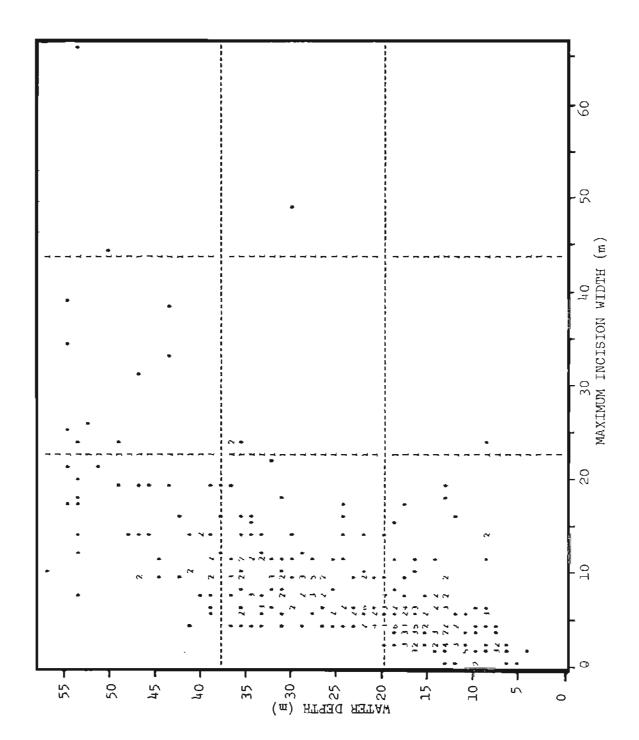
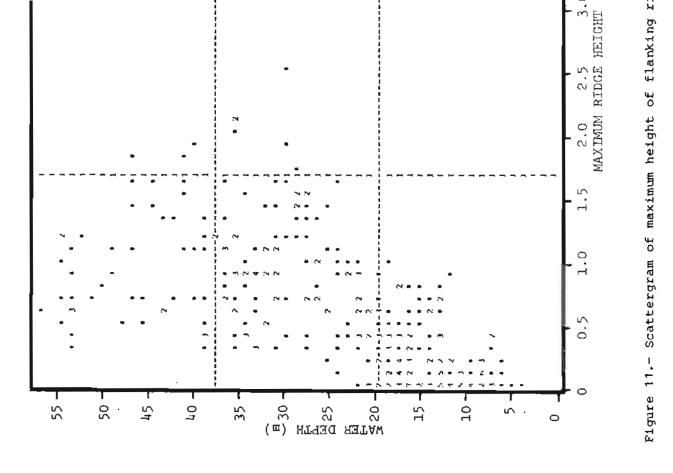



Figure 10. - Scattergram of ice gouge maximum incision width versus water depth.

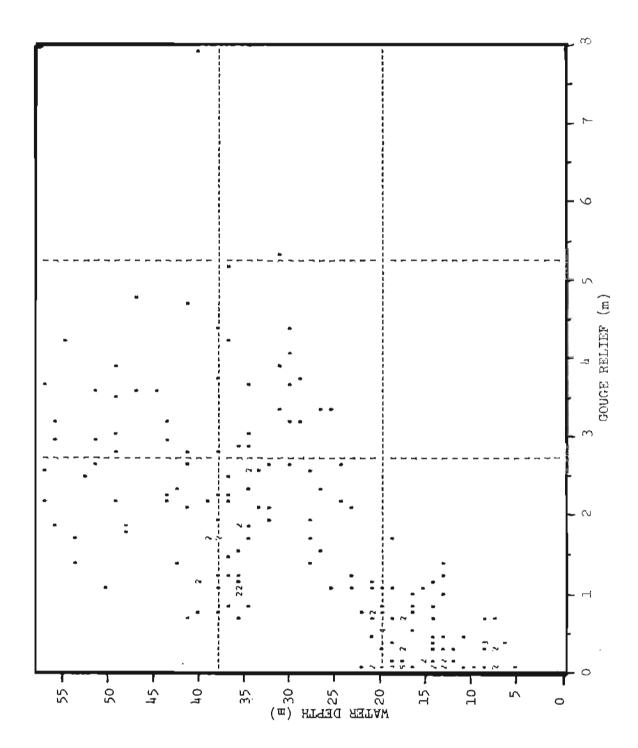


Figure 12.- Scattergram of gouge relief (ridge height plus incision depth) versus water depth.

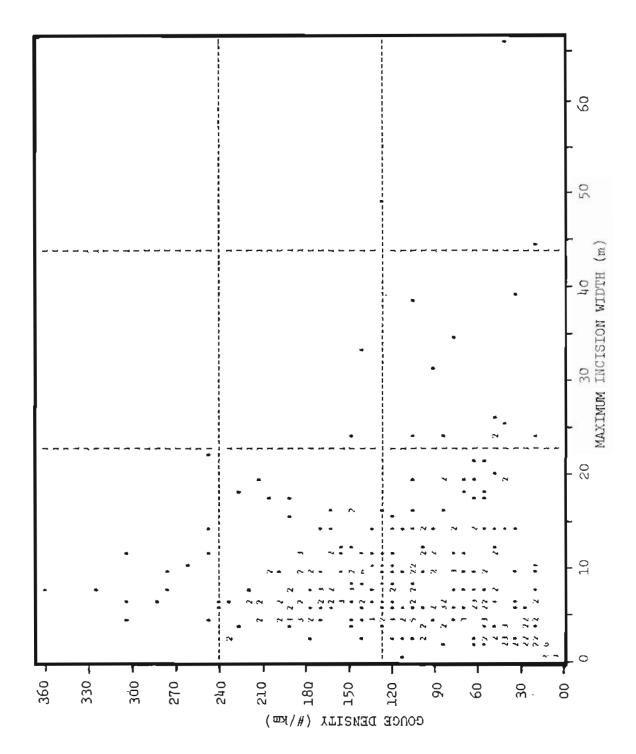


Figure 14.- Scattergram of maximum gouge incision width versus gouge density.

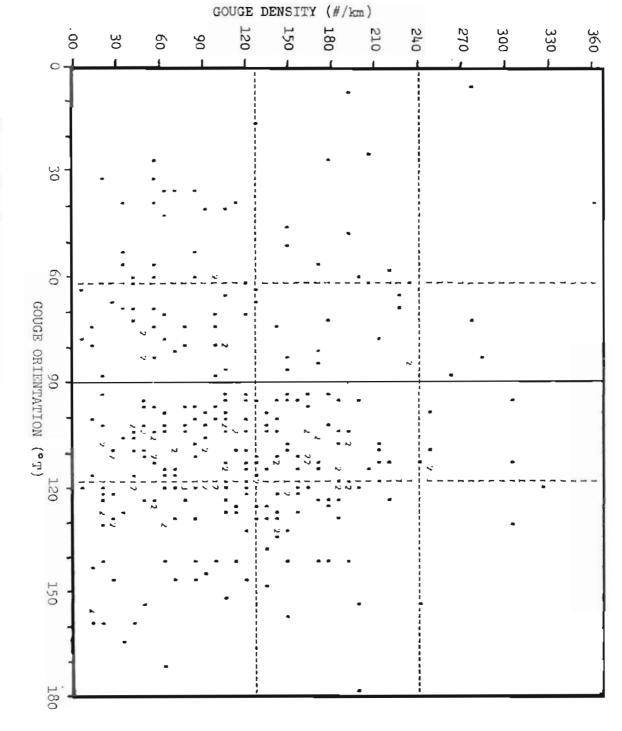


Figure 15.- Scattergram of gouge orientation versus gouge density.

sample Uniboom record (for location see figure 16) on which the most prominent sets of reflectors have been enhanced with inked lines. A major angular unconformity lies at a depth of 10-12 msec below the sea floor. Only 3 msec below the sea floor a discontinuous faint reflector can be traced. (Assuming a high sound velocity of 2,000 msec in sediment, 1 msec is 1 m on this record.) Figure 18 is a sample Uniboom record with the angular unconformity at the sea floor possibly overlain by an extremely thin veneer of soft sediment that cannot be traced on this record. The hyperbolic patterns within the upper 10 msec of the record are largely a result of the ice gouge relief on the shelf surface. But the hyperbolas could also be generated by reflections from the edges of truncated beds. We do not know whether these gouges are cut into the old dipping strata truncated at the sea floor, or whether scouring by ice has resulted in a thin residual deposit in which the gouges are formed.

Very thin surface sediment layers are best resolved on the 7 kHz record. Examples of these records are shown in figure 19 (A and B). In figure 19B the strong dark band 1 m below the sea floor, and precisely conforming to the ice gouge relief, is the 7 kHz trace of the sea floor. The faint reflector at about 58 m below sea level is a real subbottom reflector. All such shallow reflectors were traced from the 7 kHz records at a very shortened horizontal scale, giving a high vertical exaggeration, and are presented as figures 20 through 23. Tracklines and figures are arranged in order from the Canning River to the Canadian border and all lines are oriented with the shoreward (S-SW) end on the left side, except tie line 33-34, which parallels the slope. The seafloor trace also distinguishes between surface material types, as interpreted in the next section.

None of the sections traced in figures 20 through 23 contain reflector patterns revealing sediment accretion. On the contrary, most areas show shallow subbottom reflectors at varying angles to the sea floor, and cropping out somewhere along the traverse. We can detect no thickening of surface units towards rivers and coastal bluffs, the modern sediment sources. The tracings also do not reveal a thickening of units towards the shelf edge. Much more work will be necessary to gain an understanding of the stratigraphic complexities below the shelf surface. We prepared a scattergram with water depth plotted against sediment thickness above the first reflector (Fig. 24) and found that in the areas covered by our tracklines, the first reflector thickness is nowhere greater than 10 m and in most cases is less than 6 m.

Surficial Sediments

In our appraisal of surface sediment textures for the region from the Canning River to the Canadian border we used the surface sediment samples collected in 1981, the classification of geophysical records into cohesive and non-cohesive sediment types in 1-km-track segments, and sediment analyses of samples reported by P. W. Barnes (1974).

The 1981 shipboard sample descriptions are condensed in table 2. Dots mark the sampling sites in figure 25 (station numbers are shown in Fig. 2). The comparison of the texture of surface sediment samples with the appearance of ice gouge relief on fathograms and sonographs showed good correlation. Our

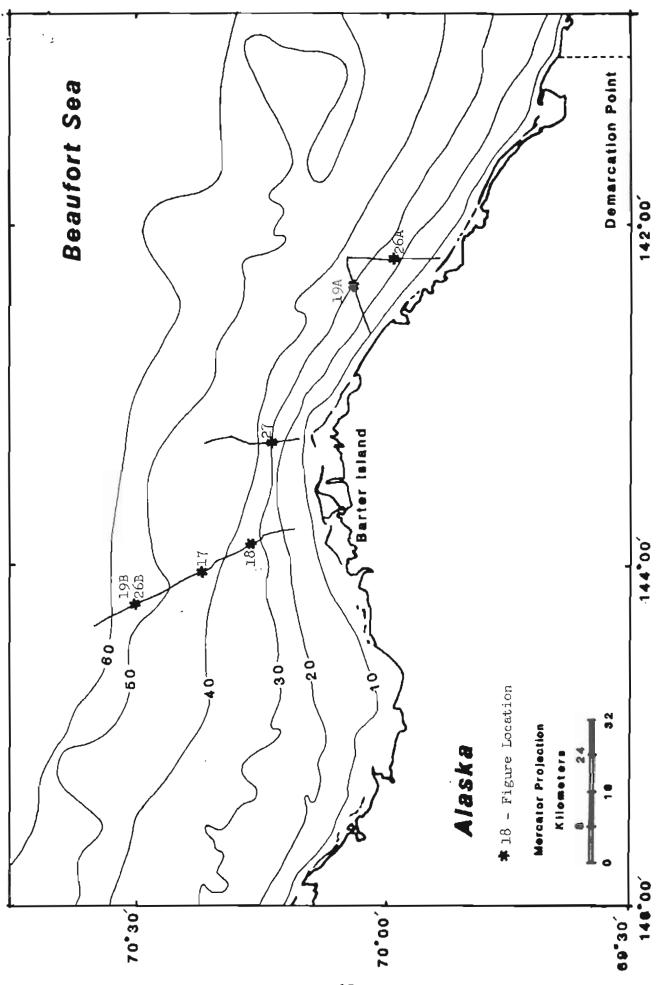


Figure 16.- Locations for fathograms and sonographs shown in Figures 17,18,19 A and B, 26 A and B, and 27. The tracklines from which these examples stem are also shown.

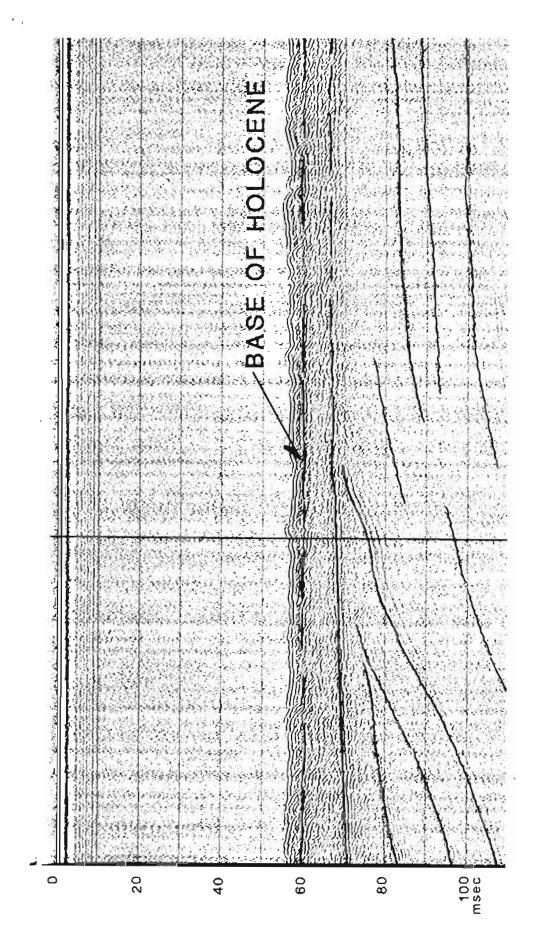
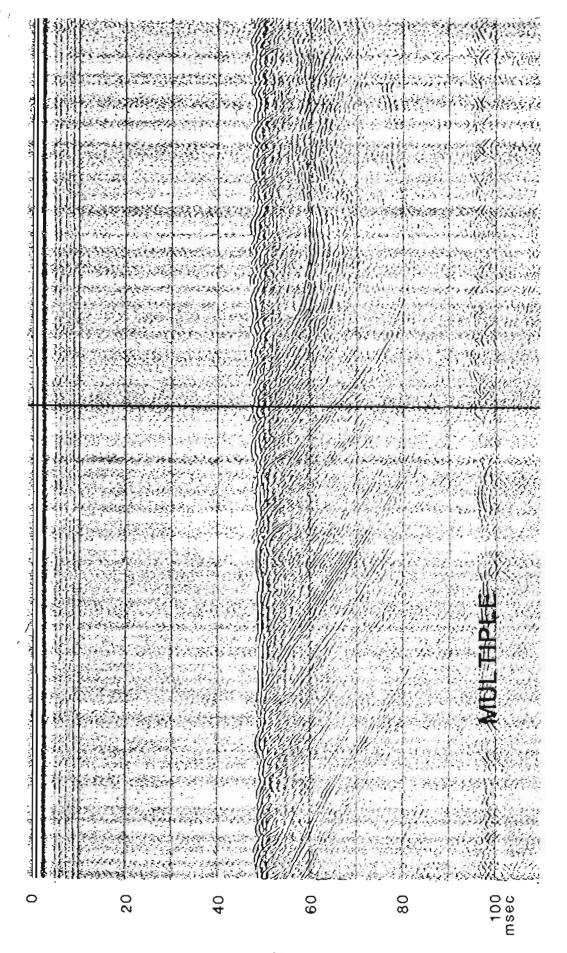
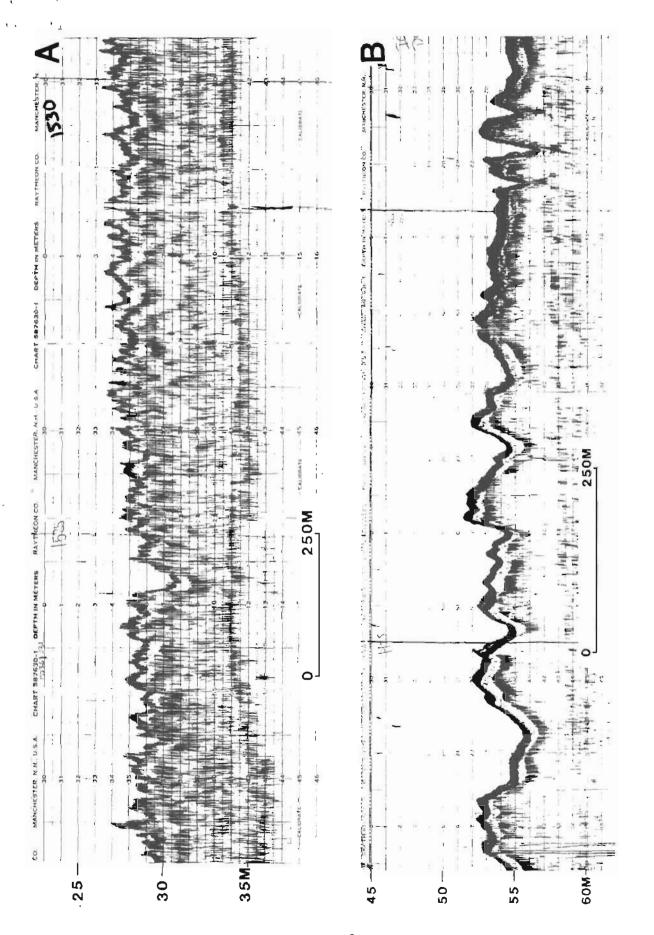




Figure 17.- High resolution siesmic record showing an angular unconformity below the base of the Holocene. the reflectors have been highlighted for clarity. Some of

msec below the seafloor, and the rough seafloor relief, are largely truncated beds. Figure 18.- High resolution seismic record showing dipping sediments truncated by the seafloor. result of ice gouging, but could also result from reflections from the edges of hyperbolas seen in the first 10

reflector is visible at approximately 35m in fathogram A, and a faint, left-dipping sub-bottom reflector Fathogram B covers the same section of trackline as Figure 19.- Fathograms showing the extremes in bottom character: (A) rough relief and (B) smooth relief, as cohesive and non-cohesive sediments, respectively. An undulating sub-bottom is visible at approximately 60 m in fathogram B. (See Figures 16 and 26.) sonograph B in Fig. 26. which we interpret

Surface Sediments: Cohesive ---- Non-cohesive ----

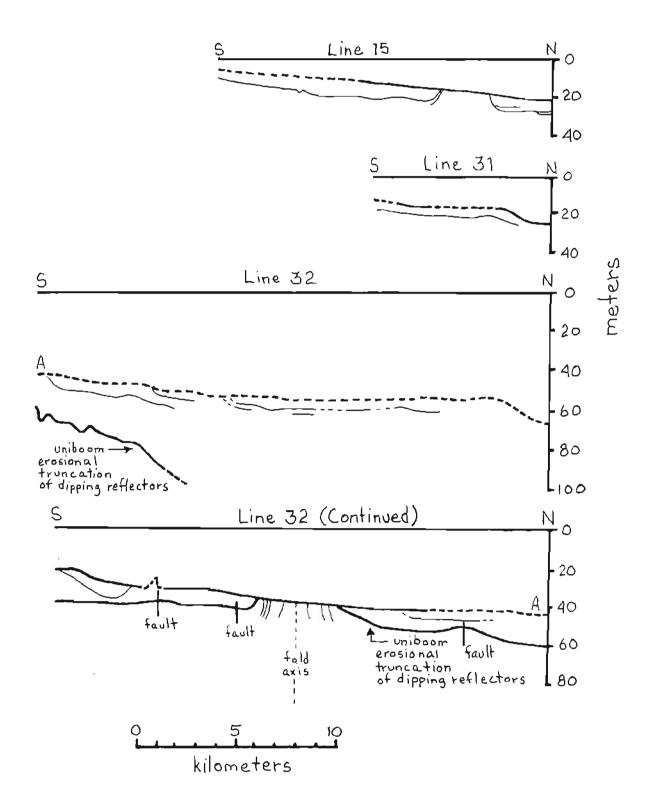
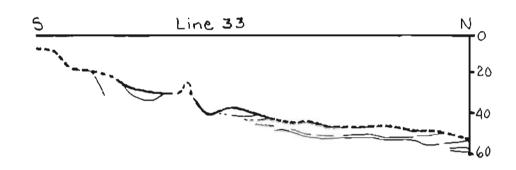
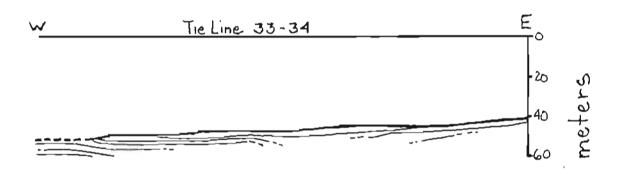
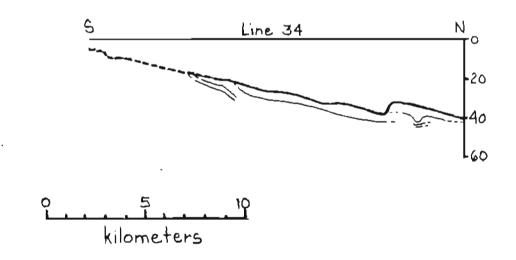
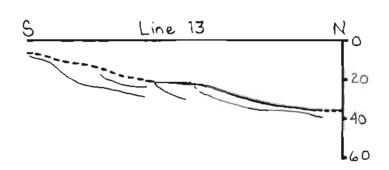




Figure 20.- Line drawings of 7kHz and Uniboom sub-bottom reflectors from tracklines between Camden Bay and Barter Island. Surface sediment textures in Figures 20 thru 23 are interpreted from sonargraphs and fathograms.

Surface Sediments: Cohesive ----- Non-cohesive ----




Figure 21.- Line drawings of 7kHz sub-bottom reflectors from tracklines between Barter Island and the Jago River.

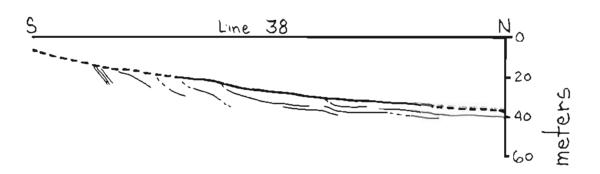

Surface Sediments: Cohesive -Non-cohesive - \overline{N} O Line 35 a 20 40 60 No Line 35 b. 20 40 160 $\frac{N}{N}$ O 20 40 L60 Line 36b. NO -20 40 10

Figure 22.- Line drawings of 7kHz sub-bottom reflectors from tracklines between the Jago River and Beaufort Lagoon.

kilometers

Surface Sediments: Cohesive ---- Non-cohesive ----

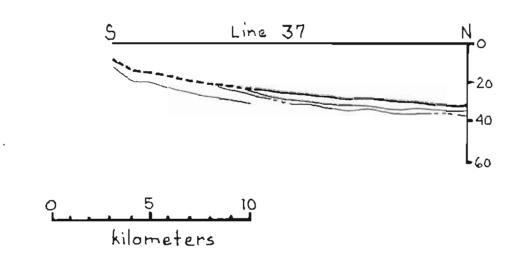
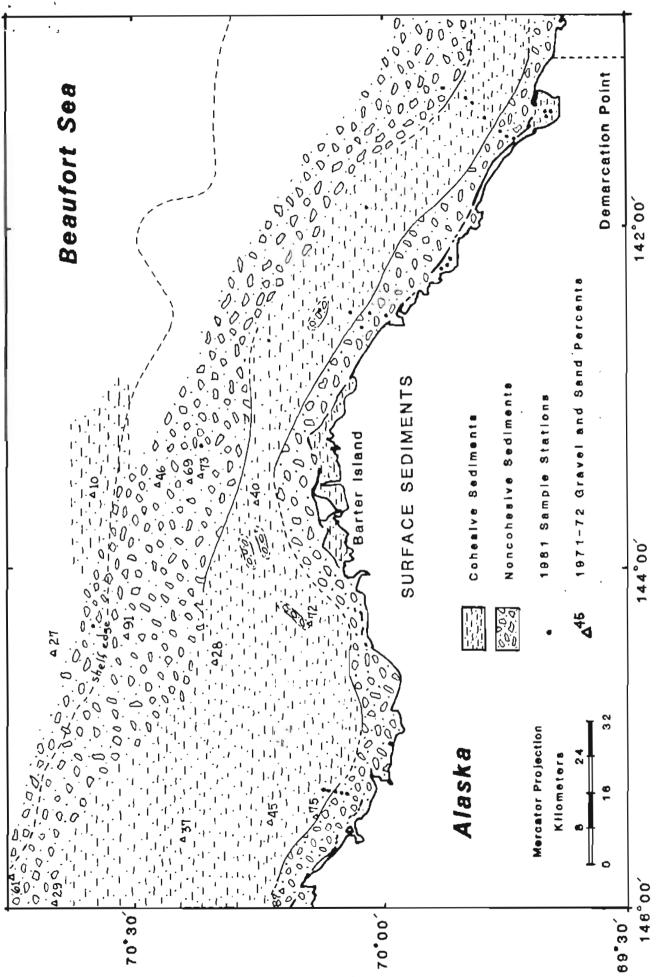



Figure 23.- Line drawings of 7kHz sub-bottom reflectors from tracklines between Beaufort Lagoon and Canadian border.

Figure 24.- Scattergram of sediment thickness above the first reflector versus water depth.

Percentages of combined sand and gravel are next to the old sample stations of Barnes (1974). Figure 25.- Map of surface sediment textures, as interpreted from geophysical records and sediment samples.

interpretation of the geophysical records and the classification of relief forms into "rough" and "subdued," and classification of surface sediment textures into "cohesive" and "non-cohesive," is, of course, strongly influenced by detailed diving and sampling investigations made west of the Canning River. Figure 19 is a sample of fathograms recorded in areas of cohesive, muddy surface sediments (A) and non-cohesive, coarse, granular sediments (B). In the latter case the materials piled up in flanking ridges during the ice-gouging process move downslope to assume the angle of repose as the ice passes. Subsequently the aging process, aided by current effects on non-cohesive materials results in broadly rounded ice-gouge forms. The finegrained surface sediments, on the other hand, assume relatively steep slopes, sometimes blocky shapes, during disruption by ice and remain in this position even through periods of current activity. The sonographs shown in figure 26 represent samples of these two distinct bottom types. In figure 26 A the gouges are cut into cohesive materials, and are characterized by flanking ridges consisting of irregular piles of jagged materials. The roughness depends on the degree of consolidation of sediments disrupted, and is manifested as crisp, irregular discontinuous reflectors paralleling each individual gouge. Figure 26 A also records a first-year pressure ridge at the terminus of the parallel set of rake marks it produced. Figure 26 B shows gouges cut into coarse granular materials, where ridges flanking the gouges are smooth, even subdued, and continuous. The smooth ridges of figure 26 B correspond in time and place to the fathogram shown in figure 19 B.

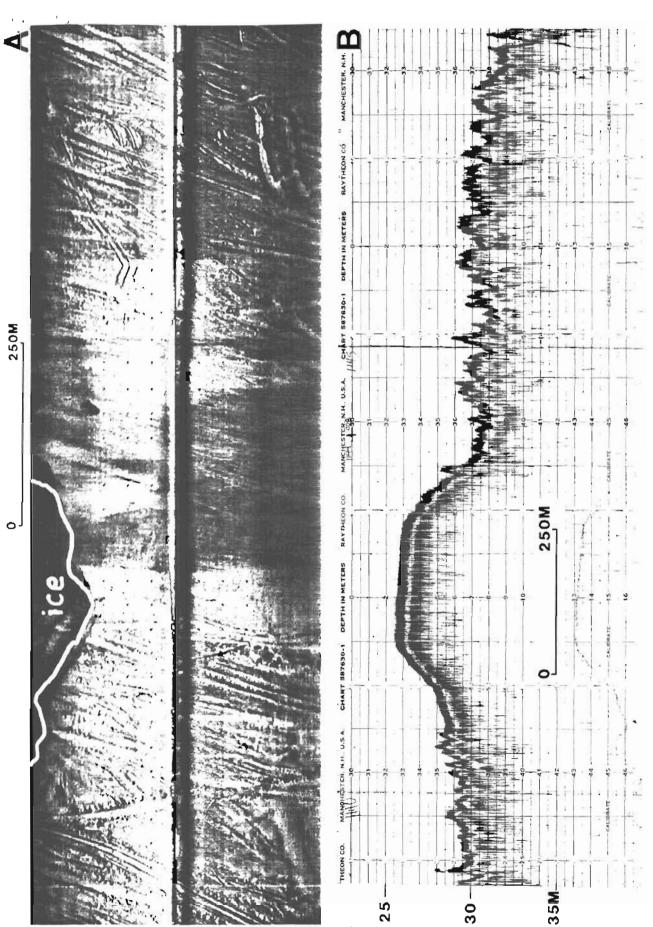
The two bottom types interpreted from the geophysical records were plotted and the results are shown on the map in Figure 25. Coarse, granular materials blanket a strip from the coast to about 15-m water depth. Seaward of the 15-m water depth lies a zone of fine, cohesive surface sediments, which grade seaward into coarse granular materials. Coarse-grained materials can be traced uniformly for many kilometers on line 32, the long track extending northwestward from Barter Island to the shelf break. At 53-m depth we interrupted the line to collect a sample for verification and retrieved essentially clean gravel with attached organisms. The shoals within the belt of cohesive materials on the central shelf (Fig. 25) appear to be generally sand and gravel. The numbers shown on the shelf west of Barter Island in figure 25 represent percentages of sand plus gravel taken from surface sediments analyzed by Barnes (1974). These values substantiate that much of the shelf surface, and especially the outer half, is covered with coarse granular materials.

Shoals of the Stamukhi Zone

The relationship of coastal promontories and shoals acting as strong points in the control of ice dynamics and zonation has been of considerable interest to our studies (Rearic and Barnes, 1980; Reimnitz et al., 1978). The published charts for the study area do not show a pattern of shoals downdrift of the Barter Island promontory, similar to the pattern developed west of the Cross Island promontory. However our reconnaissance survey lines provide single crossings of a number of shoals. One long linear shoal off the Canning River was crudely defined by a number of crossings (Line 8 in figure). A number of samples collected around that shoal show it to be composed of sand and gravel, similar to the shoals west of the Canning River which have been

Figure 26.- Sonographs of rough (A) and smooth (B) gouge relief, a difference we interpret as due to the presence of cohesive (A) and non-cohesive (B) sediments. A large piece of ice is grounded in the lower center part of sonograph A, gouges under the ice are hidden. Sonograph B corresponds to fathogram B in Fig. 19. The 3 sharp gouges on the fathogram are clearly visible on the sonograph. Even though there is a lot of relief in the area, the seafloor texture is smooth because of the non-cohesive nature of the sediments.

thoroughly studied. Most of the other shoals as well are composed of coarse granular materials as interpreted from the geophysical records. A sample crossing is shown in figure 27. The sonograph shows an intensely gouged sea floor on both sides of the shoal. Here the gouge flanks have the rough appearance typical of flanks associated with fine-grained cohesive materials. The shoal itself, is composed of coarse granular material with a smoothed, rounded surface and a trace of current ripples on the crest. Ice hangups are most common on such shoals and the sonograph shows such a stamukhi along the crest.


DISCUSSION AND CONCLUSIONS

Sedimentation

From combined coring, diving, and seismic profiling studies in numerous different marine geological environments and settings west of the Canning River, we are convinced that where repeated ice plowing occurs with slow sediment accretion, no continuous sedimentary units develop. Sediments come to rest mainly in troughs of gouges, and the shape and extent of a trough define the limits of sedimentary units.

We believe that the depositional environment in early Holocene time was similar to today's environment. The sea advanced across the 60-km-wide shelf at an average rate of 5 m yr⁻¹, while the present rate of bluff retreat is 1 to 2 m yr 1. Bluff height at present is 2-5 meters and we believe was similar in the past. Thus the rate of sediment supply from bluff erosion has changed relatively little. The first seawater encroaching onto the outer shelf brought ice, which probably included a high proportion of ice of land origin calved from retreating glaciers. This ice began plowing and re-plowing the former land surface, and the developing sediment blanket, at a higher rate than the sediment accretion rate (Reimnitz, et al., 1977; Barnes, et al., 1978; Reimnitz, 1978; Barnes and Reimnitz, 1979; Barnes and Reimnitz, 1981; and Reimnitz and Barnes, 1981). Like today, the plowing action of ice aided in sediment winnowing, resuspension, and transport, and thereby resulted in slow rates of sediment accretion. Very slow rates of shallow water sediment accretion are observed around the entire Arctic Ocean, and we see no reason for very high rates of shallow water sediment accretion during the early Holocene time. Viewed in this light, we see no possibility for the blanket of Holocene sediment to contain continuous internal reflectors that can be traced on seismic reflection records.

All incidations are that a thick wedge of Holocene marine sediments, consisting of unconsolidated silt and mud (Dinter, 1982), does not exist on the central and outer shelf. Such deposits, while present in lagoons and bays, are essentially lacking on the open shelf. The fine-grained, cohesive sediment mapped in a band on the central shelf, may be Holocene deposits of several meters thickness, and most likely the shoals of the stamukhi zone are constructional features post-dating the last transgression. The coarse granular materials on the inner shelf and on the outer shelf seem to be relict deposits. The relict nature of the shelf edge gravels has been discussed by Barnes and Reimnitz (1974), Naidu and Mowatt (1974), and Rodeick (1975). Their interpretations are based on: a) low rates of modern ice rafting of

The shoal crest is The smoothness of the shoal crest, which is gouged by ice more frequently than the surrounding bottom, indicates that hydraulic processess rapidly rework the sediments on the characterized by a smooth, noncohesive texture, while the surrounding bottom exemplifies the jagged, Figure 27.- Somograph (A) and fathogram (B) of a shoal crossing in the stamukhi zone. cohesive sediment texture. shoal crest.

coarse clasts compared to overall sediment accretion rate, b) observed ferromanganese coatings on cobbles, c) about 15,000 year old C 14 ages for near-surface shelf edge and upper slope sediments, d) source rock considerations, and e) lack of seaward decrease in sediment grain size from coarse grained near the sediment source to fine grained near the outer edge of the shelf.

Dinter (1982) mapped a seaward thickening wedge of Holocene marine sediment on the Beaufort Sea shelf, using high resolution seismic reflection records. In the Barter Island area in particular, he shows a large area of structurally deformed and truncated stratified deposits lacking any Holocene marine sediments, and flanked on the northeast and northwest side by Holocene marine sediments thickening to 30 and 40 m at the shelf edge. Line #32 of the present study was aimed at reaching the shelf edge where Holocene marine sediments are 40 m thick, where, as a consequence, active deposition should occur, and where the greatest water depth at which ice gouges exist would correspond with the present maximum ice keel depth to be encountered within the Beaufort Gyre. We reasoned that active deposition would eliminate gouges within a period of several hundred years. Line #32 (for cross section see figure 20) does indeed cross the erosional region on the mid shelf, where older sediments are truncated by the seafloor, but it does not show a thick homogenous wedge of Holocene sediments to seaward. The character of the gouges recorded, in fact, made us suspect gravelly surface sediments prompting us to interrupt the geophysical survey for sampling (Fig. 2, Sample 27). gravel retrieved at 53-m water depth, along with the homogenous appearance of the records for tens of kilometers, supports previous sedimentological interpretations that much of the outer shelf in the eastern Alaskan Beaufort Sea is blanketed by relict gravels, and not by Holocene marine sediments as interpreted by Dinter (1982).

One of the major potential modern sediment sources for the eastern Alaska Beaufort Sea shelf may be the Mackenzie River. Therefore, a comparison with the sediment distribution on the shelf between our study area and the Mackenzie Delta will shed additional light on our contention that the outer shelf off northern Alaska is presently a surface of non-deposition. Figure 28 is a compilation of our sediment texture map extending to the Canadian border, and a map of sand-plus-gravel percentages for the region east of the border by Vilks et al. (1979). The Canadian shelf surface is covered by sand and gravel. Yorath et al. (1970) interpreted the sandy gravels, sands, and hard pebbly lutites as "relict glacial deposits and ice-pressed tills." Thus, these combined interpretations of shelf surface sediments, while not matching across the border in detail, leave no room for a thick wedge of Holocene sediment on the outer shelf. The extensive regions west of the MacKenzie River also indicate that the sediments supplied by this large river are not dispersed westward from its mouth. A thorough study of this problem is urgent because the interpretation that slumping, sliding, and faulting are active geohazards in this area (Grantz and Dinter, 1980) is strongly dependent on whether the shelf edge sediments are old or recent. If there is no active sedimentation, then surface relief features related to mass movement and faulting may have been produced in the distant past, by processes inactive today.

scarps. The ice pack acting on an extensive, non-homogenous surface, however, seems to take the different lithologic units down to the same level by focusing mainly on the high points. Viewed in this light, the existence of major, well defined shoals is more perplexing.

So far we have been unable to relate the intensity of ice gouging to the underlying geology. Thus, one could also argue that all geologic strata exposed to the action of ice in the study area are relatively weak compared to the forces of the moving ice keels.

New Evidence for Greater-than-Expected Ice-keel Depth

Favorable ice conditions in 1981, and a relatively narrow shelf east of the Canning River enabled the R/V KARLUK to survey ice gouges in generally greater water depth than has been possible in the western sector. One particular line was extended to the very shelf edge. In general, the relationship between ice gouging and water depth in the study area is similar to that determined for areas west of the Canning River, with lowest values for certain gouge parameters inshore and offshore of the stamukhi zone. In the present study, ice gouges were traced to maximum water depth of 58 meters. Beyond that we saw only very broad, subdued relief features unrelated to ice keel interaction. Among the bedforms beyond the deepwater gouge limits we found slope-parallel, rhythmic lineations of 3 m wave length but less than 20 cm of relief, which we interpret us probable hydraulic bedforms. These indicators, along with the presence of surface gravels rather than fine materials, the subdued nature of gouge relief forms, the seaward decrease in ridge height relative to trough depth and width, and especially the recorded current pulses of up to 50 cm per second along the shelf edge (Aagard, 1977) all suggest that active currents rework the deep water gouges. Based on these considerations, the gouges found at 58 m water depth are modern rather than relict (produced during lower stands of sea level). Surficial hyperbolic reflections on Uniboom crossings of the shelf edge between Barrow and the Canadian border, and the accompanying surface roughness, are fairly certain indicators for the presence of ice gouges. These indicators can be traced in 28 representative traverses to maximum water depths of between 60 and 64 meters (Dave Dinter, U.S. Geological Survey, oral communications, 1982).

Our previous contention that ice gouges seen on the Beaufort Sea shelf at depths greater than 47 m (the deepest keel actually observed) are modern has recently found additional support. Marine geologic studies by Canadian researchers in the southern Beaufort Sea no longer call for lower sea levels to account for the deepest gouges observed. Also, statistical treatment of ice keel distributions in Arctic deep water allow for 60 m deep keels to occur at a rate of one every few hundred years (Peter Wadhams, oral communication, 1982). These findings are of little consequence at the present stage of petroleum development in the Alaskan Beaufort Sea, but may in the future assume considerable importance.

Shallow Seismic Stratigraphy

Our analysis of seismic records has not progressed to the stage where correlating individual units from line to line, and interpreting their geologic history, can be attempted. However, we can put some limits on the thjickness of the surface units - the Holocene marine sediments. Our reasoning leading to the conclusion that Holocene marine sediments cannot contain continuous seismic reflectors has been presented above. This is not only a theory, it has been proven true in numerous site specific studies in the west. Based on this fact, the sediment thickness above the first subbottom reflector is the upper limit for the thickness of Holocene marine sediments. A plot of these values (Fig. 24) against water depth shows no trend. The mean depth below the sea floor is nearly 7 meters. But as discussed before, the geometry of units defined by the shallow reflectors excludes them in most regions from being Holocene marine sediments. They must be older units.

Thick sections of stratified, tectonically deformed, probably Pleistocene strata dipping at various angles are truncated by the seafloor over extensive regions in the Barter Island area. We have not been able to trace any portions of the section to Barter Island from the Flaxman Island area, where well known stratigraphy exists from boreholes. Some faults extend to near the sea floor, but we are unable to detect surface scarps or other signs of recent fault displacements. However, the smooth truncation surface, extending for many kilometers and cutting across numerous strata of presumably different erodability, suggests that ice scouring is an efficient planation agent that treats all available materials uniformly. Thus, the lack of modern fault scarps in our data is not necessarily evidence against recent movement postulated by Grantz and Dinter (1980).

Sand Gravel Resources

Triggered in part by the high demand for sand and gravel as construction material for offshore petroleum development, the Federal Government is making preparations for managing these resources on the Arctic shelf through a leasing program. In the present study area all indications are that gravel is plentiful, even in deep water, and need not be hauled great distances. In areas where active gouging creates up to 8 m of vertical relief, the seafloor reflectivity and overall appearance is homogenous for many kilometers. If such areas on the outer shelf were underlain by interbedded mud, sand and gravel, the plowed ridges would reveal such inhomogeneities. The sea floor would be littered with slabs of stiff silty clay. The appearance of the geophysical records suggests to us that on the outer shelf fairly clean, coarse granular materials have a thickness of at least several meters. However, several box cores from the outer shelf contain firm mud units (Barnes and Reimnitz, 1974), raising questions that need answers.

REFERENCES

- Aagard, K., 1977, Current measurements, National Oceanic and Atmospheric Administration Environmental Assessment of the Alaskan Continental Shelf Annual Report: Arctic Project Bulletin n. 14, p. 3
- Barnes, P.W., 1974, Preliminary results of marine geologic studies off the northern coast of Alaska: an ecological survey in the Beaufort Sea, WEBSEC 71-72, Department of Transportation, U.S. Coast Guard Oceanographic Report No. CG 373-64, p. 183-227.
- Barnes, P.W., and Reimnitz, Erk, 1974, Sedimentary processes on the arctic shelves off the north coast of Alaska: in Reed, J.C., and Sater, J.E., eds., The Caost and Shelf of the Beaufort Sea, The Arctic Institute of North America, Arlington, Virgina, p. 439-576.
- Barnes, P.W., McDowell, D.M., and Reimnitz, Erk, 1978, Ice gouging characteristics: their changing patterns from 1972-1977, Beaufort Sea, Alaska: U.S. Geological Survey Open-File Report 78-730, 42 p.
- Barnes, P.W., and Reimnitz, Erk, 1979, Ice gouge obliteration and sediment redistribution event 1977-1978, Beaufort Sea, Alaska: U.S. Geological Survey Open-File Report 79-848, 22 p.
- Barnes, P.W., and Reimnitz, Erk, 1981, Seabed changes resulting from combined sea-ice and hydraulic processes onshelves of the Arctic basin: Example from Harrison Bay, Alaska: AAPG-SEPM Annual Convention, San Prancisco, May 31-June 3, [abs.], American Association of Petroleum Geologists Bulletin, v. 65, p. 895.
- Barnes, P.W., Reimnitz, Erk, and Rearic, D.M., in press, Ice gouge averages, maximums, characteristics, and associated processes, Beaufort Sea, Alaska:

 <u>in</u> National Oceanographic and Atmospheric Administration, Environmental Assessment of the Alaskan Continental Shelf, Principal Investigators
 Reports for the Year Ending March, 1981, 34 p.
- Dinter, David, 1982, Holocene marine sediments on the middle and outer continental shelf of the Beaufort Sea north of Alaska, U.S. Geological Survey Misc. Field Study Maps, MF-1182B, 2 sheets.
- Grantz, Arthur, and Dinter, D.A., 1980, Constraints of geological processes on western Beaufort Sea oil development: Oil and Gas Journal, May 5, 1980, p. 304-319.
- Greenberg, Jonathan, Hart, P.E., and Grantz, Arthur, 1980, Bathymetric map of the continental shelf, slope, and rise of the Beaufort Sea north of Alaska: U.S. Geological Survey Map I-1182-A, 6 p., 1 plate.
- Kovacs, Austin, 1980, Recent ice observations: The Northern Engineer, v. 10, n. 3, p. 7-12

- Mowatt, T.C., and Naidu, S., 1974, Gravels from the Alaskan continental shelf, Beaufort Sea, Arctic Ocean: petrographic character and implications for sediment source and transport: Alaskan Geol. and Geophys. Survey Open-File Report AOF43, 40 p.
- Rearic, D.M., and Barnes, P.W., 1981, Reassessment of ice gouging on the inner shelf of the Beaufort Sea, Alaska: <u>in</u> National Oceanographic and Atmospheric Administration, Environmental Assessment of the Alaskan Continental Shelf, Principal Investigators Reports for the Year Ending March, 1980, v. 4, p 318-332.
- Rearic, D.M., Barnes, P.W., and Reimnitz, Erk, 1981, Ice gouge data, Beaufort Sea, Alaska, 1972-1980: U.S. Geological Survey Open-File Report 81-950, 8 microfiche cards.
- Reimnitz, Erk, Barnes, P.W., Toimil, L.J., and Melchoir, John, 1977, Ice gouge recurrence and rates of sediment reworking, Beaufort Sea, Alaska: Geology, v. 5, p. 405.
- Reimnitz, Erk, 1978, Dynamics of ice gouging and sediment movement at a site in Harrison Bay, Beaufort Sea: <u>in</u> National Oceanic and Atmospheric Administration, Environmental Assessment of the Alaskan Continental Shelf: Principal Investigators Quarterly Reports, October to December 1978, 15 p.
- Reimnitz, Erk, Toimil, L.J., and Barnes, P.W., 1978, Arctic continental shelf morphology related to sea ice zonation, Beaufort Sea, Alaska: Marine Geology, V. 28, p. 179-210.
- Reimnitz, Erk, and Barnes, P.W., 1981, Depositional complexities in the seaice environment of arctic shelves: Example from Harrison Bay, Alaska, AAPG/SEPM Annual Convention, San Francisco, May 31-June 3, [abs.]: American Association of Petroleum Geologists Bulletin, v. 65, p. 978.
- Rodeick, C.A., 1979, The origin, distribution, and deposistional history of gravel deposits on the Beaufort Sea continental shelf, Alaska: U.S. Geological Survey Open-File Report 79-234, 87 p.
- Stringer, W.J., Barrett, S.A., and Schmeurs, L.K., 1978, Morphology of Beaufort, Chukchi, and Bering Seas mearshore ice conditions by means of satellite and aerial remote sensing: Geophysical Institute, University of Alaska, Fairbanks, 802 p.
- Vilks, G., Wagner, F.J.E., and Pelletier, B.R., 1979, The Holocene marine environment of the Beaufort Shelf: Geological Survey of Canada, Geological Survey Bulletin 303, 43 p.
- Yourath, C.J., Shearer, J., and Havard, C.J., 1970, Seismic and sediment studies in the Beaufort Sea: Geological Survey of Canada, Paper 71-1, part A, p 242-244-

APPENDIX

Ice Gouge Data Sheets

To transitional Reform So Smooth Commences Il o words doing

P 11.//	
()// //	
1 11/1/	
1200	

	,				1.37		11		
Line	Number						ar: 17		gouge measurements to meters
		am Measi			So	nograph	Measurem	ents	
SEGMENT	Water Depth (meters)	Reflector		Ridge Height	Gouge	Denalty	Orioniation (°T)	Sediment	REMARKS
000	24.3		.4	.4	17	168/	105 / 285	R/C	.4 km of somer missing. Count adjusted.
001	22.8		. 8	. 1	-	-	1.7	RIC	the sample for this statement
002	22.1	21.1	. 8	.6		-	_	R/c	no sorar for this sugment
00 B	21.3	25.5	.4	.5			_	R/c	no Swar for this segment
004	<u>ij.</u> 4	22.7	<.2	<.2	_	_	_	S/N	no sor or for this segment of Meter beach of story of seamont (includes I more shoot on crest).
025	11.0	22.0	. 2.	.3	3	37/	130 /260	S/N	.4 Km of sonar remains Count odjusted.
cn5	16-1	20.6	4.2	<.2	//	88/	156/246	S/N	/ multi-googe - 12 inc , 18 m , 1440T
0017	17.3	22.3	< . 2	<,2	5	70/	20/110	S/N_	gouge orientations are highly doriable
<u> </u>	18.0	23.5	<.2	. 2	5	87/	36/126	3/N	4 4 4 "
009	18.8	24.2	.2	.2	4	192/	158/248	R/c	Ovientalian is highly variable. 3 Multi-hougas- 24 1000, in largest -125m unde - 240°T
2010	19.1	24.4	.4	. ગ	8	152/	24/111	R/C	
Q:I_	19.6	25,3	.4	,5	7	175/	151/241	P/C	crientilion is highly spriable.
コロレ	20.1	25.3	.5	.7	5	169/	26/116	R/C	recording and arith ted not with a 15m.
013	20.2	25.8	.4	,5	5	124/	10/250	R/C	sonar quality poor - mary range changes.
0:4	18.1	24.5	.4	.5_	16	156/	193/323	R/C	chismistron is highly variable.
05	16.9	22.8	.3	.5	5	121/	26/ 206	R/C	ion m of sorar missing. Count adjusted.
016	15.9	21.4	4.2	<.2	_ 5	39/	126/306	5/N	4 meter hoad in middle of comment, and seging ands on officers days of the short
17	12.7	18.2	4.2	<.Z	4	25/	140/ 256	S/N	
0.3	/3.0		.2	.2	10	42/	35/125	S/N	
211	15.8		. 2	.3	7	137/	145/235		orientation is highly wriable.
07.0	16.4		,2	. 3	5	149/	150/240	R/C	Brien Ation is highly variable
0:1	12.0		.4	.9		_		R/C	no sonar this segment
0	16.9	-	,3	. 6	6	167/	23/113	R/C	orier facion is highly variable.
1162	17.8		.5	.5	_5	148/	23/113	R/C	Whom settled Is highly Vermiter
024	17.5	22.8	.9	.9	18	172/	136/226	R/c	priveta to spir, wastable
065	18.7.	24.9	.6	.6	7	126,	45/225	RIC	survitation is Variable.
077	17.2	22.5	.7	.5	~-	_		R/C	in some this segment
	16,4	20.7	.4	.1	4	RC/	1200	-7-	Von Mot some missing. Count adjusted
	13.7	19.0	.7_	4,2	3	16/	128/308	SIN	3,5 M. should middle of segment

						_			_
_			T						
								T	
						<u> </u>		T	
			1		1	 			
								<u> </u>	
							_	-	
							1		
						_	† — —		
		1					 	<u> </u>	<u> </u>
			1						
						<u> </u>	<u> </u>		
									1
									
	_		1						
									1
									1
						_	7.15	2.71	250
2,40110A FIYSIY SI WOILDFULLO	2/8	801/84	1811	2	25.	201	5.05	8:51	Sac
Faiter Stool of Decement of Seguent. Heavier & Seguent. Heavier & Second Second of Sec	L	69 /in		14	8.	٤,	8'3	€ 'Z/	V20
	11/3	83/103	145	2	2.>	۲'	7'51	6.11	580
ישנים ויין בל בל לא בינונ שני על בל לא בין של שנים בינונים לא בין בל שנים בינונים לא בין בינונים של של בינונים	11/5	09/06	176	2	2.7	5,5	-	2.01	055
	N/5	151/164	19	7	5,>	2'>	_	0.9	150
	N/s	147/32A	112	ε.	5.>	2'7		9.01	∞ 50
# 450 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	11/5	118 /18/	752	-3	マソ	2,2	0.5/	E'01	650
немьяка	noleshoo.	nollaineivo (T.)	Denalty	Width	неідрі Неідрі	Depth	.V.	fitgeQ telsW (sietem)	SEGMENT
	21ne	Measurem	повгарћ	108			usaeM me		
grage meterments and again	10	86/ : 18	θX					Number	əuil
\1\1\6-t-		•							

XWI

BMR

Line	Number	: 09				Ye	ar : 1981		govge measurements in metere
	Fathogra	am Measi	rement	8	So	nograph	Measurem	ents	
SEGMENT	Water Depth (meters)	Reflector	Gouge Depth	Ridge Height	Gouge	Density	Orientation (*T)	Sadiment Cohesion	REMARKS
000	4.1		<.2	<.2	1	~			no soner this segment.
001	6.1		X.2	<.2	_	-	-		no sonar this Segment.
022	7.5		4,2	4.2	-			-	no sever this segment.
003	8.0	_	. 2.	.2.	6	57/	121/221	N 1	100 at 100 ge 150 m
934	8.1	-	.5	<.2	6	51/	117/217	i) i	
025	8.0	13.2	,3	.2	5	SA/	110/210	11	Secondary Orientation : 13000
116	7.7	13.5	.2	.2	60	85/	115/215	N 2.	med on sonar (I meter diameter)
007	9.2	13.5	2,2	4.2	1			-	no somer this segment.
005	6.9	11.5	<.2	4.2	3	67/	153/253	N	250 m of soint Missins Court Odjusted.
229	6.5	11.7	,2	.2	1.1	26/	133/233	Ŋ	30 cm half rater on Phis (synth).
212	6.0	12.7	,2	.3	3	28/	45/55	<i>1</i> .J	
011	6.2	11,3	.2	. 2	2	37/	51/61	N	
212	68	12.0	3	.5	3	34/	50/60	Ŋ	(FOUR) THAT SUFFACES AT MM 12 #
012	7.3	11.0	٠3	,5	4	31/	59/69	N	suaportom is very rough.
2.4	8.2	11.1	.2	. 3	7	24/	80/90	N	CHECOTTON 12 TEXT Ough (gouge like appropriate)
015	9.1	12.3	ح,2	<,2	5	25/	56/66	Ŋ	ROUGHSINEGOTTOM
016	2.5	12.4	. 3	. 3	4	17/	78/88	N	Frank SIV. Por 10 m
0/7	11.5	13.5	۷,2	. Z-	2	10/	63/73	1)	Roin- superior. 200 m of sonar missing round adjusted
018	11.5	14.5	<.2	٠3	3	36/	6-/72	1)	Rowned Sidden "Um. 100 in Sopar inssite. Court Edjusted
017	12.3	15.1	4.2	. 2	ريم	74/	21/96	N 2	Royal to B.
020	12.7	14.8	٧,٧	.5	2	81/	30/105	1 1	ROUGH SUP.
0.71	12.8	15,0	.6	,7	20	<u> 1917 - 1</u>	34/109	R/C	drige character change. Pressure Ridge gouging at end of segment Many larger aguzes.
200	13.0		,5	.8	19	ND/	169/244	R/C	www. www. or was con BET
2. 3	13.0	17.4	<.2	.3	8	100/	19/94	R/C	Goiging becoming less intense.
1	12.9	17.2	, 3	, 2.	3	123/	8/83	R/C	SUBPOTTEM BECOMES FLAT AGAIN.
<u>.</u> .	1: 8	17.0	.3	.5	3	103/	10/25	R/C	mile grayer 13 waterness, is m wise, 86.7
j	12.7	16.7	<,2	, 2:-	3	10/	7/84	R/C	
321	12.5	124	1.7	1.2	4	102/	15/90	R/C	no Johnston for secure of Postson fish.
√2 €	12.3	15.6		146.00	3	134/	10/85	BC.	no delegram for segment Prosper to year (

Line	Number	~ /					ear: 19		etem ni stnemejuzāem egvog
	-	am Measi					n Measurem		
SEGMENT	Water Depth (metera)	Reflector	Gouge Depth	Aldge Height	Gouge Width		Orientalian (*T)	Sediment Cohesion	REMARKS
029	12.1	16.5	.3	. 3	10	15/1365	15/90	R/C	
030	11.9	16.5	,5	1.0	17	69/1423	8/83	R/C	
031	12.2	16.2	.5	. 9	3	108/103.7	113/113	R/C	
032	/3.3	16.6	.2.	.8	7	105/102.9	60/80	R/C	
033	140	17.9	.5	.7	8	171/167.6	61/81	R/c	Stallow.
034	14.8	20.0	.5	.6	5	217/212.7	58/18	R/C	solve are a solve to the work.
035	15.4	19.9	.3	.7	8	263/273.5	52/72	R/C	400 m of sonar inissing Count edjusted
036	15.8	20.4	.3	.6	3	165/171.6	52/12	R/C	high derect journing stors of mode of segment no apparent reason (no stools, etc.)
031	16.1	19.9	<,2	.3	7	58/584	57/77	R/C?	
028	16.5	22.3	<12	- Z	3	50/61.0	153/173	R/c?	Because are stallow they may be covered by a transitory layer??)
039	17.2		4.2	.2	7	56/58.2	51/71	R/C?	
040	17.9	22.1	, 3	.5			-	-	NO SOLDAY THIS SEGLIGHT HIGH DEUSTY GOUS STARTS AGAIN AT SEG. START (NO KIPPENT REASON)
041	19,0	23.5	.3	.7	8	226/3414	18/38	R/C	2 SIE - WREFLICTORS - TOP ONLY PERSON SUFFICE AT ~ 40 km point 4
0/2	19.7	24.3	. 3	. 3	5	140/141.4	,	5/N 7	long les short with little gausing on it. Probably so are will not hold gauses. Som A Somer prising al high drassing gausing storte, again after sentions
013	19.0		.4	ها.	7	214/216.1		R/C	high drassing gousing starts again ofter sentings
044	20.0	24.0	,3	.5	10	198/2000		R/C	END OF SOLIAR
045	18.5	23.0	, 3	.4			_		
21/2	18.2	22.3	<,2	۷,2			_		2 meter shoat at beginning of segment
247	18.6	22.1	۷, ک	<. 2		_	-	_	
248	17.2	_	۷,2	۷,2	·		_	-	
2419	15, 3		۷,2	<,2			manage 1	-	
050	14.5		<, 2	۷,2				~	2 motor shool at mid segment.
121	13.9	-	۷,٦	. کـ			-	-	_
152	11.6		<,2	4.2	_	_	_		
2: =	12.1	_	4.7	4.2	_	-	_	-	
254	11.2		<,Z	4,2	-	-		-	
0:-	7.5	_							

						$\overline{}$		T	T -
			 						┼ —
		1	-		 	 			
			-	\vdash				<u> </u>	┼ —
			-					_	
	+		_						
	+								_
			_						1
						 			1
	_		_						
							_	8.4.8	210
findes ore mider and yory subdued on some	5/17	621/621		17	Σ,	6'	2.68	2'58	210
	21	811/811		LI	111	ε //	L'LZ	9.45	140
grace become much smother than previous	シカ	121/121		61	8.	0.1	2,38	5.25	510
singest incision and highest ridge are the general (5.4 m reheld)	3/0	611/611	/27/	0/	912	8.S	9'58	6.95	210
ב פסחפה ביש שבאי		871/871	1401	07	511	0.5	P. p.c	28,5	110
dofter out sub bottom vettoctor.		821/871	1521	_	h:/	27	8,15	8.35	010
(01) 50506 doop house	1 3/0	511/511		51	71	57	_	/, y.s	500
so Snot egge 11200		211/211	1521		01/	27	_	1.52	800
	11/2	211/8/11	1991	0/	٤,	8.	-	4,15	1700
- spin 757 12 710 " Dug - 7505 1yne	, 8/2	21//211	1091	6	8,	<u>.s'</u>	4.85	0,00	900
Elderson are established	i	00//00/	1501	8	4.	ε,	0,75	1.91	200
	5/11	66 /60	150	71	5,	7'	24.0	1'9/	P00
	5/0	821/871	/ 91	8	2	て'>	23.2	8 %	200
	2/14	211/11	10/2	3	ε.	5,	52/	5 //	100
" 76 '1, 151 ' : 2181 0/ - 51 leady from t	5/H	591/24	186	2	ε' 2'>	7,5	0.8	0.8	000
2. 003 35×67			/			4100 O		(#1616m)	GMENT
REMARKS	Inemibe8	Orlentation	Valane0		egbiR	დგიიგ	Reliector	Water Depth	THEND
guoge messurents in meters	1 810	87: 198	γουνου	108	В	a a man	. / .	Number	่อเมา

∟îne	Number					Ye	ar: 19	131	gouge maasuremenia in metera
		am Meesu				nograph	Measurem	ents	
SEGMENT	(meters)	Hellector	Gouge	Aldge Helght	Gouge Wld1h	Density	Orientation (*T)	Sediment Cohesion	REMARKS
000	6.4		.5	,4]	5	35	32/35	- C	Wit paper, same 125m
	7.8		4	.3	15	30	34/37	SC	
2	8.2		.3	.2	15	65	23/26	50	
3	3.5		,2	.2	12	12	36/39	5 (
4	9.3		.2	.2	7	39	52/55	5 6	
5	10.0		_2	.2	6_	3.7	65/68	5 C	
_ 6_	16.7		.2	.2	4	16	10/73	: c	
7	11.6		.2	.2	5	72	36/39	RC	(margiste beat)
3	12.3		. ',	.5	8	52	100/103	PC	
9	13.3		.7	.7	12	38	30/33	RC	
12	14,2		,5	*4	3	36	80/83	RC	
41	14,5		.6	.3	6	32	150/153	RC	
12	16.3		.6	.9	7	120	130/133	IS ←	
13	6.3		,3	.5	10	13.3	130/133	RC	
(4	13.0		.7	1,1	12	129	53/61	RC	
15	19,0	-	-6_	.7	5	114	120/123	RC	
162	19.3		.b	.7	8	96	70/13	-	
17	713								
		_							
									
						_			
		_					_		
									_
		-	-						
		-		_					
		-				- 2)	_		

.

.

.

ANK

Line	Number	: 31				Υe	ar: 198	31	gouge measuremente la meters
	Fathogra	ım Meası	remen	8	So	подгарн	Measurem	ents	
SEGMENT	Water Depth (meters)	A flactor	Gouge Depih	Aldge Height	Gouge	Density	Orientation (°T)	Sediment	REMARKS
000	24.2	_	1.2	1.7	12	128/	106/096	F/L	
001	23.2		1.4	1.0	6	170/	71/084	R/C =	
200	18.4		.8	,5	6	80/	100/090	丁?	
೦೦೨	17.1		.4	.5	3	57/	000/010	5/1)	Sediment inter (ripplies) De Carters Os sury
004	17.0	}	, ک	.2	7	81/	063/053	5/1)	
ರ್ಲ	17,0	j	, 4	.3	5	106/	075/065	T!	
00%	16.2		. ٤	,5	4	102/	010/082	R/C?	
00	15.3		.4	.9	6	53/	092/082	R/C	
208	4.2		.3	.3	7	48/	086/076	T 3.	
025	1 <u>3</u> .1	<u></u>				_			
							_		
		_							
1									
		_							

Dyn

line	Number	: 32				Ϋ́	ar: /9:	71	gouge measurements in metera		
Line		m Measi		8	\$0		Measurem				
SEGMENT	Water Depth (meters)		Gouge		Gouge		Orientation (°T)		REMARKS		
000	65,6			-		0	-	N	Prope 150m & hecked A . 3M		
001	64.2			-	7	0	ł	12	Possible sand wo des and ripples. A = 118"T		
012	57.3		,5	.7	//	12/	137/102	5/N	Ange Hange to 200m. Possible stalt edge at a midsegment Protobly granular redirects congress was local but subdied on sever (see sugar		
023	53.6	}	1./	. 8	13	42/	131/96	SIN	More gorge, are wide () 5 m)		
024	54,3	_	, 8	.5	_8_	41/	125/ 90	5/11			
005	54.2		1.1	,4	15	57/	134/ 99	5/11			
07%	53.5		1.2	.7	18_	51/	120/105	5/11			
017	54.0	59.0	1.3	.7	19	48/	136/104	5/1/	1st subsettem reflector offers midway through segment 6-7. 350m of sonar missing, count odjusted.		
008	54.5	58,3	2.5	1.3	35	61/	140/120	5/11	no some this segment.		
229	54.3	_	2.5	,5			135/ 115	5/11			
010	64.7		2.5	ما،	22	51/	140/120	5/11	SOME BATS WISSING		
211	55.0	-	2.0	1.2	18	16/	131/111	5/N			
012	54.5	60.0	1.6	1 1	26	40/	123/103	S/N	S SUBECTION REFLECTORS		
0/3	54.7	59.3	1,5	.8	40	32/	127/107	S/N			
014	53,5	60.0	2.1	1.2	67	40/	123/103	5/1)	_		
015	52.8	58.0	3.0	1.3	27	AV	131/111	5/1)	GRAZE to Starte and forest at And segment.		
016	53.3	56.5	2.1	1.0	25	44/	124/104	S/N)			
011	53.4	_ '	1.3	.7	21	39/	129/109	S/N	grigos because much smaller at this point.		
018	51.7	56.0	1.0	.8	22	48/	127/107	3/13			
219	51.2	54.1	1.0	.5	-	-		2/1)	no sonar this segment. Fro Reflector begin this segment and retrictor surfaces at mid sogment.		
020	49.7	53.6	5.0	1.1	-	-		S/N	2 nd retrictor Surfaces at his Jagman.		
021	47.3	53.8	1.5	B	32	72/	144/109	S/N			
2	15.7	54.0	. 4	. 6	15	18/	134/99	5/1)			
	46.3	52.0	1.]	.8	15	85/	135/100	5/1)			
9.7	45.5	50.4	1,4	.6	20	76/	132/97	Su			
100	42 5	49.8	_		63	91/	133/98	5/11	End to be william surfaces		
<u> (-) </u>	1=1.6		1.3	1.4	39	43/	134/97	5/11			
70	43.0		2.3	.7	54	126/	135/100	(11)	Long Wills grays		
^ !	41.5	-	1.8	1.9	[1]	114/	140/105	3/11			

Line	Number	: 3	22			Υe	ar : //	81	googe measurements in meters
		am Measu					Measurem		
SEGMENT	Water Depth (metera)	Rellector		Ridge Height	Gouge	Denally	Orlantation (°T)	SedIment Cohesion	REMARKS
009			.5	[,0	15	75/	139/104	3/N	Part oza is not on tolloweter.
03)	42.0	45.5	1.6	.8	17	72/	126/101	211	Possibly 2 sublothom reflectors (4.5)
03/	41.2	460	1.9	1.2	15	89/	133/078	2	Goiging becoming rougher (starper on sorar)
032	40.4	45.3), 3	1.2	8	90/	128/103	7.	ville street in tellerior curtains (4)
033	42.0	14.9	.9	1,4	10	98/	131/396	R/C7	sought becaming smaller subtotton reflector
034	41.6		- , 5	1,6	11	96/	129/094	R/ci	
035	40.0	47.7	-7	٠,8	15	105/	121/086	R/c?	subbattam reflector begins (C)
036	39.4	42.4	1.4	.8	15	117/	134/099	7/6?	reflector surfaces and segment
037	28.2	-	.8	1.3	13	122/	143/108	K/c ?	stoofly (relatively) disting reflectors (offstore)
038	38.0		10	1.3	17	110/	131/096	R/C ²	Shopladypins reflectors
039	37.1		1.5	1.2	8	151/	122/087	P/c ?	ous of full of a point 034- stray of disping reflectors
01/5	25,9		.7	1.3	9	121/	139/104	R/c?	now dip other way (enstare) Steely dipping to flectors
04/	35,1		1.0	2.2	11	162/	123/088	R/c?	1 moter shool at mid segment
090	22.1	_	.7	.د	22	1557	159/099	5/1)?	5. Emiler shoul of mid segment.
342	32.8	_	.7	1.0	12	124/	155/015	R/C!	
014	31.0	-	.9	.8	9	148/	103/043	₹/ c ?	
095	31.2	_	.2	,4	19	W	091/081	5/N :	as a tracked of end segment. Asymptocstope with steeper side off shore. STKMAGE AFREATURE.
0:1/2	28.0	~	,7	.8	8	104/	115/090	R/C?	
2971	30.7	~	1.2	1,5	6	161/	107/097	RK?	
043	29.6	مر.	1.2	1.7	7	151/	106/096	F/C?	
1:	26.0		_		6	127/	105/095	R/6?	no tolkagean this segment.
050	21.7	-	.8	1.0	5	201/	105/095	R/C?	
057	21.5					2.00			
	-								

:

1

Line	Number					Ye	ar: /9	281	gouge measurements in meters
		am Measu					Measuren		At strentation h= period
SEGMENT	Water Depth (meters)	A. A.	Dapth	egolR idgleH	Gouge Width	Dельігу	Orlentation	Sediment	1 REMARKS
000	is.4	_	< .2	1.2	2	6	157_	N	N= ron robesivo C= robes
001	8.5		< 2	4.2	25	7	1412	Ŋ	sum 1 113.11; X 2,5 m - 0050
002	17.6	22.0	<,2	1.2	3	15	103	N	
003	18.2	21.5	.3	근	7	110	120	T	
004	22.2		.6	1.0	- 11	150	120	С	
005	27.6		1.4	1.1	/0	/17	106	6	
4062	30,0	-	4	2.0	15	75	103	C	,
007	29.1	. .	1.	1.6	10	D	113	Clar. Vani) Shool / sedemin x 1,5m +005°
008	30.4	_	,4	1,3	ĮĮ.	121	116	4	· ·
009	41.5	13.0	1.62	1.7	5	55	175	C	
010	36.7	40.5	1,0	.3	10	6,00	120	٢	
011	395	42.0	3.5	1.3	j	53	95	C (T)	
012	43.0	46.0	3.0	.7	20	70	116	(4	
013	45.0	47.6	2.2	1.5	10	51	110	N	bottom apiwe small are entitle sediment
014	44.5	50,0	3.2	1.7	12	46	117	N	
015	47,0	50.5	1.5	1.7	10	10	127	N	ways ? Chargister.
016	1720	50,0	17	1.9	20	110	105	C	
0.71	46.5	50.5	2.5	1.5	10	20	35	Ŋ	
013	46.5	520	1.7	1.2	15	22	llo	C	
019	49.5	520	2.5	1,2	ング	ジン	155	N	
020	49.0	52,0	1,8	1,0	20	111	120	N	
021	50,5	54.6	17	. ૧	45	8	3,1	N	fee
022	52.5	5413							END LINE

•

•

									
				 	 	-		 	
				+		 	1	 	
	_					 			
		 	 			 			
				 				 	 - -
_				-	 			_	
		<u> </u>						 	
			┼	 		 		- -	
END FINE					 -	-		55	20
								E'L	810
_	2	1,111	6	-2	7.	8.7		1 b'b	L10
	- 3-	091	71	て	2.2	2.2	-	9.21	910
Da0194 88 21 117-04CI	- 5-	1-21	TL		77	1>		1:51	519
		781	07.	ξ,	5.3	2.2	0.05	2.FI	15/0
Bow in with my will be will see the see the	7	921	1151	-5	h: ?	5.7	1.46	h'61	410
I seegge withy the second was misself this?	つ	801	1263	7	117	17	0.12	8.02.	710
<u> </u>	5	hil	500	2	7.1	24	0.85	5.82	110
	5	801	710	_5	1.1	0'1	30.5	0,25	010
	7	ااک	1961	8	94	6.5	5.15	0.75	500
olit = Qomb, Z.	つ	021	500	01	51	8.5	3.52	28.5	800
	つ	hь	SIZ	01	71	81	36.3	5'78	ζα
	$\overline{}$	601	1.32	01	511	7.7	0.95	9.28	900
	<u>ن </u>	201	911	71	CI	91	الأنت	32.5	ラヅ
south of sky party works with all	つ	011	88	07.	5.1	7'1	0.212	0.88	hoo
domad m co	7	101	Ckil	8	5.1	2.0	318	€,5{	500
	フ	96	531	71	2.5	1.5	' V2	7'55	7.00
	7	801	L.	20	0,2	S.E	0,14	0.81	109
	7	1,0)	1117	SI	0.5	0'7		2017	U(0
BEMYBK8	Sediment Rolesion	nolfalneiiO (T°)	Density	W 14th	epbir ingleri	aguo5 diqeO	10128118R	Mater Depth (anetem)	BEGMENT
	e f n €	Measureme		108			иевеМ то	8100d1B7	
gouge measurements in meters	PS : 189} Year : 189}								

.

Line	Number	: 30	5				ar: 190		gouge medauramenta in metera
		am Measi		and the second second		nograph	Measurem		
SEGMENT	Weter Depth (moters)	Heflector	Gouge Depth	Ridge	Gouge	Density	Orientation (*T)	Sediment Cohesion	REMARKS
070	1.62	_		1	_	- 1	_	N	
001	4.0	70	_	1	-	-	_	N	
602	11.7	15.7	<.3	4.3	5	17_	120	1)	Funny hollow windows (Cohorage) in non cohesives.
<u> </u>	13.0	13.0	<.3	2.3	7	19	124	1)	his relies in cultivation
094	14.8	10	۷,3	٤.3	5	14	12.2	N	<u> </u>
105	16.0	19.5	<.3	<,3	2	. 9	103	N	
506	16.5	721.0	<. ٦	4,3	2	35	160	10	
007	16.5	19.5	<,3	4,3	2	70	76	<u>, ()</u>	seaward dipping stratified section truncated at seafloor (procumal) - no holocene -
003	18.6	74.5	4.3	∠.3	5	63	120	N	<u> </u>
609	20.1	74.6	4,3	٧,3	6	93	120) 1605	N	gorges app in interior.
010	21.5	27.5	. 4!	. 3	7	175	1:5		
6//	22.72		7.7	.7	7	131	107		gorges become track looking.
012	21.5		,5	- 8	7	243	112335	C	how the ridge to the form
013	74.7	29.5	.7	,5	7	237	126	C	
014	26.7	33.5	-7	3	8	165	126		
015	23.2	~ =	1.2	1.3	5	152	129		
016	~30	-	1.0	, 3	7	140	119	_ (
٠,١٦	37.0	36.6	1,0	1.2		16-5	113	C	
018	32,7	39.0	1.0	1.0	7	151	133	C	
019	336	46.0	-7	.7	6	133	133	C	
.20	35.5	41.8	.6	.8	10	117	135		
021	35.7	42.5	5	-7	15	99	124	Ç	
722	33.5	42.5	-3	,5	7	47	117	C	Charge 1 3/12
323	39,4_		.6	.6	12-	41	116	R C	
<i>€</i> 24	39.5	47.5 "	4	, 2	10	47	114	٤٥	
025	375	43.0	ا۱	,5	12	65	110	R C	
126	37.0	111.0	.6	1.2	12	37 .	120	R C	
027	36.5	10.2	.3	1.0	70	112	125	R C	
523	35.7	38.5	104	(i,j)	Of	1.2 p	123	R C	

.

										i.		
Line Number: 35 (con+)						Υe	ar : 198	} {		gouge measurements in metera		
SEGMENT	Fathogram Measurements Water Depth Reflector Gouge Ridge ENT (maters) A_ Depth Height					Density	Measurem Orientation (°7)		ent	REMARKS		
029	33.5	37.7	1'D	1.0	Widih 15	118/	60/300	iR	<u>۱۵۳</u>	strong sule bottom		
030	30.6	36.2	1,1	1.0	8	14/	62/302	R		34000 1001000		
031	28.0	37.8	2.0	.3	10	143/	66/306	R				
032	26.7	32,0	1,0	.8	7	133/	58/298	R		gub bottom com in up		
033	75,5	29.5	1.0	.7	5	131/	65/305	R	C			
034	22.5		.7	.6	5	135/	66/301	R	С			
035	2 1.5		.5	.7	1	101/	62/302	RC.				
036	20.0	_	.2	.5	3	163/	52/192		C	BCR7) Cany course 2400		
037	19.0	(29)B	4.2	4.2	15	70/	72/312		C	Potchy c/c 260		
०३४	18, 4		<.3	.7	7	23/	52/312	ピノル	4			
039	8 21	124.5)B		.4	6	13/	50/310	5	N	Potchy		
25/2	3.5	-	4.3	4.3	2	35/	42/302	5	V			
941	11.0		7.3	-6.3-	2	201	187422	~5	W	END FINE		
				10		1		_				
					_							
!					_			_				
 j												
								_				
		-										
							<u> </u>					
-	9							_				
				_								
								-				
					-		illa					
		_										

Line	Number			_			ar : 48		gouge measurements in meters
		am Measi					Measurem		
SEGMENT	Water Depth (meters)	Reflector		Aldge Height	Bouge diblW	Density	Orientallon (°T)	Sediment Cohesion	150m rance AEMARKS
:X40	5,0	_				7	21/73	R C	Timey botom (shirt day) i sand (?)
001	7.3					6-		5 13	
002	9,2					+	61/121	RS CIS	Tunny bylism
(203	12.75					10	444 101	SN	
્રાષ્ટ્	137		.3	.3	4-	2.3	15/110	2 10	
055	15.6		<, 3	4.2	4.	51	50/107	3 N	Gering in substitution, and goinging
006	16.9		.3	.3	4	_58	55/112	s C	
007	17.7		.2-	. Z-	7	86	35/112	3 C	
008.	18.5	-	.2	3	5	39	62/112	SN	
2001	20,1	-	4.2	4.2	_5_	66	62/1.2	2 1/2	
010	21.2		,2	-3	6	92	40/39	2 10	
211	21.6		.2	.4	6		413/114	R C	
01Z	22,3		.5	.5_	10	156	52/111	R C	
013	26.2		12_	1.1	8	124	118/143	R C	
014			-6	.6	5	119	102/127	RC	
ar<		33.5	40	1.2	5	138	123/148	RC	in vacon diag (case)
ي ن	34,0	37,2	.7	.5	5	114	120/145	A C	
~ t7	34,0	37.5	1,0	1.0	3	10-7	105/130	RC	
pr.8	35.5	40.2	-6	.4	6	93	118/143	R C	
.,14	3<.6	405	.8	1.3	7	113	10/115	RC	
-20	35.7	9.1	.9	1,0	6	10%	117/142	RC	<u> </u>
r _{1.2.} 1	36.5	41.0	.6	.3	5	77	70/138	RC	<u> </u>
72	<u> </u>	40.5	. છ	-5	<u>6</u>	74	65/120	RC	
023	31.5	420	1.5	1,4_	10	30	118/278_	RC	. lidel 1, 1, b
-24	711	11.1	1.4	·	10	117	125/185	RC	
075	36,6	1/1:	.4	.5	5	170	125/205	KC	
026	3-1,5	ን ነ, ሶ		1,6	3	110	125/285	RC	
. 11	34ન	98.0 <u></u>	-8	-9	8	177	138/29%	RC	
) 6	312	ւլթ _ե .		-le	12	153	135/293		

,

٠<u>٠</u> نوب

٠,

meters gouge measurements in 8 Lapla 900gr C/6165 ... PEMARKS الله الم مسعول 1536-1546 many rest googer Shown ille sily clay? (40.00 a con) 2.2 121 Porces 150m Show Ist some opin Suga CK172° 1. sperdage ENO C5 160° Density Origination Sediment 20 200 20 SC 2 20 S S PC 2 S J RC P.C RC RC ے RC RC 2 RC 2 Sonograph Messurements 6. R Year: 1981 125/235 1241/234 132/292 13/283 123/283 273 1300 145/305 115/287 127/237 162/327 217/21 152/312 172/297 145/310 120/240 115/021 12/182 135 /300 124/134 120/180 126/186 1001 140 5 147 288 225 186 200 203 310 165 224 160 328 275 13.7 152 50 298 10 30 99 5 2 Gouge 7 2 7 7 0 9 1 1 7 9 1 00 TU 10 J Water Depth Reflector Gouge Ridge (meters) In 5 9 20 I 4.3 77 5 4.3 4 2.2 N M T 2/2 0 36 (con't و ∞ 1,2 5 7 7 7 10 3 4.2 3 0 3 3 2 210 L. L.2 200 39,0 1,10 1 Į 1) 1 1 1 í 1 Line Number 34.3 342 26.3 2.22 20.3 19.5 27.0 23.7 33.6 31.6 74.7 シニ 34.7 2113 517 ارا ([12.51 シュ 7.7 11.11 SEGMENT 1000 74. 43 15/2 46 ć . 2 417 029 ٠ پ --7 414 5 330 032 ۲, ٥ 17 933 3. ٠. آر 3,5 031

Line	Number	: 30	3			Ye	ar: 198	Š	gouge measurements in meters		
		am Measi					Measureme				
SEGMENT	Water Depth (meters)	Reflector	Gouge Depth	Ridge Height	Gouge Width	Density	Orlantation (*T)	Sediment Cohesion	REMARKS		
200	5.5					—	<u> </u>	SN	150m 8:13) X=3m h=1.2		
100	9.7	_		-				SN	ripples		
092	11.6	_	4.2	4.2	1	741	0" / 33"	SN	c/c 239°		
.บา3	14.2	~	.2	4.2	니	58	210/ 590	S N	true cat of isols		
ンクト	16.6		4.2	4.2	5	141	42/ 200 (7)	5 10	1. } much wind n.		
225	16.8		.3	.2	4	122	45/-15/-	's_D_	>		
72 %	13.7		.3	.4	5	208	120/138	NZ	Used: C/C 3B°		
700	20,2		.3	.5	10	147	75/113	R			
೨೨೪	21.7		-5	-5	10	195	18/116	RC	Mud		
U)4	22,0		1.0	10	15	329	78/ 116	RC	Post Al		
OLO	25.2		1,0	.7	12	146	78/116	RC			
ρ 11	27.2	-	1,7	1.5	10	186	55/13	RC			
012	28.0		2.0	1.4	10	134	73/116	R C			
013	28.6	-	20	1,6	ن ك	172	72/110	R C			
014	37,0	_	1.7	1,3	50	232	80/113	R C	رامر		
ঠাহ	.31.0		1.8	1.7	10	227	105/143	RC_	Red 1 transaction 1 more		
016	_32.3	35,0	1.7	1.0	JO	149	15/113	R C	Aud 3 raggary		
017	37.5	35.6	1.7	110	12	147	112/150	RC			
018	33.0	36.5	1.5	(, O	12	169	76/114	R C			
013	3-1.0	36.4	2.0	1.0	15	175	105/143	RC			
010	<u> 35,0</u>	38.55	3.2	2.1	25	93	110/143	RC	A SOLD FOR THE SOLD SOLD SOLD SOLD SOLD SOLD SOLD SOLD		
- 43	36.1	400	1.7	1.2	10	96	105/143	RC			
;2	36,6	39,4	2.5	1.4	25	137	65/103	N.C.	Ge .1		
اا	3(0,0-1	40.0	2.8	1.7	25	147	85/123	RC			
024_	31.5	40.7							ted 1 made		