Overview of Environmental and

Hydrogeologic Conditions near Big Lake, Alaska

U.S. GEOLOGICAL SURVEY

Open-File Report 95-403

Prepared in cooperation with the

FEDERAL AVIATION ADMINISTRATION

. - N

Overview of Environmental and

Hydrogeologic Conditions near Big Lake, Alaska

By Eppie V. Hogan

U.S. GEOLOGICAL SURVEY

Open-File Report 95-403

15

Prepared in cooperation with the

FEDERAL AVIATION ADMINISTRATION

.

12

Anchorage, Alaska 1995

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief U.S. Geological Survey 4230 University Drive, Suite 201 Anchorage, AK 99508-4664 Copies of this report may be purchased from:

.

. .

U.S. Geological Survey Earth Science Information Center Open-File Reports Section Box 25286, MS 517 Federal Center Denver, CO 80225-0425

CONTENTS

Abstra	ct	1
Introdu	uction	2
Backg	round	2
L	ocation	2
F	acility history	2
C	limate	4
V	egetation	4
Geolog	gy	5
E	edrock geology	5
S	urficial geology	5
Hydro	logy	6
S	urface water	6
C	bround water	7
Drinki	ng water	8
Summ	ary	9
Refere	nces cited	10
Appen	dix 1: Data from wells near Big Lake, Alaska	A-1
Appen	dix 2: Water-quality data near Big Lake, Alaska	A-2
FIGU	RES	
1	. Map showing location of Big Lake, Alaska, and the Federal Aviation	
24 4	Administration facility	3
		5
TABL	ES	
1	. Mean monthly and annual temperature, precipitation, and snowfall,	
	for the period 1957-61, Big Lake, Alaska	4
2		
	during 1983-84	7
3	. Selected water-quality data for wells near Big Lake, Alaska	9

-

Multiply	Ву	To obtain	
centimeter per second (cm/s)	0.3937	foot per second	
millimeter (mm)	0.03937	inch	
meter (m)	3.281	foot	
square meter (m ²)	10.76	square foot	
kilometer (km)	0.6214	mile	
square kilometer (km ²)	0.3861	square mile .	
liter per second (L/s)	15.85	gallon per minute	
cubic meter (m ³)	264.2	gallon	
cubic meter per second per square kilometer [(m ³ /s)/km ²]	91.4	cubic foot per second per square mile	

CONVERSION FACTORS, VERTICAL DATUM, AND ABBREVIATIONS

In this report, temperature is reported in degrees Celsius (°C), which can be converted to degrees Fahrenheit (°F) by the following equation:

 $^{\circ}F = 1.8 (^{\circ}C) + 32$

ABBREVIATED WATER-QUALITY UNITS

Chemical concentration and water temperature are given only in metric units. Chemical concentration in water is given in milligrams per liter (mg/L) or micrograms per liter (μ g/L). Milligrams per liter is a unit expressing the solute mass per unit volume (liter) of water. Specific conductance is given in microsiemens per centimeter (μ S/cm) at 25 °C.

VERTICAL DATUM

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929—A geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

Overview of Environmental and Hydrogeologic Conditions near Big Lake, Alaska

By Eppie V. Hogan

ABSTRACT

Big Lake, an inland lake about 12 square kilometers in area, is in south-central Alaska at latitude 61°33' N., and longitude 149°55' W. The community of Big Lake is on the shore of Big Lake, about 30 kilometers north of Anchorage. The Federal Aviation Administration owns or operates airway support facilities near Big Lake at latitude 61°34' N., and longitude 149°57' W. They wish to consider environmental and hydrogeologic conditions when evaluating options for environmental compliance and remediation at these facilities. Big Lake is in a transitional climate zone where seasonal climate patterns are not sharply defined, fluctuate from year to year, and may resemble those of either the maritime or continental climate zones. The local vegetation consists of lowland spruce-hardwood forest and low brush muskeg. Little is known about the composition and structure of the bedrock around Big Lake. The Talkeetna Mountains to the northeast consist chiefly of igneous rocks including granitic rocks, lava, and tuff; the Chugach Mountains to the southeast consist of granitic intrusive rocks of Mesozoic age, metamorphosed sedimentary rocks, and greenstone; and the Alaska Range to the northwest consists of granites, volcanic rocks, argillite, shale, sandstone, and siltstone. The principal surficial materials near Big Lake consist of outwash sand and gravel deposits, partly saturated gravel in ground moraines, and windblown sediment. Relief is low and drainage in the Big Lake area is poor; there are large areas of swampy ground and numerous lakes and ponds. The glacially derived sediments near Big Lake contain ground water in both confined and unconfined aquifers. Residents in the Big Lake area use ground water as their principal drinking-water source. Big Lake is a potential alternative drinking-water source; however, data are inadequate to characterize the present quality of Big Lake water in relation to current drinking-water standards.

INTRODUCTION

The Federal Aviation Administration (FAA) owns and (or) operates airway support and navigational facilities throughout Alaska. At many of these sites, fuels and potentially hazardous materials such as solvents, polychlorinated biphenyls, and pesticides may have been used and (or) disposed of. To determine if environmentally hazardous materials have been spilled or discarded at the sites, the FAA is conducting environmental studies mandated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA). To complete these more comprehensive environmental studies, the FAA requires information on the hydrology and geology of areas surrounding the sites. This report, the product of compilation, review, and summary of existing hydrologic and geologic data by the U.S. Geological Survey (USGS), in cooperation with the FAA, provides such information for the FAA facility and nearby areas at Big Lake, Alaska. Also presented in this report are brief descriptions of the history of the FAA facility and the physical setting of the area.

BACKGROUND

Location

Big Lake is in south-central Alaska at lat 61°33' N., long 149°55' W. The community of Big Lake is on the shore of Big Lake, about 30 km north of Anchorage (fig. 1). The area is part of the Upper Matanuska-Susitna Valley, a glacial trough containing longitudinal bedrock hills and small narrow lakes (Wahrhaftig, 1965). The Big Lake FAA facility is at lat 61°34' N., long 149°57' W., about 3 km northwest of Big Lake and about 1.5 km west of Horseshoe Lake (fig. 1).

Facility History

The FAA involvement near Big Lake began in 1962 when land was leased from the Alaska Department of Natural Resources to construct a Very High Frequency Omnidirectional Range Station/Tactical Air Communication facility (VORTAC). The VORTAC facility is maintained by personnel stationed in Anchorage and is the only FAA facility at Big Lake. A more detailed description of the VORTAC facility at Big Lake and a list of suspected sources of environmental contamination is given in an environmental compliance investigation report by Ecology and Environment Inc., (1993).

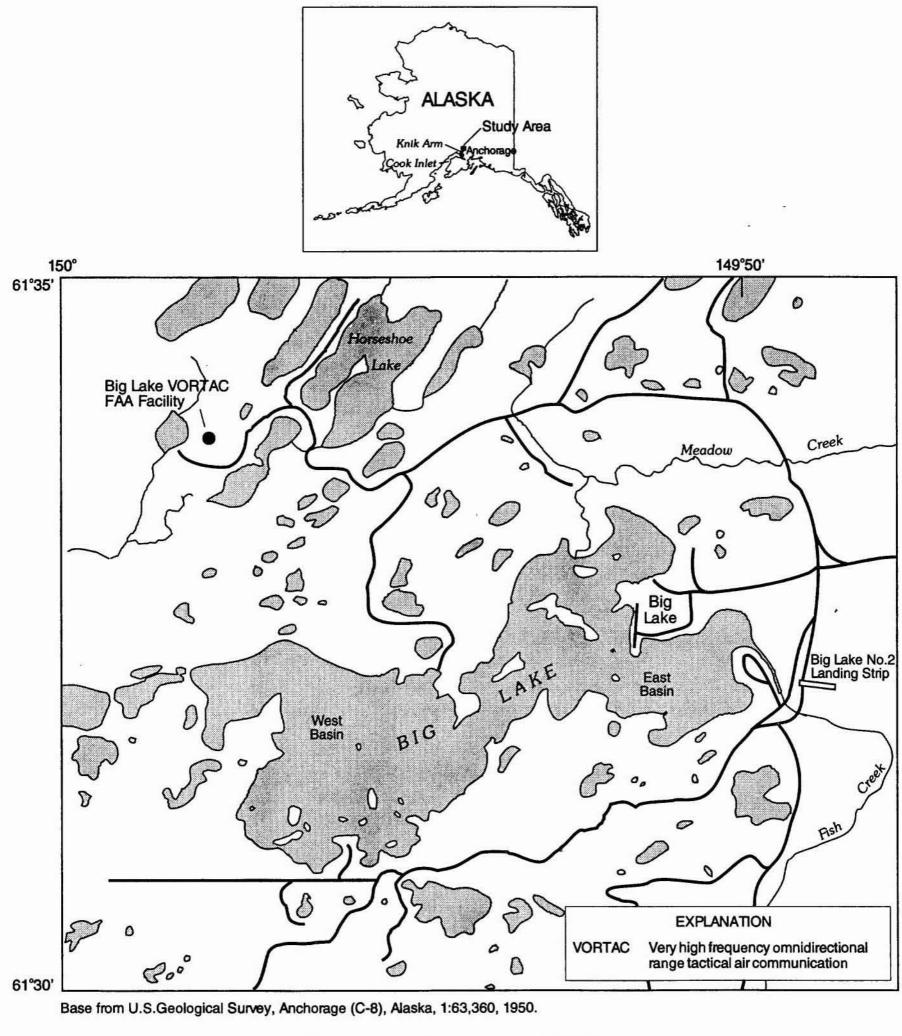


Figure 1. Location of Big Lake and the Federal Aviation Administration facility.

Climate

Big Lake is in a transitional climate zone. Seasonal climate patterns in this zone are not sharply defined, fluctuate from year to year, and may resemble those of either the maritime or continental climate zones (Hartman and Johnson, 1984). Big Lake has a mean annual temperature of 0.6 °C, but temperatures range from a June mean maximum of 21.1 °C to a March mean minimum of -19.7 °C (Leslie, 1989; table 1 this report). Mean annual precipitation is about 565 mm and mean annual snowfall is about 1,490 mm. Values for mean monthly and annual temperature, precipitation, and snowfall for the period 1957 to 1961 for Big Lake, Alaska, are given in table 1.

Table 1. Mean monthly and annual temperature, precipitation, and snowfall, for the period 1957-61,Big Lake, Alaska

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Annual
					Tem	perature	(°C)						
Mean maximum	-3.6	-4.2	-1.8	6.7	16.3	21.1	20.1	18.1	12.7	4.4	-4.6	-7.6	64
	(Record	maximun	n 31.7 °C,	July 1960))								
Mean minimum	-12.6	-14.4	-19.7	-3.5	0.7	63	7.8	63	29	-5.6	-14.8	-16.9	-5.3
	(Record	minimum	-42.2 °C,	Decembe	er 1961)								
Mean	-8.1	-9.3	-10.8	1.6	85	13.7	13.9	12.2	7.8	-0.6	-9.7	-12.3	, 0.6
40 R ₂	-		Pre	cipitation	n, in mill	imeters	of moistu	ire				11.07	Total
	28	8	40	46	13	28	89	66	140	35	31	41	565
				Sno	wfall, in	millimet	ers	S.8					Total
	58	218	112	175	0.0	0.0	0.0	0.0	0.0	285	386	252	1,486

[Modified from Leslie, 1989; °C, degree Celsius; mm, millimeter]

Vegetation

The vegetation surrounding Big Lake consists of lowland spruce-hardwood forest and low brush muskeg (Viereck and Little, 1972; Selkregg, 1976). The forested areas typically occur on shallow peat deposits, glacial deposits, and outwash plains and consist of evergreen and deciduous trees, including stands of black spruce. Undergrowth in the forested areas consists of willows and other brush (Selkregg, 1976). Dwarf shrub vegetation dominates areas of low brush muskeg. Western hemlock, Alaska cedar, sedges, mosses, and lichens are also found in these areas (Selkregg, 1976).

GEOLOGY

Bedrock Geology

The bedrock of the Matanuska-Susitna Valley is described by Trainer (1960) and Freethey and Scully (1980). The Talkeetna Mountains, about 20 km to the northeast, consist of igneous rocks including granitic rocks, lava, and tuff. Sedimentary rocks of Cretaceous and Tertiary age form the south flank of the mountains (Trainer, 1960). The Chugach Mountains, about 50 km to the southeast, consist of Mesozoic granitic intrusive rocks, metamorphosed sedimentary rocks—mainly slate, argillite, and graywacke—and greenstone (Trainer, 1960). The Alaska Range, about 75 km to the northwest, consists of granites, volcanic rocks, argillite, shale, sandstone, and siltstone (Freethey and Scully, 1980). Sedimentary rocks consisting of sandstone, shale, and coal of Cretaceous age extend down the Matanuska Valley to Moose Creek, about 45 km northeast of Big Lake (Trainer, 1960). Little is known about the composition and structure of the bedrock around Big Lake. Wells drilled to depths greater than 60 m terminated in unconsolidated materials, which may be more than 300 m thick in the Big Lake area (appendix 1; Freethey and Scully, 1980).

Surficial Geology

Unconsolidated materials of Quaternary age extend over most of the Matanuska-Susitna Valley floor and are predominately till, glacial outwash, and glacial-lacustrine deposits (Trainer, 1960; Freethey and Scully, 1980). The principal surficial deposits near Big Lake are outwash sand and gravel, partly saturated gravel in ground moraines, and windblown sediment (Trainer, 1960).

Outwash deposits are predominately sand, pebbly sand, gravel, and silt. Information from well logs indicates that individual layers range from a meter to as much as 70 m in thickness (Trainer, 1960; Freethey and Scully, 1980). The bedding is moderately well developed and cross-bedding is common (Trainer, 1960).

Till is the principal component of the end moraine near Big Lake, which marks the westernmost extent of glacial advance (Trainer, 1960). Till in the Big Lake area consists of subangular to rounded rock fragments in a matrix of sand, silt, and clay. The rock fragments are derived from adjacent mountains and range in size from sand to boulders (Trainer, 1960). Because of its clay composition, the end moraine likely forms a shallow ground-water divide.

Glacial-lacustrine deposits, consisting of silt or sandy silt (loess), cover the land surface everywhere in the Matanuska-Susitna Valley except on modern flood plains, tidal flats, and steep bedrock slopes (Trainer, 1960). These sediments are relatively impermeable and are the parent materials for most of the soils in the valley. The Big Lake area is typically free of permafrost (Ferrians, 1965). However, in lowland areas where surface insulation is high and incident solar radiation is low, isolated patches of permafrost are as thick as 9 m and range in area up to 50 m².

HYDROLOGY

Surface Water

Relief is low and drainage is poor near Big Lake and there are large areas of swampy ground and numerous lakes and ponds. Mean annual runoff in the area is about $0.005 \text{ (m}^3\text{/s)/km}^2$ (Freethey and Scully, 1980). Big Lake and Horseshoe Lake are the most significant surface-water bodies near the FAA VORTAC facility (fig. 1). Big Lake covers an area of about 12 km² and is located about 3 km southeast of the facility. Horseshoe Lake covers an area of about 3.5 km² and is about 1.5 km east of the facility.

Big Lake consists of an east and a west basin connected by a constriction near the middle of the lake (Woods, 1992; fig. 1). The lake contains 22 islands and the shoreline length, excluding islands, is about 27 km. The surface elevation of the lake is about 44 m and it has a mean depth of about 9 m (Woods, 1992). Meadow Creek is the major inlet stream and Fish Creek is the lake outlet (fig. 1). The VORTAC facility is not within the drainage basins of Big Lake and Horseshoe Lake. Contaminants spilled or disposed at the VORTAC facility, therefore, are unlikely to reach these surface-water bodies by surface drainage. However, they may be hydraulically connected to the shallow ground-water system.

During 1983-84, the USGS conducted a limnological study to evaluate potential eutrophication of Big Lake (Woods, 1992). Eutrophication is the enrichment of waters by nutrients, typically nitrogen and phosphorus. An excess of nutrients, generally the result of human activities, may result in increases in oxygen demand and primary production and a decrease in overall water quality. The Big Lake study involved describing and interpreting spatial and temporal variations in numerous physical, chemical, and biological characteristics. The results of the study are summarized in table 2. The lake was classified as oligotrophic, a condition characterized by 1) a low dissolved-nutrient concentration, 2) sparse, yet diverse plant and animal life, and 3) a high dissolved-oxygen concentration. However, upon summer stratification and under ice cover, the lake's bottom waters are rapidly depleted of oxygen (Woods, 1992). Consequently, if the oxygen demand increases, the lake is susceptible to eutrophication. Similar hydrologic data for Horseshoe Lake were not found. **Table 2.** Summary of limnologic characteristics of Big Lake during 1983-84 [Modified from Woods, 1992; mg/L, milligrams per liter; µg/L, micrograms per liter; <, less than]

During May through October, the lake received 76 percent of the annual input of solar irradiance.

The maximum water temperature measured was 18.7 °C.

The lake was dimictic (stratifies in the summer and winter) and circulated in May and October.

Thermal stratification was well developed and persistent from June through September.

The spring circulation failed to completely reaerate the hypolimnion¹.

Water was of calcium bicarbonate type.

Specific conductance ranged from 85 to 161 µS/cm at (25 degrees Celsius).

pH ranged from 6.2 to 8.0.

Dissolved-oxygen concentrations ranged from 0 to 14.7 mg/L; percent saturation ranged from 0 to 124.

Total ammonia plus organic nitrogen ranged from 110 to 940 µg/L.

Dissolved-ammonia concentrations ranged from <1 to 502 μ g/L.

Dissolved-nitrite plus nitrate concentrations ranged from <1 to 192 μ g/L.

Total phosphorous ranged from 6 to 173 µg/L.

Dissolved orthophosphate ranged from 1 to 66 μ g/L.

Nitrogen was the nutrient most likely to limit phytoplankton growth during the summer.

Chlorophyll-a averaged 2.5 μ g/L but peaked at 46.5 μ g/L.

Annual primary production was 29.6 grams of carbon/m²; about 90 percent was produced during May-October.

Big Lake was oligotrophic² during 1983-84.

² An oligotrophic lake is characterized by a low dissolved-nutrient concentration, sparse yet diverse aquatic life, and a high dissolved-oxygen concentration.

Ground Water

The glacially derived sediments near Big Lake contain ground water in both confined and unconfined aquifers (Trainer, 1960; Freethey and Scully, 1980). The principal aquifers near Big Lake are composed of outwash sand and gravel laid down by glacial meltwater streams (Trainer, 1960; Freethey and Scully, 1980). The till and the bedrock are aquifers of minor importance. Because till layers contain fine-grained materials such as silt and clay, they may act as confining beds. Till generally has low permeability, although locally thin layers of sandy material may transmit small quantities of water (Trainer, 1960). The bedrock is considered impermeable and yields water only from fractures, the location and frequency of which are unknown in the Big Lake area. Several wells in bedrock in other areas of the Matanuska-Susitna Valley have obtained saltwater that is thought to have been in the rock since the region was last covered by marine water (Trainer, 1960).

¹ The hypolimnion is the lower stratum of a lake. It is typically colder in temperature than upper layers and is relatively undisturbed.

Numerous wells have been drilled in the Big Lake-Horseshoe Lake area (appendix 1). Most of the wells penetrate water-bearing sand and gravel outwash deposits that have hydraulic conductivities between 5×10^{-5} and 10^{-6} cm/s (Arctic Engineers Inc., 1982). These outwash deposits are of two principal forms. The first consists of 1- to 30-m-deep sheetlike deposits that lie just beneath the land surface (Trainer, 1960; Freethey and Scully, 1980; Dearborn and Allely, 1983). The water in these deposits is unconfined and overlies layers of till. The other outwash deposits are buried beneath till and may be as thick as 20 m. These deposits commonly contain confined, or artesian, ground water (Trainer, 1960; Freethey and Scully, 1980). The aquifers vary in thickness and grainsize composition and are laterally discontinuous (Trainer, 1960). The unconfined aquifer typically yields water at a rate of 0.3 to 3 L/s, and the confined aquifer may yield up to 18 L/s (Trainer, 1960; Freethey and Scully, 1983).

Ground-water recharge near Big Lake is from several sources (Freethey and Scully, 1980). Shallow aquifers are recharged primarily by infiltration of streams, lakes, and precipitation. The deeper aquifers are recharged from adjacent aquifers by leakage through the confining layers. Some confined aquifers may receive additional recharge from upgradient areas where they are exposed to surface-water sources. Ground-water levels in the area generally fluctuate less than 1 m throughout the year (Glass, 1983). On a regional scale, ground-water flow is south-southwest from more upland areas toward Big Lake, Fish Creek, and, ultimately, Knik Arm.

Near Big Lake, the freshwater reservoir, from the ground surface to the saltwater-freshwater interface, is about 300 m thick (McGee, 1977). Salinity increases with depth, and the estimated sub-sea depth to water having salt concentrations greater than 16,800 mg/L sodium chloride is about 1,800 m.

DRINKING WATER

Residents in the Big Lake area use ground water as their principal drinking-water source. Most of the wells reach the unconfined aquifer at depths less than 10 m below the land surface (appendix 1; Freethey and Scully, 1980). Several wells deeper than 30 m reach the confined aquifer and reportedly flow at the surface (appendix 1).

In general, the ground water in the Matanuska-Susitna Valley is of adequate quality for domestic use (Trainer, 1960; Feulner, 1968; Bradley, 1976; Glass, 1983). During the last 40 years, water samples have been collected from till, outwash sand and gravel, windblown sediment, and bedrock (appendix 2). Ground water typically meets current drinking-water regulations (table 3 and appendix 2; U.S. Environmental Protection Agency, 1995). However, in some samples, concentrations of iron, manganese, chloride, and total dissolved solids exceed the recommended standard (appendix 2). Dissolved-solids concentrations range from about 50 to 200 mg/L in water from wells completed in the unconfined aquifer and from 150 to 1,400 mg/L in wells completed in the confined aquifer (Glass, 1983). In both the confined and unconfined aquifers, iron concentrations range from 0 to 7.2 mg/L, chloride concentrations range from 0 to 700 mg/L, and sulfate concentrations range from 0 to 130 mg/L (table 3). Big Lake contains about 100 million m³ of water and could possibly be used as an alternative drinking-water source for nearby residents; however, data are inadequate to characterize the present quality of Big Lake water in relation to all current drinking-water standards.

Constituent (or property)	USEPA drinking-water regulation (mg/L)	Ground-water, range in concentration (mg/L)	
Total dissolved solids	500	54-1,430	
Iron (Fe)	0.3	0-7.2	
Chloride (Cl)	250	0-700	
Sulfate (SO ₄)	250	0-130	
Manganese (Mn)	.05	.0146	
Fluoride (F)	2	05	
pH (units)	6.5-8.5	6.1-8.7	

Table 3. Selected water-quality data for wells near Big Lake, Alaska

 [U.S. Environmental Protection Agency, 1995 and appendix 2; mg/L, milligrams per liter]

SUMMARY

Big Lake is in south-central Alaska at lat 61°33' N., long 149°42' W. The community of Big Lake is on the shore of Big Lake, about 30 km north of Anchorage. The FAA operates a VORTAC facility near Big Lake. The area is in a transitional climate zone, characterized by climate patterns that are not sharply defined, fluctuate from year to year, and may resemble those of either the maritime or continental climate zones. The local vegetation consists of lowland spruce-hardwood forest and low brush muskeg. Little is known about the composition and structure of the bedrock around Big Lake. The Talkeetna Mountains to the northeast consist chiefly of igneous rocks including granitic rocks, lava, and tuff; the Chugach Mountains to the southeast consist of Mesozoic granitic intrusive rocks, metamorphosed sedimentary rocks, and greenstone; and the Alaska Range to the northwest consists of granites, volcanic rocks, argillite, shale, sandstone, and siltstone. Cretaceous sedimentary rocks consisting of sandstone, shale, and coal extend down the Matanuska-Susitna Valley to Moose Creek. The principal surficial materials near Big Lake are outwash sand and gravel deposits, partly saturated gravel in ground moraines, and windblown sediment. Drainage in the Big Lake area is poor, and there are large areas of swampy ground and numerous lakes and ponds. The glacially derived sediments near Big Lake contain ground water in both confined and unconfined aquifers. Local residents use ground water as their principal drinking-water source. Big Lake is a potential alternative drinking-water source; however, data are inadequate to characterize the present quality of Big Lake water in relation to current drinkingwater standards.

REFERENCES CITED

- Arctic Engineers, Inc., 1982, Big Lake landfill development study and plan for the Matanuska-Susitna Borough: Report 81-008-01 MSB, variously paged.
- Balding, G.O., 1976, Water availability, quality, and use in Alaska: U.S. Geological Survey Open-File Report 76-513, 236 p.
- Dearborn, L.L., and Allely, R.D., 1983, Water-well data for the Big Lake area, Anchorage C-8 SW quadrangle, Alaska: Alaska Division of Geological and Geophysical Surveys Report of Investigations 83-19, 1 sheet.
- Ecology and Environment, Inc., 1993, Environmental Compliance Investigation Report (ECIR), Big Lake FAA station, Big Lake, Alaska: Anchorage, variously paged. [Copy available from the Environmental Compliance Section, AAL-465, Federal Aviation Administration, Alaskan Regional Office, Anchorage, Alaska].
- Ferrians, O.J., Jr., comp., 1965, Permafrost map of Alaska: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-445, scale 1:2,500,000.
- Feulner, A.J., 1968, Data on wells in the Matanuska-Susitna Borough Area, Alaska: U.S. Geological Open-File Report, 25 p.
- Freethey, G.W., and Scully, D.R., 1980, Water resources of the Cook Inlet Basin: U.S. Geological Survey Hydrologic Investigations Atlas HA-620, 4 sheets, scale 1:1,000,000.
- Glass, R.L., 1983, Hydrologic data for Point MacKenzie area, southcentral Alaska: U.S. Geological Survey Open-File Report 83-142, 34 p.
- Hartman, C.W., and Johnson, P.R., 1984, Environmental atlas of Alaska: University of Alaska Fairbanks, Institute of Water Resources/Engineering Experiment Station, 95 p.
- Leslie, L.D., 1989, Alaska climate summaries (2d ed.): University of Alaska Anchorage, Arctic Environmental Information and Data Center, Alaska Climate Center Technical Note 5, 478 p.
- McGee, D.L., 1977, Salinity study, Cook Inlet Basin, Alaska: State of Alaska, Geological and Geophysical Surveys Geological Report 54, 6 p.
- Selkregg, Lydia, 1976, Alaska regional profiles—Southwest region: University of Alaska, Arctic Environmental Information and Data Center, 313 p.
- Trainer, F.W., 1960, Geology and ground-water resources of the Matanuska Valley agricultural area, Alaska: U.S. Geological Survey Water-Supply Paper 1494, 116 p.
- U.S. Environmental Protection Agency (USEPA), 1995, Drinking water regulations and health advisories: U.S. Environmental Protection Agency report, 10 p.
- Viereck, L.A., and Little, E.L. Jr., 1972, Alaska trees and shrubs: U.S. Department of Agriculture Handbook No. 410, 265 p.
- Wahrhaftig, Clyde, 1965, Physiographic divisions of Alaska: U.S. Geological Survey Professional Paper 482, 52 p.
- Woods, P.F., 1992, Limnology of Big Lake, South-central Alaska, 1983-84: U.S. Geological Survey Water-Supply Paper 2382, 108 p.

APPENDIX 1

Data from wells near Big Lake, Alaska

.

,

ł

		PRIMARY					
		USE OF	DEPTH OF WELL	WATER LEVEL	DATE		ASSIGNOR OF OTHER
LOCAL WELL NU	MBER	WATER	(FEET)	(FEET)	CONSTRUCTED	OWNER	IDENTIFIER
SB01600305ABAD1	001	U			10-22-60	UNION OIL BIG LAKE	UNION
SB01600402ABCB1	001	5 4 0			10-06-60	UNION OIL	UNION
SB01700316CDCA1	002	Н	53.0			NERLAND JERRY	ROCKY LK ALASKA
SB01700319DCAB1	004	н	65.	4.5	03-29-83	DUCLOS PAUL&SARA	FARR SUB
						- -	LAS
SB01700319DCAC1	002	н	30.0	2.00	03-21-73	ERICKSON EDWIN	1-5-5-5
SB01700319DCDA1	003	н	52.0	5.00	03-26-73	PEDERSON HARRY	
SB01700319DDBC1	001	н	26.0	3.00	12-12-73	DAHLBERG OSCAR	
SB01700319DDBC2 SB01700320ACDD1	001 006	C	31.0 74.	4.00	03-29-73 09-19-77	DALHBERG IS LODGE STRINGFELLOW SCOTT	SECTION 20 LOTS
SB01700320ACDD1	000	H	/4.		03-13-11	STRINGFEELOW SCOTT	
SB01700320CADA1	001	P	65.0		05-01-71	AK DIV PKS BIG LK 1	GOVT LOTS
SB01700320CCC1	005	ĥ	28.0	3.00	01-11-74	RODRIQUEZ	
SB01700320CDAC1	003	н	55.0	13.00	02-11-71	RAINEY CARROL	
SB01700320CDAC2	003	н	33.0	3.00	05-31-73	GALLANT FRED	
SB01700320CDAC3	003	н	37.0	6.00	05-25-73	SILL ART	
SB01700320CDDB1	002	C	37.0		01-01-57	SHIP AHOY	
SB01700320CDDB10	02 20376	-	37			1	
SB01700320CDDB2	002	С	108		11-01-66	KETCHUMS RESORT	FEULNER1968 OFR
SB01700320CDDB3	002	H	30.0	5.00	09-10-76	FIEDLER WILTON R	
SB01700320DDDA1	004	С	31.0		01-01-66	BIG LAKE SUMMR CP	FEULNER1968 OFR
SB01700320DDDA2	004	С	47.0		01-01-63	ISLAND LODGE	
SB01700321ABDA1	005	н	14.0			ROCCA CLAYTON	WSP1494
SB01700321ACDA1	008	H	65.4	17.	0685	VREM TRACY&LINDA	ROCKY LK SUB
							LAS
SB01700321ADCB1	004	С	36.0		01-01-60	BIG Y GROCERY	FEULNER1968 OFR
SB01700321CDCA1	002	н	53.		02-16-76	KOWALSKI ALVES&BETTY	HERMAN SUB
			1744 J. 625				LAS
SB01700321CDDC1	003	н	8.0		01-01-50	HERMANS PLACE	WSP1494
SB01700328AABB1	009	P	160	-20.00	05-31-78	BIG LAKE ELEM MAT-SU	,
SB01700328ABAA1	012	н	75.		10-25-83	PUNCHES LAWRENCE&FLO	BUTLER SUB AD02 LAS
SB01700328ABBC1	014	н	60.	5.	11-03-84	STALLONE JOHN&BARBAR	G1655
	••••						LAS
SB01700328ABDB1	008	н	74.0	15.00	06-30-75	WINCHESTER MIKE	BUTLER SUB AD03
SB01700328ACAA1	007					BIG LAKE SCHOOL	
SB01700328ACBC1	002	н	50.	16.	05-24-85	OLENDORF ED	FISH CREEK ADD1
00.01.7.0.2.0.0. cont	005		16.0			OLENDORF AMY&LEO	LAS
SB01700328ACCB1 SB01700328ADAC1	006 013	н н	16.0 75.	20.	 11-01-85	ANDERSON OSCAR FOSS AIR AK&FOSS JAM	WSP1494 Hobson SUB
3801700328ADACI	015	п					
SB01700328ADAC1	013	н	75.	20.	11-01-85	FOSS JAMES&FOSS AIR	BIG LK AIRPORT LAS
SB01700328BABA1	004	Р	29.0		01-01-61	BIG LAKE LODGE	FEULNER1968 OFR
SB01700328BACD1	010	н	82.3	-2.00	10,-25-79	SANDERS JAMES G	GOTHBERG SUB
SB01700328BCDC1	001	-	14.0	224-77		RUDY SARAH	
	005	••	00 5	22.00	05-05-75	PACK BILL	
SB01700328BDBB1	005	н	99.5 14.0	22.00	07-01-67	SUNSET TRLR PRK	FEULNER1968 OFR
SB01700328DBBB1	003 001	- н	14.0		07-14-67	DAVIS W K	
SB01700329AAAB1 SB01700329AABA1	001	п С	60.0	41.00	01-01-64	BURKESHORE MARINA M	FEULNER1968 OFR
SB01700329ABAD1 SB01700329ABAD1	005	н	30.0	8.00	01-01-71	PUHL RAY	
ODAT 1 00253 UDUDI				1999 (1997) 1997 (1997)	Second Second Sector		
SB01700329ABBA1	019	н	89.6		06-03-77	PUHL RAYMOND	BURKE SHORE SUB
00017003003005	010	н	61.	7.	06-10-88	CORYELL MARSHALL	BURKE SHORE SUB
SB01700329ABBB1 SB01700329ABDB1		н Н	74.0		01-01-71	WINCHESTER RAY	
SB01700329BAAA1	014	н	67.0	15.00	07-11-59	BAKER	BURKE SHORE SUB
CD01/0000000001			1000	and the second			

,

•

LOCAL WELL NUM	IBER	PRIMARY USE OF WATER	DEPTH OF WELL (FEET)	WATER LEVEL (FEET)	DATE WELL CONSTRUCTED	OWNER	ASSIGNOR OF OTHER IDENTIFIER
SB01700329BAAA2	014	Н	101.	31.	06-08-88	SOULES GENE	BURKE SHORE SUB
SB01700329BACD1	018	н	101		06-22-78	MOSBY WILBRT & ANN	BIG LAKE SUB
SB01700329BBBC1	011	н	50.4	20.00	02-22-71	OAKES NATHAN	<u>Nerver</u>
SB01700329CACD1	008	н	78.0	4.00		PETERSEN LESTER	(<u>) 2007 100</u> 1
SB01700329CBBD1	016	H	35.0	10.00	01-04-74	HELMS JACK	SPLINTER ADD
SB01700329CBBD2	016	н	119	20.00	08-14-78	HELMS JACK	SPLINTER ADD
SB01700329DBCB1	003	н	80.		83	BROWN GREGORY&JUANIT	A.A.FARMER LAS
SB01700329DBDC1	015	С	14.0			PAYTONS POINT	WSP1494
SB01700329DCBB1	013	H	65.0	3.00	06-10-75	HOLT BOB	HOLT
SB01700329DCBC1	006	н	67.0	4.00	06-11-75	PHILLIPS GLEN	
SB01700329DCCD1	017	н	47.0		09-03-77	LESTER JOSEPH L	
SB01700329DCDD1	004	P	100		01-01-70	AK DIV PKS BIG LAKE	
SB01700329DDAB1	002	н	50.	10.	06-08-79	BRINGMANN GEORGE	HIBBARD ADD EXT LAS
							LAS
SB01700329DDDC1	012	н	98.6	18.00	06-28-76	SMITH MARVIN	
SB01700330AABA1	003	н	28.0	6.00	01-14-75	FARR DAN	
SB01700330DAAA1	007	н	52.	5.	02-12-79	EASTBERG ED&CAROL J	LEWIS SUB
							LAS
SB01700330DAAD1	005	н	45.0	18.00	01-02-74	LAAK WILLIAM	STARBOARD COVE
SB01700330DBAB1	004	н	75.0	40.00	12-14-73	SHUPE MIKE	STARBOARD COVE
SB01700330DBDB1	001	н	42.0	13.00	06-29-76	WINCHESTER RAY	STARBOARD COVE
SB01700330DCAC1	002	н	38.4	15.00	06-30-76	LANZ JIM	STARBOARD COVE
SB01700330DCCD1	008	Н	180.	150.	06-18-86	KREWETZKI HORST	STARBOARD COVE
1DATE: 04/12/94					DIC LAFE	2 MILE DADTUG	LING

1DATE: 04/12/94

BIG LAKE - 3 MILE RADIUS

		PRIMARY					
		USE	DEPTH	WATER	DATE		ASSIGNOR
		OF	OF WELL	LEVEL	WELL		OF OTHER
LOCAL WELL NU	MBER	WATER	(FEET)	(FEET)	CONSTRUCTED	OWNER	IDENTIFIER
SB01700330DDAD1	006	н	183	80.00	05-22-76	COOK WALTER	STARBOARD COVE
SB01700331BADA1	001	С	42.0		01-01-66	BIG LAKE YCHT CLB	FEULNER1968 OFR
SB01700333ACBC1	005	Н	93.	22.	10-17-70	KLOUDA JOE&PAT	ECHO LAKE PARK LAS
SB01700333ACCB1	003	н	32.0	20.25	06-22-72	RAPP DICK	ECHO LAKE PARK
SB01700333BBBD1	001	н	115		01-01-70	KRULL MARION	
SB01700333BBCA1	002	н	80.0	40.00	06-01-76	WILDE LAWRENCE	ECHO HILLS SUB
SB01700333BCBD1	004	н	63.	36.	10-03-81	HANSEN ROGER	ECHO HILLS SUB
SB01700333CBAB1	006	н	94.	30.	06-10-86	NECRASON CONRAD&MYRL	SECTION 33 LOTS
							LAS
SB01700412DCAB1	001	Н	30.0		01-01-54	CAMPBELL HOWARD	11.
SB01700414ABAB1	001	н	30.0	15.00	06-28-76	KORMAN DARRELL	
SB01700414ABAB2	001	н	60.0	10.00	07-23-78	PETERSON HANK	
SB01700414ACAB1	003	н	61.	12.	06-10-86	JOHNS MARIE& ROBERT	HORSESHOE LAKE
SB01700414ADCB1	002	н	67.0	7.00	03-26-83	GIST PERCY	BYRNE SUB
SB01700426ABDB1	004	н	50.0	20.00	09-19-78	GRANUS WALTER	DAVIS SUB
SB01700426ABDB2	004	н	36.0		06-03-80	GATES HERB.& KATH.	DAVIS SUB
SB01700426ADAA1	002	н	52.0	30.00	05-25-76	FRIDLEY DAVE	DAVIS SUB
SB01700426CAAD1	001	н	34.0	24.00	05-01-73	UNREIN JOHN	2772/2774
SB01700427DABC1	001	С	40.0			CALL OF WILD CP	
SB01700435ACCD1	001	н	87.0	16.00	03-24-71	HOYT HARRY	
SB01700435CDDD1	002	н	24.0	13.00	07-01-75	MCINTIRE BETTY	KUKOWSKI SUB

.

Å

							 :
LOCAL WELL NU	MBER	PRIMARY USE OF WATER	DEPTH OF WELL (FEET)	WATER LEVEL (FEET)	DATE WELL CONSTRUCTED	OWNER	ASSIGNOR OF OTHER IDENTIFIER
SB01700308DACC1	003	Н	50.0	19.00	12-01-81	MIKKELSON DON&LARSON	FREEMAN SUB
SB01700308DADC1	004	Н	50.0	30.00	09-12-75	BAKEN RUS & ELLEN	LAS FREEMAN SUB
SB01700308DDAB1	005	н	44.0	22.00	06-04-79	WARDLOW R NEWTON TOM	LAS FREEMAN SUB 1
SB01700308DDAC1	006	Н	60.0	5.00	05-01-81	MIKKELSON DON	LAS FREEMAN SUB 1 LAS
SB01700309CCBA1 SB01700309CCDC1	001 007	н н	55.0 100.	10.00	06-11-75 73	CUMMINS JOHN PHILLIPS FRED	BEAVER LKS P.AD
SB01700309CDCC1	004	Ţ	58.0 53.0		01-01-66	PATRICK BILL ROMAN O'MARY WASILLA ASSM GOD NERLAND JERRY	 ROCKY LK ALASKA
SB01700316CDCA1 SB01700316DBBB1	002 003	H H	54.0	14.00	10-13-76	ADF&G MEADW CK	
SB01700316DBBB2 SB01700316DBBB3	003 003	T T	30.0 31.0	9.00	11-18-76	ADF&G MEADW CK ADF&G MEADW CK	
SB01700316DBBB4	003	Q	28.0	7.40	02-16-78	ADF&G MEADOW CK	MAT-SU ASSES NO BG LK HATCHERY
SB01700316DBBB5	003	Q	20.5	8.00	02-16-78	ADF&G MEADOW CK	MAT-SU ASSES NO
SB01700316DBBB6 SB01700316DBBB7 SB01700316DBBB8	003 003 003	Q Q Q	182 27.0 176.8	7.00 -4.	09-07-78 03-08-78 12-07-84	ADF&G MEADOW CK ADF&G MEADOW CK ADF&G MEADOW CK	BG LK HATCHERY BG LK HATCHERY BG LK HATCHERY SECTION 16 LOTS BG LK HATCHERY
SB01700316DDCC1 SB01700319DCAB1	001 004	Р Н	62.0 65.	 4.5	05-14-71 03-29-83	AK DIV PKS ROCKY LK DUCLOS PAUL&SARA	LAS FARR SUB
SB01700319DCAC1	002	н	30.0	2.00	03-21-73	ERICKSON EDWIN	LAS
SB01700319DCDA1 SB01700319DDBC1 SB01700319DDBC2 SB01700320ACDD1	003 001 001 006	н н с н	52.0 26.0 31.0 74.	5.00 3.00 4.00	03-26-73 12-12-73 03-29-73 09-19-77	PEDERSON HARRY DAHLBERG OSCAR DALHBERG IS LODGE STRINGFELLOW SCOTT	 SECTION 20 LOTS GOVT LOTS
SB01700320CADA1 SB01700320CCCC1 SB01700320CDAC1 SB01700320CDAC2 SB01700320CDAC3	001 005 003 003 003	Р Н Н Н	65.0 28.0 55.0 33.0 37.0	3.00 13.00 3.00 6.00	05-01-71 01-11-74 02-11-71 05-31-73 05-25-73	AK DIV PKS BIG LK 1 RODRIQUEZ RAINEY CARROL GALLANT FRED SILL ART	
SB01700320CDDB1 SB01700320CDDB10	002	c -	37.0		01-01-57	SHIP AHOY	
SB01700320CDDB1 SB01700320CDDB2 SB01700320CDDB3	002 002 002	С Н	108 30.0	5.00	11-01-66 09-10-76	KETCHUMS RESORT FIEDLER WILTON R	FEULNER1968 OFR
SB01700320DDDA1	004	c	31.0		01-01-66	BIG LAKE SUMMR CP	FEULNER1968 OFR
SB01700320DDDA2 SB01700321AABC1 SB01700321ABDA1 SB01700321ACDA1	004 007 005 008	С Н Н Н	47.0 28.0 14.0 65.4	15.00 17.	01-01-63 06-16-76 0685	ISLAND LODGE STARKEY TED ROCCA CLAYTON VREM TRACY&LINDA	ROCKY LK SUB 3 WSP1494 ROCKY LK SUB LAS
SB01700321ADBC1 SB01700321ADBD1 SB01700321ADCB1 SB01700321CDCA1	001 006 004 002	С С Н	28.0 29.0 36.0 53.	13.80 16.00 	04-01-70 06-14-76 01-01-60 02-16-76	FISHER ROBERT FISHER ROBERT BIG Y GROCERY KOWALSKI ALVES&BETTY 	 FEULNER1968 OFR HERMAN SUB LAS
SB01700321CDDC1 SB01700322CCBB1	003 002	H _	8.0 27.0	18.00	01-01-50 06-02-73	HERMANS PLACE	WSP1494
SB01700322CCBB1 SB01700322CCBD1 SB01700327BBBC1	005	- Н Н	106 190	-5.00	07-26-83	MARTINES SCHNELL LAVRENCE CROSS CREEK INC HOLDEN EVERETT	MORGANS BLUFF
SB01700328AABB1 SB01700328ABAA1	009 012	P H	160 75.	-20.00	05-31-78 10-25-83	BIG LAKE ELEM MAT-SU PUNCHES LAWRENCE&FLO	BUTLER SUB AD02
SB01700328ABBC1	014	н	60.	5.	11-03-84	STALLONE JOHN&BARBAR	LAS

BIG LAKE LOCALE - 2 MILE RADIUS

*

	PRIMARY					
		DEPTH	WATER	DATE		ASSIGNOR
		F WELL	LEVEL	WELL		OF OTHER _
LOCAL WELL NUMBER	WATER	(FEET)	(FEET)	CONSTRUCTED	OWNER	IDENTIFIER
SB01700329ABAD1 005	н	30.0	8.00	01-01-71	PUHL RAY	:말말말
SB01700329ABBA1 019	н	89.6		06-03-77	PUHL RAYMOND	BURKE SHORE SUB
						LAS
SB01700329ABBB1 010	н	61.	7.	06-10-88	CORYELL MARSHALL	BURKE SHORE SUB
SB01700329ABDB1 007	н	74.0		01-01-71	WINCHESTER RAY	
SB01700329BAAA1 014	н	67.0	15.00	07-11-59	BAKER	BURKE SHORE SUB
SB01700329BAAA2 014	Н	101.	31.	06-08-88	SOULES GENE	BURKE SHORE SUB
SB01700329BACD1 018	Н	101		06-22-78	MOSBY WILBRT & ANN	BIG LAKE SUB
SB01700329BBBC1 011	н	50.4	20.00	02-22-71	OAKES NATHAN	
SB01700329CACD1 008	н	78.0	4.00		PETERSEN LESTER	
SB01700329CBBD1 016	н	35.0	10.00	01-04-74	HELMS JACK	SPLINTER ADD
SB01700329CBBD2 016	н	119 ·	20.00	08-14-78	HELMS JACK	SPLINTER ADD
SB01700329DBCB1 003	н	80.		83	BROWN GREGORY&JUANIT	A.A.FARMER
	10.41 (11.42)		HERE AND ADDRESS			
SB01700328ABDB1 008	н	74.0	15.00	06-30-75	WINCHESTER MIKE	BUTLER SUB AD03
SB01700328ACAA1 007	()				BIG LAKE SCHOOL	
SB01700328ACBC1 002	н	50.	16.	05-24-85	OLENDORF ED	FISH CREEK ADD1
5 2222232 S 123 I					OLENDORF AMY&LEO	LAS
SB01700328ACCB1 006	н	16.0			ANDERSON OSCAR	WSP1494
SB01700328ADAC1 013	н	75.	20.	11-01-85	FOSS AIR AK&FOSS JAM	HOBSON SUB
661) 661					FOSS JAMES&FOSS AIR	BIG LK AIRPORT
						LAS
SB01700328BABA1 004	P	29.0		01-01-61	BIG LAKE LODGE	FEULNER1968 OFR
SB01700328BACD1 010	н	82.3	-2.00	10-25-79	SANDERS JAMES G	GOTHBERG SUB
		(1947) (1946)				
SB01700328BCDC1 001	1. - 1 1	14.0			RUDY SARAH	
SB01700328BDBB1 005	н	99.5	22.00	05-05-75	PACK BILL	
SB01700328DBBB1 003	1000	14.0	(07-01-67	SUNSET TRLR PRK	FEULNER1968 OFR
SB01700329AAAB1 001	Н			07-14-67	DAVIS W K	
SB01700329AABA1 009	C	60.0	41.00	01-01-64	BURKESHORE MARINA M	FEULNER1968 OFR
SB01700329DBDC1 015	С	14.0			PAYTONS POINT	WSP1494
••••	v	11.0	10040	1000	PATIONS POINT	WSP1494
SB01700329DCBB1 013	н	65.0	3.00	06-10-75	HOLT BOB	HOLT
SB01700329DCBC1 006	н	67.0	4.00	06-11-75	PHILLIPS GLEN	
SB01700329DCCD1 017	н	47.0	4.00	09-03-77	LESTER JOSEPH L	
SB01700329DCDD1 004		100		01-01-70	AK DIV PKS BIG LAKE	
SB01700329DDAB1 002	н	50.	10.	06-08-79	BRINGMANN GEORGE	UTPRADA ADD EVT
			10.	00-00-79	DATIGRANIA GEORGE	HIBBARD ADD EXT
						1 2 6
SB01700329DDDC1 012	н	98.6	18.00	06-28-76	SMITH MARVIN	LAS
SB01700330AABA1 003	н	28.0	6.00	01-14-75	FARR DAN	
SB01700330DAAA1 007	н	52.	5.	02-12-79	EASTBERG ED&CAROL J	TEURO OUD
		52.	э.	02-12-19		LEWIS SUB
						LAS
SB01700330DAAD1 005	н	45.0	18.00	01-02-74	LAAK WILLIAM	OTADBOADD COUR
SB01700330DBAB1 004	н	75.0	40.00	12-14-73	SHUPE MIKE	STARBOARD COVE
SB01700330DBDB1 001	н	42.0	13.00	06-29-76	WINCHESTER RAY	STARBOARD COVE
SB01700330DCAC1 002	н	38.4	15.00	06-30-76	LANZ JIM	STARBOARD COVE
SB01700330DCCD1 008		180.	150.	06-18-86	KREWETZKI HORST	STARBOARD COVE
			100.	00-10-00	ANDWEIGKT HURST	STARBOARD COVE
						LAS
SB01700330DDAD1 006	н 1	183	80.00	05-22-76	COOK WALTER	STARBOARD COVE
SB01700331BADA1 001	c .	42.0		01-01-66	BIG LAKE YCHT CLB	FEULNER1968 OFR
SB01700333BBBD1 001		15		01-01-70	KRULL MARION	FEOLMERI908 OFR
SB01700333BBCA1 002	н	80.0	40.00	06-01-76	WILDE LAWRENCE	ECHO HILLS SUB
	6839 N	102-0223000075	0.000 - 0.000 - 0.000 - 0.000		LIDE DIMININGE	TOUC HIDDS 20D

ŧ

Walter Weaver schedman Mat. Valley

	DRILLERS LOG	Well	. NO
Driller G & G DRILLING CO LeeH. Go	hr	Date Started	July 16, 1956
Nwner Walter We, ver		Date completed	July 26, 1956
Address Anchorage, Alaska			Kome
Location of well 8 Miles from Wasilla	a on Big Lake Road		
		a	
Depth of well 73 feet.	é.		
Bottom of casing at 73 feet.	(*)	size of casing	6"
Finish (check one). Open end (χ) . Scr	een (). Perforat	cd ().	
Describe screen or perforations	19 August 19 11 11 11 11 11 11 11 11 11 11 11 11	مر می در اور می وارد و رو اور می وارد و اور اور می وارد و می وارد و اور و می وارد و می و می و می و می مرابع	
Static water level 29 feet (above)	(below) land surf	ace,	
eld (fixixized) (bailed) ("wxxxxx) 600) (<u>AKANKE</u>)	
Development (bailed) (XXXXXX) 600 ga	llons per(hour) (m	ixmoxe) for 2	(hours) ("KREXKEKK)
with 10 feet of drawdown		,	

÷

Thickness	Nepth		
of formation	From	То	
3	0	3	
32	3	35	
23	35	58	
2	58	60	
11	60	71	
2	. <u>71</u>	73	
		Que 1	
	of formation 3 32 23 2 11	of formation From 3 0 32 3 23 35 2 58 11 60 2 71	

Y

····

J. Potter

4	J. Potter scher make
BOX 153. Anchorage. Alaska	8/19/58 Date started Date completed Use of well
Location of well(Township, Range & S 2 Miles Right of Pitt from main roads)	
Total depth of drilled well	6" Size of casing ereen () Perforated ()
Well development (bailed) or (Punced	x 250 gallons per (hour) x 33 feet of drawiow
5	

Description of formation (type of material, hard or soft, water bearing, color, etc.)	Thickness	Depth From to
Top soil & Sand (Brown)	14,	0-14
Sand & Pea Gravel (Water Bearing)	5	14-19
Clay with seams of water bearing gravel	19	19-38
	•	
- I		u en gi
	ł	5 of walk file
		Mac

	K. towe	Later		
DRILLERS LOG	Well	No.	·•. (- -	
Filler G & G DRILLING CO Lee H. Gohr	Date Started		14.765	
Owner K. Lovejoy	Date completed_			
Address St. Rt. Wassila	Use of well			
Location of well Approx 5 miles past Pittman	USE OI WELL	Darry		
hocavion of wellApprox / miles pase i toman				
Depth of well 35 feet.				
Bottom of casing at 35 feet.	size of casing	6" Hvy	vy	
Static water level $20\frac{1}{2}$ feet (above) (below) land surf	ace.		946. -	
<pre>Yield (flowed) (bailed) (Pumped) 1500 gallons per (hour Development (bailed) (pumped) 1500 gallons per (Hour) with 3 feet of drawdown.</pre>		(hours)	(milion et	
Development (bailed) (pumped) 1500 gallons per (Hour)			pth	
Development (bailed) (pumped) 1500 gallons per (Hour) with 3 feet of drawdown. Description of formation (describing material, color, whether hard or soft, water bearing, etc.	(militia) for 1 Thickness	Det	pth	
Development (bailed) (pumped) 1500 gallons per (Hour) with 3 feet of drawdown. Description of formation (describing material,	(minitie) for 1 Thickness of formation	De From	pth To	
Development (bailed) (pumped) 1500 gallons per (Hour) with 3 feet of drawdown. Description of formation (describing material, color, whether hard or soft, water bearing, etc. Top Soil	(minimite) for 1 Thickness of formation	De From O	pth To 1	
Development (bailed) (pumped) 1500 gallons per (Hour) with 3 feet of drawdown. Description of formation (describing material, color, whether hard or soft, water bearing, etc. Top Soil Sand & Gravel	(minimite) for 1 Thickness of formation 1 26	De From 0 1	pth T c 1 27	
Development (bailed) (pumped) 1500 gallons per (Hour) with 3 feet of drawdown. Description of formation (describing material, color, whether hard or soft, water bearing, etc. Top Soil Sand & Gravel	(minimite) for 1 Thickness of formation 1 26	De From 0 1	pth T c 1 27	
Development (bailed) (pumped) 1500 gallons per (Hour) with 3 feet of drawdown. Description of formation (describing material, color, whether hard or soft, water bearing, etc. Top Soil Sand & Gravel Water bearing Sand & Gravel	(minimite) for 1 Thickness of formation 1 26	De From 0 1	pth T a 1 27	
Development (bailed) (pumped) 1500 gallons per (Hour) with 3 feet of drawdown. Description of formation (describing material, color, whether hard or soft, water bearing, etc. Top Soil Sand & Gravel Water bearing Sand & Gravel	(minimite) for 1 Thickness of formation 1 26	De From 0 1	pth T a 1 27	
Development (bailed) (pumped) 1500 gallons per (Hour) with 3 feet of drawdown. Description of formation (describing material, color, whether hard or soft, water bearing, etc. Top Soil Sand & Gravel Water bearing Sand & Gravel	(minimite) for 1 Thickness of formation 1 26	De From 0 1	pth T c 1 27	
Development (bailed) (pumped) 1500 gallons per (Hour) with 3 feet of drawdown. Description of formation (describing material, color, whether hard or soft, water bearing, etc. Top Soil Sand & Cravel Water bearing Sand & Gravel (Didnot go to bottom of sand & gravel)	(minimite) for 1 Thickness of formation 1 26	De From 0 1	pth T d 1 27	
Development (bailed) (pumped) 1500 gallons per (Hour) with 3 feet of drawdown. Description of formation (describing material, color, whether hard or soft, water bearing, etc. Top Soil Sand & Cravel Water bearing Sand & Gravel (Didnot go to bottom of sand & gravel)	(minimite) for 1 Thickness of formation 1 26	De From 0 1	pth T d 1 27	
Development (bailed) (pumped) 1500 gallons per (Hour) with 3 feet of drawdown. Description of formation (describing material, color, whether hard or soft, water bearing, etc. Top Soil Sand & Cravel Water bearing Sand & Gravel (Didnot go to bottom of sand & gravel)	(minimite) for 1 Thickness of formation 1 26	De From 0 1	pth T c 1 27	
Development (bailed) (pumped) 1500 gallons per (Hour) with 3 feet of drawdown. Description of formation (describing material, color, whether hard or soft, water bearing, etc. Top Soil Sand & Cravel Water bearing Sand & Gravel (Didnot go to bottom of sand & gravel)	(minimite) for 1 Thickness of formation 1 26	De From 0 1	pth T c 1 27	
Development (bailed) (pumped) 1500 gallons per (Hour) with 3 feet of drawdown. Description of formation (describing material, color, whether hard or soft, water bearing, etc. Top Soil Sand & Cravel Water bearing Sand & Gravel (Didnot go to bottom of sand & gravel)	(minimite) for 1 Thickness of formation 1 26	De From 0 1	pth T c 1 27	

. C. Herris

DRILLERS LOG

Ler <u>G & G DRILLING CO.</u> Lee <u>H. Cohr</u> Date started <u>8-15-58</u> .ell Owner <u>J. C. Harris</u> Date completed <u>8-17-58</u> .ddress <u>One Mile from Pittman Big Lake Rd</u> Use of well <u>Home</u> Location of well(Township, Range & Section, if known or distance. from main roads)

Total depth of drilled well <u>43</u> feet Bottom of casing at <u>43</u> feet Size of casing <u>6"</u> Finish (Check one) Open end (x) Screen () Perforated () Describe screen or perforations well development (bailed) or (Panped) <u>1200</u> gallons per (hour) (minute) for <u>1</u> (hours)(minutes, with <u>10</u> feet of drawdow Static water level <u>16</u> feet (aboved (below) land surface Remarks Sand & Pea gravel heaves in pipe 28 to 40 ft

Description of formation (type of material, hard or soft, water bearing, color, etc.)	Thickness	Depth From to
Top soil ·	t ،	OƏI
Sand & Gravel	20	1-21
Water bearing sand & gravel	7	21-28
Water bearing sand (Fine)	10	28-38
Pea Gravel	2	38-40
L rge Sansxaxara Gravel & Sand	• 3	40-43
Didnot go to bottom of stream		
	} ·	
	**************************************	ļ

M-W DRILLING, Inc. P. O. Box 4-1728 • 2811 Dawson A C 907-279-1741 ANCHORAGE, ALASKA 99509

11.

Houston Sheet 12

- 1

DRILLING LOG

Well Owner	Great Plains (American) Inc. Use of Well Com.
Location (address of	Township Range Section if known: or distance main road
6	93 93
Size of casingDept	Location (address of: Township, Range, Section, if known; or distance main road Horehos Lake, Gr Plains XXI Noel State # 1, %ell Site Edg Lake Area 2 of casing 6 Depth of Hole 93 feet Cased to 93 feet thic water level 7 ft. (#60%) (below) land surface. Finish of well (check one) open end (X); Screen (); Perforated (). Describe screen or perforation ell pumping test at 60 gallons per (%0%) (mipster towns with 1000% ft. of drawdown from static level te of completion 3 for 73) WELL LOG pth in feet from Dund surface Give details of formations penetrated, size of material, color and hardness 0 TO 20 K Schedy (Brown Gravel 20 TO 40 Fine Grey Sand 40 TO 45 Land / Grey, wetstatic level 15' 45 TO 50 Sand a/s 60 TO 90 hedium to cosrse Gravel 1 sliphtly sandy, good water-20 G.K. 90 TO 94 Cosrse Gravel : excellent weter 60 OPS. TO 70 TO 70 Sand 1 or 20 K Schedy (Brown Fine Cosrse Gravel 1 sliphtly sandy, good water-20 G.K. 90 TO 94 Cosrse Gravel : excellent weter 60 OPS. TO 70 TO 70 Sand 1 or 20 K Schedy (Brown Fine Cosrse Gravel 1 sliphtly sandy, good water-20 G.K. 90 TO 94 Cosrse Gravel : excellent weter 60 OPS. TO 70 TO 70 TO 70 Sand 1 or 20 K Schedy (Brown Fine Cosrse Gravel 1 sliphtly sandy, good water-20 G.K. 70 TO 70 TO 70 K Schedy (Brown Fine Cosrse Gravel 1 sliphtly sandy for 0 Schedy (Brown Fine Cosrse Gravel 1 sliphtly sandy for 0 Schedy (Brown Fine Cosrse Gravel 1 sliphtly sandy for 0 Schedy (Brown Fine Cosrse Gravel 1 sliphtly sandy for 0 Schedy (Brown Fine Cosrse Gravel 1 sliphtly for 0 Schedy (Brown Fine Cosrse Fine Cosrse for 0 Schedy (Brown Fine Cosrse for 0 Schedy for 0 Schedy (Brown Fine Cosrse for 0 Schedy for 0 Sch
Location (address of: Township, Range, Section, if known; or distance main road Horehoe Lake, Gr Plains KSII Noel State # 1, #ell Site Edg Love Area ze of casing 6 Depth of Hole 93 feet Cased to 93 feet atic water level 7 ft. (#bove) (below) land surface. Finish of well (check one) open end (X); Screen (); Perforated (). Describe screen or perforation ell pumping test at 60 gallons per (höu#) (minate) fund 2 hours with 100% ft. of drawdown from static level ate of completion 2 Har 73 // WELL LOG WELL LOG WELL LOG Pith in feet from ound surface Give details of formations penetrated, size of material, color and hardness 0 TO 20 Sciency Wet-estatic level 15 45 TO 40 Fine Grey Sand 40 TO 45 Land: Grey, wet-estatic level 15 45 TO 90 hedium to cosrse Gravel: slightly sendy, good water-20 G.S. 90 TO 90 hedium to cosrse Gravel: slightly sendy, good water-20 G.S. 90 TO 40 Fine Grey 1 excellent water 60 C.S. TO 70 TO 70 Fine Gravel: scient water 60 C.S. 70 TO 70 Fine Gravel: scient water for C.S. 70 Fine Fine Fine Fine Fine Fine Fine Fine	
Screen (); Per	
Describe screen or per	foration
Date of completion 3 Har	73
S.K	
Depth in feet-from	
ground surface	Give details of formations penetrated, size of material, color and hardness
0 TO 20 .	Sandy Brown Gravel
20 TO 40	address of: Township, Range, Section, if known; or distance main road Horshoe Lake, Gr Plains Näll Noel State # 1, Well Site Big Lo'ce Area 6 6 6 6 7 7 7 9 9 10 10 10 10 10 10 10 10 10 10
	by mship, Range, Section, if known; or distance main road cake, Gr Plains NEXI Noel State # 1, Well Site Area of Hole <u>93</u> feet Cased to <u>93</u> feet (above) (below) land surface. Finish of well (check one) open end (X rated (). None ration allons per (hours) (minute) for the hours with 100% level. WELL LOG Give details of formations penetrated, size of material, color and hardness Sandy (Brown Gravel Fine Grey Sand Land: Grey, wetstatic level 15' Sond: a/a .eedium to course Gravel: slightly sandy, good water20 G.A. Course Gravel: excellent water @0 CFL.
	n (address of: Township, Range, Section, if known; or distance main road
<u>45_TO</u>	Send: a/a
00 <u>00</u> 08	hedium to coarse Gravel: slightly sandy, good water20 GAL.
<u>90 TO</u> 91;	Coarse Gravel: excellent water 60 GPE.
TO	
TO	Mas & Statter
то	Marine in Marthan
TO	adding the there are
TO	
TO	
TO	· · · · · · · · · · · · · · · · · · ·
TO	
TO	

Ed. L. Drgram Area <u>13/4</u> (1')r use by 115051 sched Mat Valley mele Mat Valley

DRILLERE LOG

Owner Ed L. Ingram Use of well Home & Business Location (Address of; Township, Kange & Section if known; or distance from sain roads) Big Lake Y.

Drilled by Clarence Foss	3401 Spenard Road Address Swafford Drilling Co.
Date completed 7-14-59	Total depth of drilled hole 33 ft.
Bottom of casing it 32	feet Size of casing 6"
Finish (Check one) Open end (X) Screwa () Perforated ()
Describe screen or perform	tions
Well developed by (bailing)(pu	unping) 5 gallons per (hour)(minute)
for 2 (unurs) (minutes	a) with <u>10</u> feet of drawdown
Static water level 20	fest (soove) (<u>Selow</u>) land surface
Remarks Pumped full capacit	y of well from 30 ft.

Description of formation (Type of material, color, nurdness, water pearing, etc.)	Tnickness	Depth	
Sand and Clay (Brown)	15	0-15	
Clay(Blue) and Gravel	15 .	<u>15-30</u>	
Sand w/H ² O at 30 feet.	3	30-33	
	an a		
, , , , , , , , , , , , , , , , , , ,		1	
		1	

M DO NOT FILL IN WATER WELL DRILLERS LOG USGS No. Month Drilling Co. Area Driller Martine Use of Well Well Owner / Location (address of: Township, Range, & Section (if known); distance from road: Big Lake Pr. 4620 Anch 99503 Size of Casing O Depth of Hole 30 feet. Cased to 30 feet. Static water level 18 feet (above) (below) land surface. Finish of well (check one) Open end (): Perforated (). Describe screen or perforations: Well pumping test at 5-7 gallons per (hr) (min) for hours with feet of drawdown from static level. Remarks 6-5-73 WELL LOG Give details of formations penetrated, size of material, Depth in feet from ground surface color, and hardness. to appar to /0 ane 10 to // . as AM to 20 to 2 alau * andu . 29 to 30 to to to to to to to to

474

maising

S.G.S. and Mc Lell Area . (For USGS use only) DRILLERS LOG Sched nade Well Owner Horton M Lellan Use of well Location (Address of; Township, Range & Section, if known; or distance from main roads Big Lake, alaska, mail Bay, 1250 A. MA Drilling Co. Drilling Co. 10 ___ Total depth of drill hole_ Date completed _/// Size of casing 6 Bottom of casing at _____/4 feet Finish (Check one) Open end $(X_i; Screen (); Perforated ()$ Describe screen or perforations Weil developed by (bailing) (muchag) & gallons per (toar) (monte) for 12 (hours) (minutes) with 27 test of draudown. Static water level 50 feet (above) (below) land surface. Remarks Description of formation Thickness Depth (Type and size of material, color, hardness, water-bearing, etc.,) 21 0-2 Ird Dan 21-25 8 e gravel 55any ways for water at 90 2 gpM. pangrahe 134-1

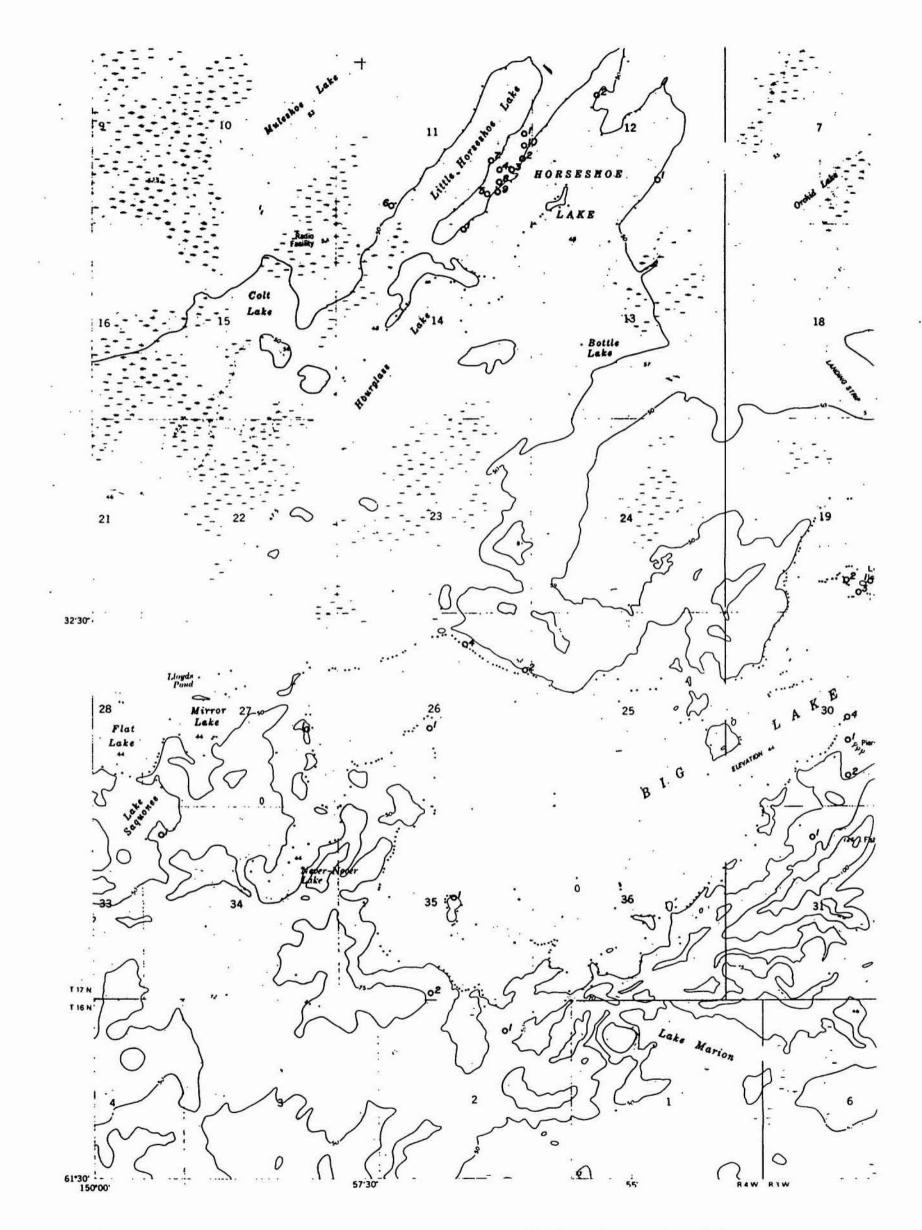
DO NOT FILL IN WATER WELL DR! LLURS LOG Drilling Co. Mayutt USGS No. Area Driller Well Owner Vic Spangle Use of Well Location (address of: Township, Range, & Section (if known); distance from road: llea : (3980 Bheken Dr. anch. 277-2879 111 Size of Casing @ Depth of Hole 77 feet. Cased to 74 feet. Static water level feet (above) (below) land surface. Finish of well (check one) Open end (1): Screen (): Perforated (). Describe screen or perforations: Well pumping test at /() gallons per (hr) (min) for hours with feet of drawdown from static level. Remarks 2-19-5 WELL LOG Give details of formations penetrated, size of material, Depth in feet from ground surface color, and hardness. mare 0 to 12 12 to 17 harapan. 7 to 22 22 to 2424 to 42 42 to 43 43 to 4 1 1.1 . to to to to to to to _____to _____ to -

C.E. Strom Mat Valling

Clarence Foss <u>Company</u> Bate started <u>7-21-59</u> -i. wner <u>Charles E. Strom</u> Date completed <u>7-25-59</u> adress <u>604 Manor Ave.--Gov'mt. Hill</u> Use of well <u>Home</u> Socation of well(Township, Range & Section, if known or distant from main roads) <u>Section 33--T17N--R3W----Echo Lake---Big Lake</u> Area. Total depth of drilled well <u>87</u> feet Fottom of casing at <u>87</u> feet Size of casing <u>6ⁿ</u>

Finish (Check one) Open end (X) Screen () Perforated ()

Remarks Used 89 3/1 ft. Casing. Pump at 30 ft. for 3 lins and


water would not clear up.

Description of formation (type of material, hard or soft, water bearing, color etc.)	Thickness	Depth From to
Clay (Brown) and Rocks		<u></u>
Chay(Blue) w/ Sand and Gravel	714'	14-28
Clay and Gravel (Dirty) w/H20-11 G.P.M.	3	28-31
Clay (Blue) w/ Sand and Gravel	6	31-37
Clay (Blue)	į	37-41
Clay w/Sand and Gravel	27	47-68
Hard-pan	16:	68-84
Gravel w/H ² O	33	84-87

(continue log on reverse side)

1 122 Į. · Jarres 33 Lak BEAVE Ľ ò H . З2 29 17 <u>'</u>, 8 Marion 2 Bottle 32 Lake ٧. 110 Pourd Pourd : : ί. 28 9 1 21

This figure corresponds with the following table(s).


This figure corresponds with the following table(s).

	NO.	Driller	Date drilled	depth (ft)	(ft)	· yield · (gpm)	Use	Owner's na Last	First
SB 16 3 5 AB SB 16 4 2 AB		TRI-CITY DRL TRI-CITY DRL	10-22-60 10-06-60	3215 3005			U U U	UNION OIL	BIG LAK
SB 17 3 4 CC	1 1	OWNER	01-01-66	17	6	202-0	H.	FOSSBERG	ELDRIDG
SB 17 3 4 DA SB 17 3 4 DD		HARTNER DRL MOFFITT DRL	09-17-76 05-26-70	88	25	10 10	H · H	VERMILYEA DENNIS	JACK
SB 17 3 8 DA	81 1	O&E DRILLING	10-30-76	54	24	10	H	MCDANIEL	JAY&BAR
SB 17 3 9 BB	1 2	PATRICK LARSON L	01-01-74 01-01-64	42	17 26	15	H H	ELLIS	RALPH
SB 17 3 9 BB SB 17 3 9 CC		M-W DRILLING	06-11-75	55	10	5	Н	CUMMINS	LEONARD JOHN
SB 17 3 9 CD	1 4	G&G DRILLING	01-01-66	58	41	20	Ţ	WASILLA	ASSM GO
SB 17 3 16 CD SB 17 3 16 DB		G&G DRILLING WESTN STATES	10-13-76	53 54	`6 14	10 75	н Н	NERLAND ADF&G	JERRY MEADW C
SB 17 3 16 DB	2 3	WESTN STATES	11-18-76	30	9	10 M G	Т	ADF&G	MEADW C
SB 17 3 16 DB SB 17 3 16 DD	3 3 1 1	WESTN STATES	05-14-71	31 62	9 5	10	T P	ADF&G AK DIV PKS	ROCKY L
SB 17 3 19 DC	1 2	MOFFITT DRL	03-21-73	30	5 2 5	10	H	ERICKSÓN	EDWIN
SB 17 3 19 DC SB 17 3 19 DD		MITCHELL DRL MOFFITT DRL	03-26-73 12-12-73	52 26	5	20 4	н н	PEDERSON DAHLBERG	HARRY' OSCAR
SB 17 3 19 DD	2 1	MOFFITT DRL	03-29-73	31	3	5	C	DAHLBERG	· IS LODG
SB 17 3 20 CA SB 17 3 20 CC	1 1	UNKNOWN MOFFITT DRL	05-01-71 01-11-74	65 28	5 3	10 4	P H	AK DIV PKS	BIG LK
SB 17 3 20 CD		MOFFITT DRL	02-11-71	55	13	8	· H	- ROORIQUES RAINEY	JACK CARROL
SB 17 3 20 CD	2 3	MITCHELL DRL	05-31-73	33	3	7	н -	GALLANT	FRED
SB 17 3 20 CD SB 17 3 20 CD	3 3 31 2 32 2	MITCHELL DRL UNKNOWN	05-25-73 01-01-57	37 37	6		н С	SHIP	ART
SB 17 3 20 CO		BERGSTEDT	11-01-66	108		80	. C	KETCHUMS	RESORT
SB 17 3 20 CD SB 17 3 20 DD	33 2 11 4	MCKAY DRL OWNER	09-10-76 01-01-66	30 31	. 5	20 5	H C	FIEDLER BIG LAKE	WILTON
SB 17 3 20 DD	2 4	UNKNOWN	01-01-63	47			С	ISLANO	LOOGE
5B 17 3 21 AA 5B 17 3 21 AB		HARTNER DRL OWNER	06-16-76	28 14	15	10	H H	STARKEY ROCCA	TED
SB 17 3 21 AD		L&M DRILLING	04-01-70	2B	14	25	Ċ	FISHER	CLAYTON ROBERT
18 17 3 21 AC	01 6	HARTNER DRL	06-14-76	29	16	10	С	FISHER	ROBERT
SB 17 3 21 AC SB 17 3 21 CC	31 4 C1 3	SWAFFORO DRL OWNER	01-01-60 01-01-50	36 8	7		С Н	BIG Y HERMANS	GROCERY
SB 17 3 28 AA	31 9	WESTN STATES	05-31-78	160	-20	50	Ρ	MAT-SU BOR	BIG LAN
SB 17 3 28 AB SB 17 3 28 AC	81 8 81 6	M-W DRILLING OWNER	06-30-75	74 16	15 14	8	H	ANDERSON	MIKE OSCAR
SB 17 3 28 BA		UNITED GEOPH	01-01-61	29	9	200	P	BIG LAKE	LODGE
SB 17 3 28 BA SB 17 3 28 BB		M-W DRILLING M-W DRILLING	10-25-79 08-09-78	82	-2	16	н н	SANDERS	JAMES
SB 17 3 28 BC		UNKNOWN	08-09-78	38 14	10 3	15		RUDY	VIRGIL SARAH
SB 17 3 28 BD	31 5	PALMER RON	05-05-75	100	22	5	. н	PACK	BILL
SB 17 3 28 DB SB 17 3 29 AA	81 · 3 81 1	HUBER JOHN UNKNOWN	07-01-67 07-14-67	14	7	4	. н	SUNSET .	TRLR PF
SB 17 3 29 AA	A1 9	SMITH	01-01-64	60	41		С	BURKESHORE	MARINA
SB 17 3 29 AB SB 17 3 29 AB	01 5 31 7	G&G ORILLING G&G DRILLING	01-01-71 01-01-71	30 74	8 6	13 5	н	PUHL	RAY RAY
SB 17 3 29 BA	1 14	SWAFFORD DRL	07-11-59	67	15	10	н	BAKER	
SB 17 3 29 BE		MOFFITT DRL	02-22-71	50	20	5	H	OAKES PETERSEN	NATHAN
SB 17 3 29 CA SB 17 3 29 CB	01 8 01 16	G&G DRILLING M-W DRILLING	01-04-74	- 35	4 10	10 30	н н	HELMS	LESTER JACK
58 17 3 29 CB		M-W DRILLING	08-14-78	119	20	10	н	HELMS	JACK
SB 17 3 29 DB SB 17 3 29 DC	C1 15 B1 13	UNKNOWN M-W DRILLING	06-10-75	14 65	3	50	С Н	PAYTONS	POINT BOB
SB 17 3 29 DC	C1 6	M-W DRILLING	06-11-75	67	4	12	н	PHILLIPS	GLEN
SB 17 3 29 DC SB 17 3 29 DC	$ \begin{array}{ccc} 11 & . 17 \\ 11 & . 4 \end{array} $	TEAL HOWARD HATCH DRL	09-03-77 01-01-70	47	35	10 8	H P	LESTER AK DIV PKS	JOSEPH BIG LAN
SB 17 3 29 DD	C1 12	M-W DRILLING	06-28-76	99	18	20	H	SMITH	MARVIN
SB 17 3 30 AA SB 17 3 30 AA	A1 3 A1 5	MIICHELL DRL M-W DRILLING	01-14-75 01-02-74	28 45	6 18	5 15	н	FARR LAAK	DAN WILLIAM
SB 17 3 30 DE	31 4	M-W DRILLING	12-14-73	75	40	10	й	SHUPE	MIKE
58 17 3 30 DE 58 17 3 30 DC		M-W DRILLING MAT-SU DRL	06-29-76 06-30-76	42 39	13	8.	н н	WINCHESTER	RAY
58 17 3 30 DE	01 6	M-W ORILLING	05-22-76	183	80	54	Ĥ	COOK	JIM WALTER
SB 17 3 31 BA	A1 6	UNKNOWN G&G DRILLING	01-01-66 01-01-70	42 115	" ø	5	С Н	BIG LAKE	YCHT CL
SB 17 3 33 BE SB 17 4 1 DC		RB MNTGOMERY	05-15-73	8230		5	Ü.	KRULL GREAT PLNS	MARION
SB 17 4 11 CC	31 6	D&E DRILLING	03-01-76	54	6	18	H	LIDELL	ERIC
SB 17 4 11 DA SB 17 4 11 DA	A1 1 D1 10	OWNER KENS COMPANY	01-01-65 06-19-78	15 57	9 10	14	H H	MASON	WILL GORDON
SB 17 4 11 04	B1 7	KENS COMPANY	07-17-78	61	120	15	н	REESE	BILL
58 17 4 11 DA 58 17 4 11 DA		MCKAY DRL OWNER	08-14-76 01-01-64	54 30	8	12	н н	MASON MORTON	WILLIAN
SB 17 4 11 DA	A2 2	KENS COMPANY	07-21-78	59		14	н	ALVORO	BOB
SB 17 4 11 DA SB 17 4 11 CA	C1 3	OWNER KENS COMPANY	01-01-72 06-19-78	25 66	12	21	H H	WRIGHT WILSON	NEIL
SB 17 4 11 00	A1 8	KENS COMPANY	06-19-78	64	10	20	H	ORTIZ	TED MAX
SB 17 4 11 DC	C1 5	MCKAY DRL	08-09-76	90	12	40	H	HARDISTY	ROBERT
58 17 4 11 DI 58 17 4 12 BI	01 9 D1 2	KENS COMPANY MOFFITT DRL	02-03-79 01-17-74	62 41	12	14 10	H	PIPPEL GURONDALE	BOB
SB 17 4 12 DC	B1 1	OWNER	01-01-54	30	7	10	н	CAMPBELL	HOWARO
SB 17 4 14 AB		HARTNER DRL KENS COMPANY	06-28-76 07-23-78	30 60	15 10	10 14	H	KORMAN PETERSON	DARRELI
SB 17 4 26 AB	B1 4	HARTNER DRL	09-19-78	50	20	20	н	GRANUS	WALTER
58 17 4 26 A1 58 17 4 26 C/		HARTNER DRL PALMER RON	05-25-76 05-01-73	52 34	30 24	10 14	H	FRIOLEY	DAVE
SB 17 4 27 04	C1 1	UNKNOWN	05-01-/3	34 40	24	14	С	UNREIN CALL OF	JOHN WILD C
SB 17 4 34 BE SB 17 4 35 AG	A1 1	HARTNER ORL	11-10-76	75	30	10	H	DODGE	GEORGE
DD 1/ 4 (5 A)		MOFFITT DRL	03-24-71	87	16	10	н	HOYT	HARRY
SB 17 4 35 CI	01 2	JENKENS DRL	07-01-75	24	13	15	H	MCINTIRE	BETTY

MAT-SU BOROUGH LANDFILLS

BIG LAKE

Location: T17N, R3W, SW¼ of SE¼, Section 22 USGS map Anchorage (C-8) SE, Scale 1:25,000

This figure corresponds with the following information.

BIG LAKE SITE -- Mat-Su Landfills

- Location: SW 1/4 of SE 1/4, Sec 22, T17N, R3W Anchorage (C-8) SE sheet, scale 1:25,000 Approx 3/4 mile east of paved road around east shore of Big Lake and 3/4 mile NE of Big Lake airport No. 2
- General topographic setting: Rolling or hummocky terrain, morainal ridges surrounded by and cut by stream outwash deposits.
- Ground-water flow direction: Regional flow direction to southwest and south, toward Big Lake, Fish Creek and ultimately to Knik Arm. Apparent local flow at landfill is southwest through low, boggy spruce-covered area. Slope of active landfilling area in mid- to late-1985 possibly leads to surface and shallow groundwater flow to the northeast.
- Onsite or nearby ground-water information: Domestic wells within a mile or two from site range in depth from a few tens of feet to about 100 feet; water levels are commonly less than 20 feet below land surface, and several deeper (about 100 feet) wells near Big Lake reportedly flow at the surface.

Information on ground-water conditions within the site is available from a 1982 report by Arctic Engineering Inc. Five 25-foot borings were made; none encountered ground water. Two wells were drilled:

No. 1 -- Depth 85 feet, confined water-bearing zone at 58-59 feet, WL = 24 feet

> USGS designation: Big Lake LF-5 USGS ID 613239 149471901

- No. 2 -- Depth 70 feet, water-bearing zones at 59-60 and 69-70 feet, WL = 12 feet
- Monitoring wells: Four water-quality monitoring wells were drilled in February 1986. Drill logs and construction data follow.

BIG LAKE SITE -- Mat-Su Landfills (cont) Big Lake LF No. 1 [USGS ID 613235 149473401] Well depth -- 21 feet Water level -- 3.5 feet below 1sd Well finish -- 10 slot screen (16-21 feet) Well log --0 - 6 Peat/organic material 6 - 12 Cobbles with clay, water 12 - 15 Gravel with clay,dry 15 - 24 Gravel and sand, water 24 - 28 Sand and gravel in clay, dry (Pull casing, finish well at 21 feet) [USGS ID 613243 149472901] Big Lake LF No. 2 Well depth -- 65 feet Water level -- 30 feet below lsd Well finish -- 12 slot screen (60-65 feet) Well log --0 - 12 Silt, sand and gravel (odor of "garbage") 12 - 21 A/A, with clay-size material interspersed or in very thin zones, dry 21 - 30 Sand and silt, dry 30 - 34 Silt, clayey, damp 34 - 37 A/A, but dry 37 - 53 Gravel and silt (= Till? -- hole stays open while drilling ahead of casing from 4-5 ft) dry 53 - 56 A/A, but damp 56 - 58 A/A, dry again . 58 - 60 A/A, wet 60 - 66 Gravel, broken gravel-size rock pieces, sand, with water

BIG LAKE SITE -- Mat-Su Landfills (cont) Big Lake LF No. 3 [USGS ID 613235 149472801] Well depth -- 37.5 feet Water level -- 12 feet below lsd Well finish -- Open end Well log --0 - 6 Peat, organic material 6 - 10 Clay with gravel, dry 10 - 15 A/A, but damp 15 - 18 Gravel and cobbles, water 18 - 24 Gravel, clayey, less water than above 24 - 30 Gravel, broken grav-sized material, water (clayey from 27 feet) 30 - 36 Sand and silt with gravel, dry 36 - 45 Sand and gravel, clayey, a little damp 45 - 48 Sand and gravel, dry 48 - 50 Silt, sandy, dry 50 - 54 Sand and gravel, dry (clay streak) 54 - 60 Silt/clay, heaving (Pull casing to 37.5 feet, some water entering from below, hole caving in) Big Lake LF No. 4 [USGS ID 613235 149472802] Well depth -- 22 feet Water level -- 5 feet below 1sd Well finish -- 15 slot screen (17-22 feet) Well log --0 - 8 Peat, organic material 8 - 10 Cobbles in clay, water 10 - 12 Gravel and "rocks" 12 - 17 A/A, clayey, with water 17 - 22 Cobbles, broken "rocks", water

A/A, with clay

142

22-

Leo A. Brueggeman Star Rt. Box 2275 Wasilla, Alaska 99687

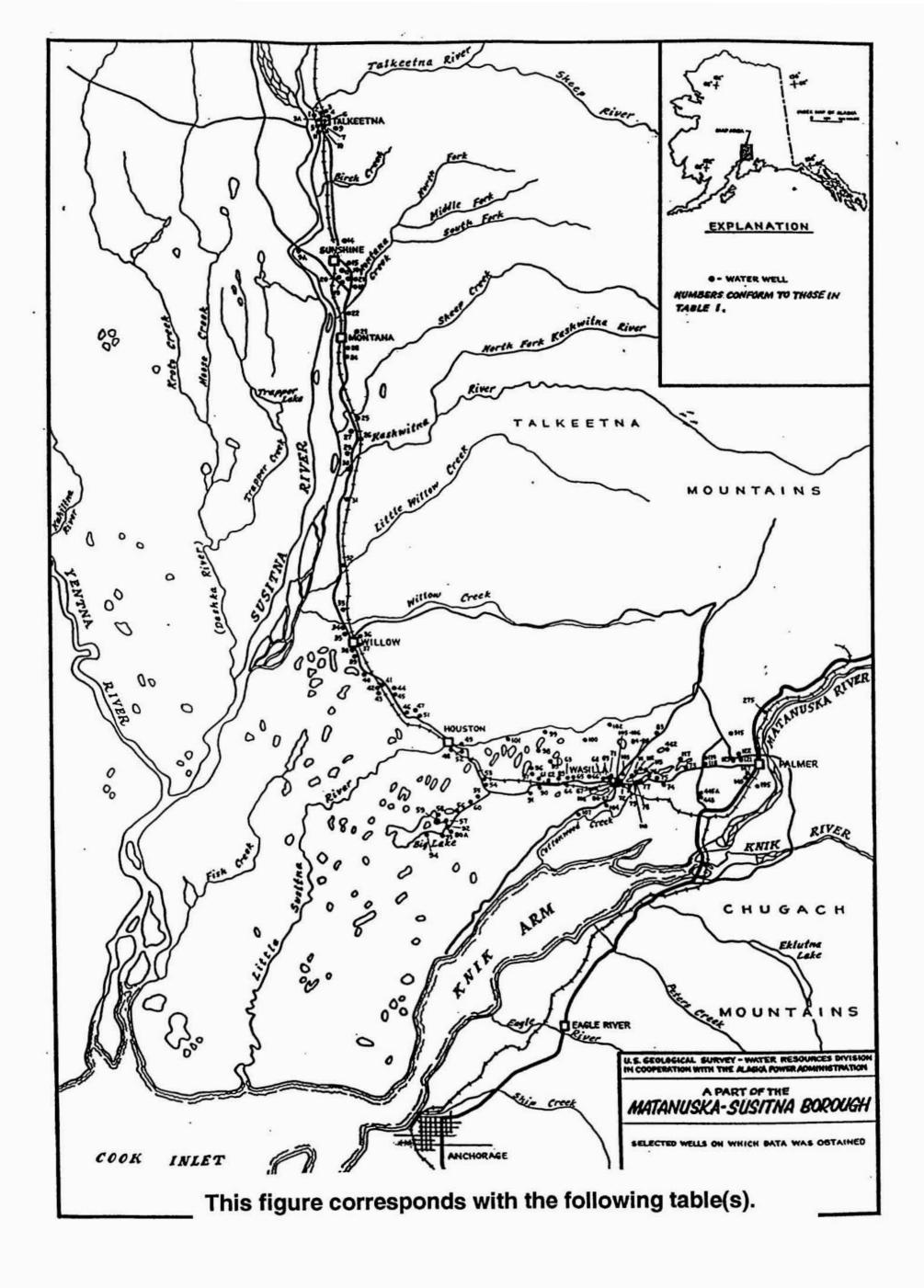
BLUE BEAR DRILLING

Telephone 892-6342 Mile 1, Big Lake Road

WATER WELL LOG

Property Own	er	- SU	BOROUGK	<u>۲</u> Da	ate Completed	8-28-81
Location	SadiT.	JRY	FILL			LF-5
Mailing Addre	ess	66	IKC, AK			ی در مراجع این مراجع می مراجع این م
Driller						
Depth of Well	85	ft.	Casing Diameter	<u>6</u> in.	Total Casing	Installed
Static Water L	evel (measure	ed from gro	ound surface)			÷
Well Yield	GPM					
Wa	TER L	vell	#			
from	pth to			Form	ation	
0	6	Tanc	ULAY E'GAS	vel		
6	ZĠ	GAZV	2L37 F'GAS Cel Im Bedea Cel im Bedea	IN TA	N SILT	
26	3.3	6120	21 in Beader	d in an	er Silty	CLZY
.33	58	Gazve	el Mixed wit	H GREYE	ROOMNE	Lax (daci Dukal)
58	59	Loose G	novel mixed	BLacks	and ESI	LT (WITCH BEJKING
59	85	Gazo	el mixed w.	t # GAR	Y S'RO.	Charle Besking
		ζ.	NJ WITER		e Decciv	ELay (Hard Packe
		Water	Somfle Tak	52.4 1-120	11 58-59	フェンゼ
		RCau	iciny Arback,	, ZEMP	would n	IST CLEER

General Information


Leo A. Brueggeman Star Rt. Box 2275 Wasilla, Alaska 99687

BLUE BEAR DRILLING

Telephone 892-6342 Mile 1, Big Lake Road

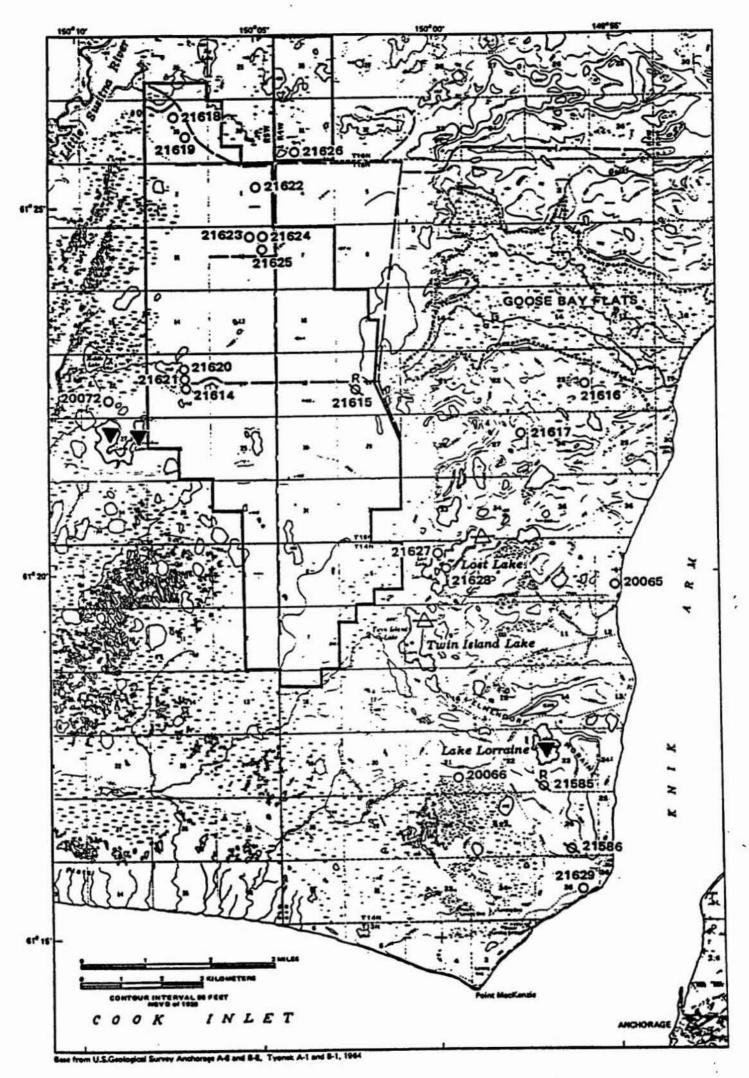
			-	-	-			-				\sim	1
v	N	Δ	1	-	н	· V	v	-	L.,		L	U	1
				_			٠	-	-	-	-	~	-

Property Owner	Mat-	SU BOROGGH Date Completed 2-28-81
Location	NITZI	2Y FILL
Mailing Address	Big	JLOKE, AK
Driller		
Depth of Well _		
Static Water Le	vel (measure	d from ground surface)
Well Yield		
	Wo	Ter Well #2
Dept		Formation
0		BROWN SILTY SOUND & GROVEL
22	59	GRADEL INBERED INCONT SUT (Hand Parked)
59	60	Seers OF WITCH IN GREY SILTYCLIY
60	69	Seers OF WITER IN GREY SILTYCLIY (BRILED WHT AS MUND) GREAVELIMBALLED IN GREY SILT (Hard Facked)
69		BLUE SIND & GREVEL WITH WITER
		CLEARED UP Pumped 15GPM with 15 DRANdown)
		Water Sample Taken From THIS ZONE
General Inform	nation	

We11	Owner or name	Well	Well	Depth	Pumping	Drawdown	Remarks
no.	9	depth	diameter	to	rate	(feet)	
		(feet)	(inches)	water	(gallons		
				(feet)	per min.)	•	
29	F. J. Smith	24	8	-	-	-	
30	A. G. Coleman	77	6	42 .	-	-	
31	Arnold Echola	72	6	25	11	15	L, C
32	M. and G. Persing	29	6	8	7 1/2	8	L
33	A. M. Hazel	35	2	30	-	-	
34	Alaska Department of Highways	28	6	8	-	-	Highly organic water
35	Homer Springer	47	6	- 1	-	-	
36	Willow Trading Post	85	-	-	-	-	
37	L. C. Hazel	40	6	-	-	-	
38	Willow Elementary School	80	-	- 1	-	-	С
39	Willow General Store	64	6	-	-	-	
40	Willow Inn	72	6	-	-	-	
41	White's Crossing	68	6		-	-	
42	White's Trailer Court	68	6	-	-	-	
43	Nancy Lake Wayside (State)	130	6	24	10	20	L
44	Huseby's 76 Station	40	6	-	-	-	Small supply o water
45	Harold A. Nelson	46	6	32	5	0	
46	Houston Inn	150	6		- 1	-	Formerly suppl 100 people
47	John Linnebur	50	6	-	-	-	
48	Calvin Hartman	27	6	9	7 1/2	1	L
49	Church of Christ, Houston	100	6	+1	-	-	Artesian flow,
51	Ruby Manion	118	6	96	10	. 9	L
52	Houston Lodge	22	1 1/4	11	-		Driven well
53	Ray Grunert	42	6	-	-	-	
54	Edward Wasey	91	6	21	10	62	L
55	Richard Kopsack	12	20	16	- 1	- 1	Dug well

.

.--Records of wells in the Matanuska-Susitna Borough area--


							1
Well no.	Owner or name	Well depth (feet)	Well diameter (inches)	Depth to water (feet)	Pumping rate (gallons per min.)	Drawdown (feet)	Remarks
56	Big Y Grocery and Station	36	6	-	-	-	
57	Big Lake Summer Camp	31	6	-	300	-	Supplies 30 people
58	Ship Ahoy, Big Lake	108	6	-	80		
59	Marvin Heikes	50	6	20	-	-	
60	Edward Wasey	22	24	-	-	-	Dug well
61	Rainbow Lake Lounge	48	6	-	-	-	
62	Richard Benner	100	6	-	-	-	
63	William Priddy	57	6	-	50	-	
64	Henry Burton	90	6	-	-	-	
65	Meyers Coffee Shop	29	6	-	30	0	
66	William Church	66	6	-	-	-	
67	Hallea Lodge	57	6	-	-	-	
68	Polis Hotel	60	6	-	-	-	
69	Eskimotel	33	6	-	-	-	
71	Cottle's Texaco Station	35	6	-		-	
72	Wasilla Bldg. and Farm Supply	42	6	-	· -	-	
73	Ernest Sullivan	48	6		-	-	
74	William Patrick	92	6	-	-	-	
75	Lutheran Youth Center	175	6	- 1	-	-	
76	Leslie Green	20	4	- '	-	-	
77	Chester Tracy	52	6	-	-	-	
78	Green Acres Resort	65	6	-	-	-	
79	J. C. Wright	74	6	10	7 1/2	4	L
80	Homer Mayo	47	6	-	-	× -	
80a	Big Lake School	48 35	6	-	-	-	С
81	Jack Minnick		- 36	-	-	-	Dug well
82	James Calder	43	6	-	1.	-	
83	Robert Clarke	170	8	- 1	-	-	

.

--Records of wells in the Matanuska-Susitna Borough area--

Well no.	Owner or name	Well depth (feet)	Well diameter (inches)	Depth to water (feet)	Pumping rate (gallons per min.)	Drawdown (feet)	Remarks
84	Dennis Crawford	69	8	-	-	-	С
85	Alaska Railroad Station, Wasilla	131	8	16	5	8	
86	Ray Morrison	65	6	- 1	-	-	
87	Teeland's Store	18	9	-	5	-	Dug well
87a	Lakeside Hotel	40	6	-	-		
88	Teeland's Residence	18	24	-	-	-	
* 89	A. D. Ruff	90	6	35		-	
90	Oran McMillan	54	6	-	-	-	
91	Carl Berato	26	6	-	-	-	
92	Big Lake Lodge	35	4	-	200	-	
93	Homer Merchant	14	4	-	-	-	
94	Yacht Club (Big Lake)	42	4	-	-	-	
95	M. Fuller	72	6	32	10	26	L
96	Len Melton	60	6	40	7 1/2	5	L
97	Tom Phillips	43	6	16	7 1/2	4	L
98	John Businoff	170	6	54	1	2	L
99	John Moss	55	6	-		-	
100	Raymond Dahm	253	6	-		-	
101	Jess Harker	52	6	37	10	5	L
102	Charles Carney	53	20	-	-		Dug well
103	Frank Smith	42	6	-		-	
104	Frank Smith	110	6	-	1 -	×.	
105	Robert Vroman	70	6	27	13	32	L
106	James Gatewood	107	6	25	10	30	L
107	O. L. Byers	60	6	14	7 1/2	14	L
108	Wasilla Elementary School	87	6	-	-		
110	John Wallman	37	6	-		-	
111	Barney Locke	65	. 6	-	30	5	

-Records of wells in the Matanuska-Susitna Borough area-

- Location of data-collection sites.

This figure corresponds with the following table(s).

- Summary of well data

*

 \sim

_

12

 $\langle \mathbf{x} \rangle$

.

Well number	Omer er esse	Priller	Year completed	Altitude (ft above sea level)	Depth (ft)	Depth of openings (ft)	Aqui fer Eype	Yield (gel/min)	Water leve) (ft below land surface)	Bata measured	Specific conductance of water (umhos/cm at 25°C)	Bate measured	Romarks
20072	Gulf 011	Penn Jersey	1969	111	200	200	Confined	65	3	01-01-69			• ••
20073	Hard Bay	tean Jersey	1971	70	298	298	Confined	175	30	Unknown	••		Water reported by owner to be too salty te drink.
21585	Nataneska-Susitna Borough	91-M	1951	130	396	379-398	Confined	316	106 104, 82 104, 42 104, 46 104, 87 104, 39 104, 82 105, 51 105, 51 105, 22 104, 06	03-18-81 07-29-61 09-15-81 09-17-81 12-09-81 03-23-81 05-19-82 06-22-82 06-27-82 09-23-82 02-23-83	675	82-15-81	Mater levels influenced by tide in the order of 0.2 -0.5 ft. Continuous water-level recorder installed Sept. 18, 1981
21586	Natanuska-Susitna Borough	M-W	1961	152	358	318-323	Confied	*5	142	03-03-81	336	02-12-81	Mater levels influenced by tides in the order of 2 ft.
21614	USGS test well	M-W	1983	140	231	231	Confined	sp	11.32 11.40 11.14	09-07-83 09-17-83 10-06-83	200	09-17-83	Drilled to 200 ft in Sept. 1982 deepened to 231 ft in Aug. 1983
21615	USGS test well	N-W	1982	185	318	318	Confined	>7	90,0 90,0 99,6 90,17 89,98 88,87 09,24 89,11 89,11 89,40	10-12-82 10-20-82 02-18-83 04-28-83 06-16-83 08-81-83 08-81-83 08-29-83 08-19-83 10-06-83	2100	10-12-82	Continuous water level recorder installed Oct. 12, 1982.
21616	John Faco	R-W	1982	65	73	73	Water table	4	60 56.95 59.03 59.12	07-12-82 06-16-83 08-01-83 09-19-83			
21617	Greg Sell	M-W	1982	200	380	380	Conf Incd	1	141.22 144.33 141.21	06-16-83 08-01-83 09-19-83			2
21618	Karen Loo	M-W	1982	120	239	239	Confied	200	2 4.55a 5.18a	07-29-82 86-06-83 09-19-83	350	09-24-82	
21619	Karan Leo	M-W	1982	120	50	50 -	Water table		28 26.67 27.11 27.39	07-29-82 06-16-83 06-01-83 09-19-83	•	09-24-82	ž
21620	Milburg Tucker	Mhea Lon	1983	125	206	206	Confined	150		06-01-83	205	10-06-83	
21621	Hilburn Tucker	Meaton	1983	125	242	242	Confined	300	8	06-01-83	205	10-06-83	
21622	Dr. John James	Durbin	1983	145	60	60	Water table	10	25	06-10-83	200	10-06-83	
21623	H&R Farms #1	Durbin	1983	155	60	60	Water table	35	27	06-10-83	230	10-06-83	
21624	HAR Farms #2	Durbin	1983	155	60	.60	Water table	30.	24	07-01-83	210	10-06-83	
21625	HER Farms #3	Durbin	1983	150	60	60	Water table	30	24	07-01-83			•
21626	Sande Wright	Moon	1963	145	60	60	Water table				200	06-10-83	
21627	Jack Culhane	Penn Jersey	1983	130	256	256	Confined	. 10	93	03-09-83	1020		Water contains some gas.
21628	Jerry Culhane	Penn Jersey	1983	130	181	181	Confined	30	80	03-11-83	890		Nater contains some gas.
21629	Roy Syren	Syren Bros.	1982	140	196	196	Confined	25	130	03-12-82			

•

a Recently pumped

Depth below land Lithologic description surface in feet Well 20072, Gulf Oil, NW4 SW4 sec.22, T.15 N., R.5 W. [Log by Penn Jersey] 0 to 14 Muskeg Sand (water) 14 to 19 19 to 40 Clay 40 to 62 Sand and clay Quicksand 62 to 168 168 to 194 Clay 194 to 197 Sand (water) ---Gravel (water) 197 to 200 Well 20073, Ward Gay, NE¹/₄ SE¹/₄ sec.24, T.15 N., R.6 W. [Log by Penn Jersey] 0 to 80 Sand 80 to 290 Sand and silt 290 to 300 Gravel Well 21585, Matanuska-Susitna Borough test well, SW4 SW4 sec.23, T.14 N., R.4 W. [Log by USGS] Silty sand and gravel 1 to 4 Silty sand and gravel (water) 4 to 15 15 to 26 Silty sand (water) 26 to 35 Clay Silty, sandy clay (damp) 35 to 55 55 to 63 Clay 63 to 125 Hardpan Silty sand and gravel (water) 125 to 130 130 to 170 Sand and gravel (water) 170 to 188 Clay 188 to 197 Gravelly clay Clayey, silty sandy gravel 197 to 219 219 to 284 Sand and gravel (water) 284 to 294 Sand (water) 294.to 309 Sand and gravel (water) Gravelly sand (water) 309 to 312 Silty sand (water) 312 to 323 323 to 338 Silty sand and gravel (water) Sand and gravel (water) 338 to 398

Depth below land	lithelasis description
surface in feet	Lithologic description
Well 21586, Matanuska-Susitna	a Borough test well, SW¼ SE¼ sec.26, T.14 N., R.4 W. [Log by USGS]
1 to 8	Sand and gravel
8 to 18	Silty sand
18 to 23	Sand (water)
23 to 31	Clay, gray
31 to 106	Gravelly clay, gray
106 to 116	Clayey gravel
116 to 156	Silty gravel
156 to 166	Sand and gravel (water)
166 to 185	Hard dry silt
185 to 198	Sand and gravel (water)
198 to 203	Sand (water)
203 to 219	Silt, sand, and gravel
219 to 225	Sandy, sand and gravel (water)
225 to 238	Gravel (water)
238 to 328	Sand and gravel (water)
328 to 339	Sand, heaving (water)
339 to 349	Silty sand and gravel, heaving (water)
349 to 351	Silty gravel Cemented sand and gravel
351 to 352 352 to 358	Clay, sticky
352 00 358	clay, sticky
Well 21614, USGS test well	SW¼ NE¼ sec.23, T.15 N., R.5 W. [Log by USGS]
0 to 14	Sand and gravel
14 to 43	Sand and gravel (wet)
43 to 78	Clay, gray
78 to 80	Silty sand and gravel, gray
80 to 104	Silty sand, gray
104 to 111	Silty clay, gray
111 to 133	Sand, gray
133 to 145	Gravelly silt, gray
145 to 158	Sandy silt, gray
148 to 178	Gravelly silt, gray
178 to 200	Sandy silt, gray
200 to 210	Sandy silt, gray
210 to 213	Medium-fine sand, gray (water to 210 ft)
213 to 215	Silty, fine sand, gray
215 to 220	Coarse to very-fine sand and wood fragments
220 to 224	Silty sand and wood fragments Gravelly silt, gray (yields virtually no water)
224 to 227 227 to 231	Sand and gravel (water)
221 LU 231	Sand and graver (nacer)

*

	th below land face in feet	Lithologic description
		11, NE4 SW4 sec. 20, T. 15 N., R.4 W. [Log by USGS]
	uliuliya (kitangan tangan	
	2 to 20 20 to 45	Sand, gravel, and cobbles Sand and gravel
	45 to 50	Silt, brown
	50 to 63	Sand (water)
	63 to 72	Silty gravel
	72 to 74 74 to 76	Silt, brown Sand and gravel (water)
	76 to 80	Silty sand and gravel
	80 to 90	Sand and gravel (water)
	90 to 95	Silt, gray Clay, brownish gray
		Clayey silt with thin sand lenses (water)
		Gravelly silt
	120 to 258	Clayey silt, gray
	258 to 278 278 to 314	Sandy and clayey silt, gray Silty gravelly clay, gray
	314 to 318	Sand and gravel (water)
0	Well 21616, John Faeo, NW3	≰ SE¼ sec.23, T.15 N., R.4 N. [Log by M-W Drilling]
	0 to 18	Topsoil
	18 to 19	Very hard cobble gravel
	19 to 38 39 to 58	Sand Layered sand and gravel
	58 to 68	Sand
	68 to 73	Sand and gravel (water)
	Well 21617, Greg Bell, S	E¼ NE¼ sec.27, T.15 N., R.4 W [Log by M-W Drilling]
	0 to 2	Topsoil
	2 to 103	Sand, very fine
	103 to 136 136 to 198	Silty clay Clay
	198 to 238	Silty clay
	238 to 328	Clay
	328 to 338 338 to 373	Clay - hardpan Hardpan (till)
	373 to 380	Sand, very fine, heaving

÷.

Depth below land surface in feet	Lithologic description
Well 21618, Karen Lee	(Dairy West), SE% NW% sec.35, T.16 N., R.5 W [Log by M-W Drilling]
0 to 26 26 to 30 30 to 58 58 to 78 78 to 86 86 to 98 98 to 104 104 to 106 106 to 200 200 to 206 206 to 219 219 to 239	Sandy gravel Gravel (damp) Sandy clay Silty sand Silty sand and clay Clayish hardpan Clay - hardpan Hardpan and gravel (damp) Clay Sand, fine, gray Silty sand and gravel Gravel (water)
Well 21619, Karen Lee	(Dairy West) NW¼ SE¼ sec.35, T.16 N., R.5 W. [Log by M-W Drilling]
2 to 34 34 to 38 38 to 50	Sand and gravel Sand (damp) Sand and gravel (water)
Well 21622, Dr. John James, S	W녹 NE坛 sec.5, T.15 N., R.5 W. [Log by Durbin Drilling]
0 to 40 40 to 60	Sand and gravel (water)
Well 21623, H&R Farms #1, NE½ O to 60	NE¼ sec.12, T.15 N., R.5 W. [Log by Durbin Drilling] Sand and gravel
Well 21624, H&R Farms #2, SE¼ O to 60	NE¼ sec.12, T.15 N., R.5 W. [Log by Durbin Drilling] Sand and gravel

•

74

4

 (\mathbf{a})

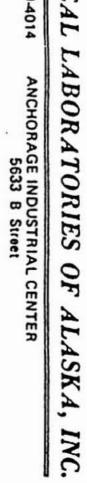
91

rface in feet	Lithologic description
11 21625, H&R Farms	#3, SE¼ NE¼ sec.12, T.15 N., R.5 W. [Log by Durbin Drilling]
0 to 60	Sand and gravel
Well 21627, Jack (Culhane, SW¼ NE¼ sec.4, T.14 N., R.4 W. [Log by Penn Jersey]
0 to 15	Topsoil
15 to 17 17 to 21	Clay and gravel Sandy gravel (damp)
21 to 23	Clay
23 to 24	Boulder
24 to 33	Clay
33 to 133	Gray clay Rouldon
133 to 134 134 to 137	Boulder Clay and gravel
137 to 155	Gray clay
155 to 230	Clay and gravel (damp)
230 to 253	Clay and gravel (dry)
253 to 256	Sand and gravel
Well 21628, Jerry	Culhane, NW% SE% sec.4, T.14 N., R.4 W. [Log by Penn Jersey]
Well 21628, Jerry (0 to 2	Culhane, NW¼ SE¼ sec.4, T.14 N., R.4 W. [Log by Penn Jersey] Topsoil
0 to 2 2 to 13	Topsoil Clay and gravel (damp)
0 to 2 2 to 13 13 to 26	Topsoil Clay and gravel (damp) Gray clay and gravel
0 to 2 2 to 13 13 to 26 26 to 56	Topsoil Clay and gravel (damp) Gray clay and gravel Clay and gravel (damp)
0 to 2 2 to 13 13 to 26 26 to 56 56 to 78	Topsoil Clay and gravel (damp) Gray clay and gravel Clay and gravel (damp) Clay and gravel
0 to 2 2 to 13 13 to 26 26 to 56	Topsoil Clay and gravel (damp) Gray clay and gravel Clay and gravel (damp)
0 to 2 2 to 13 13 to 26 26 to 56 56 to 78 78 to 136	Topsoil Clay and gravel (damp) Gray clay and gravel Clay and gravel (damp) Clay and gravel Clay
0 to 2 2 to 13 13 to 26 26 to 56 56 to 78 78 to 136 136 to 180 180 to 181	Topsoil Clay and gravel (damp) Gray clay and gravel Clay and gravel (damp) Clay and gravel Clay Clay and gravel
0 to 2 2 to 13 13 to 26 26 to 56 56 to 78 78 to 136 136 to 180 180 to 181 Well 21629, Roy S	Topsoil Clay and gravel (damp) Gray clay and gravel Clay and gravel (damp) Clay and gravel Clay Clay and gravel Sandy gravel
0 to 2 2 to 13 13 to 26 26 to 56 56 to 78 78 to 136 136 to 180 180 to 181	Topsoil Clay and gravel (damp) Gray clay and gravel Clay and gravel (damp) Clay and gravel Clay Clay and gravel Sandy gravel yren, NE¼ SE¼ T.14 N., R.4 W. [Log by Syren Bros. Drilling]
0 to 2 2 to 13 13 to 26 26 to 56 56 to 78 78 to 136 136 to 180 180 to 181 Well 21629, Roy S 0 to 8 8 to 18 18 to 30	Topsoil Clay and gravel (damp) Gray clay and gravel Clay and gravel (damp) Clay and gravel Clay Clay and gravel Sandy gravel yren, NE ₄ SE ₄ T.14 N., R.4 W. [Log by Syren Bros. Drilling] Gravel and sand Sand and gravel (wet) Gravel
0 to 2 2 to 13 13 to 26 26 to 56 56 to 78 78 to 136 136 to 180 180 to 181 Well 21629, Roy S 0 to 8 8 to 18 18 to 30 30 to 50	Topsoil Clay and gravel (damp) Gray clay and gravel Clay and gravel (damp) Clay and gravel Clay Clay and gravel Sandy gravel yren, NE¼ SE¼ T.14 N., R.4 W. [Log by Syren Bros. Drilling] Gravel and sand Sand and gravel (wet) Gravel Sandy gravel (wet)
0 to 2 2 to 13 13 to 26 26 to 56 56 to 78 78 to 136 136 to 180 180 to 181 Well 21629, Roy S 0 to 8 8 to 18 18 to 30 30 to 50 50 to 136	Topsoil Clay and gravel (damp) Gray clay and gravel Clay and gravel (damp) Clay and gravel Clay Clay and gravel Sandy gravel yren, NE ₄ SE ₄ T.14 N., R.4 W. [Log by Syren Bros. Drilling] Gravel and sand Sand and gravel (wet) Gravel Sandy gravel (wet) Clay
0 to 2 2 to 13 13 to 26 26 to 56 56 to 78 78 to 136 136 to 180 180 to 181 Well 21629, Roy S 0 to 8 8 to 18 18 to 30 30 to 50 50 to 136 136 to 157	Topsoil Clay and gravel (damp) Gray clay and gravel Clay and gravel (damp) Clay and gravel Clay Clay and gravel Sandy gravel yren, NE ₄ SE ₄ T.14 N., R.4 W. [Log by Syren Bros. Drilling] Gravel and sand Sand and gravel (wet) Gravel Sandy gravel (wet) Clay Gravel and clay
0 to 2 2 to 13 13 to 26 26 to 56 56 to 78 78 to 136 136 to 180 180 to 181 Well 21629, Roy S 0 to 8 8 to 18 18 to 30 30 to 50 50 to 136 136 to 157 157 to 166	Topsoil Clay and gravel (damp) Gray clay and gravel Clay and gravel (damp) Clay and gravel Clay Clay and gravel Sandy gravel yren, NE ₄ SE ₄ T.14 N., R.4 W. [Log by Syren Bros. Drilling] Gravel and sand Sand and gravel (wet) Gravel Sandy gravel (wet) Clay Gravel and clay Sand and gravel (damp)
0 to 2 2 to 13 13 to 26 26 to 56 56 to 78 78 to 136 136 to 180 180 to 181 Well 21629, Roy S 0 to 8 8 to 18 18 to 30 30 to 50 50 to 136 136 to 157	Topsoil Clay and gravel (damp) Gray clay and gravel Clay and gravel (damp) Clay and gravel Clay Clay and gravel Sandy gravel yren, NE ₄ SE ₄ T.14 N., R.4 W. [Log by Syren Bros. Drilling] Gravel and sand Sand and gravel (wet) Gravel Sandy gravel (wet) Clay Gravel and clay

APPENDIX 2

Water-quality data near Big Lake, Alaska

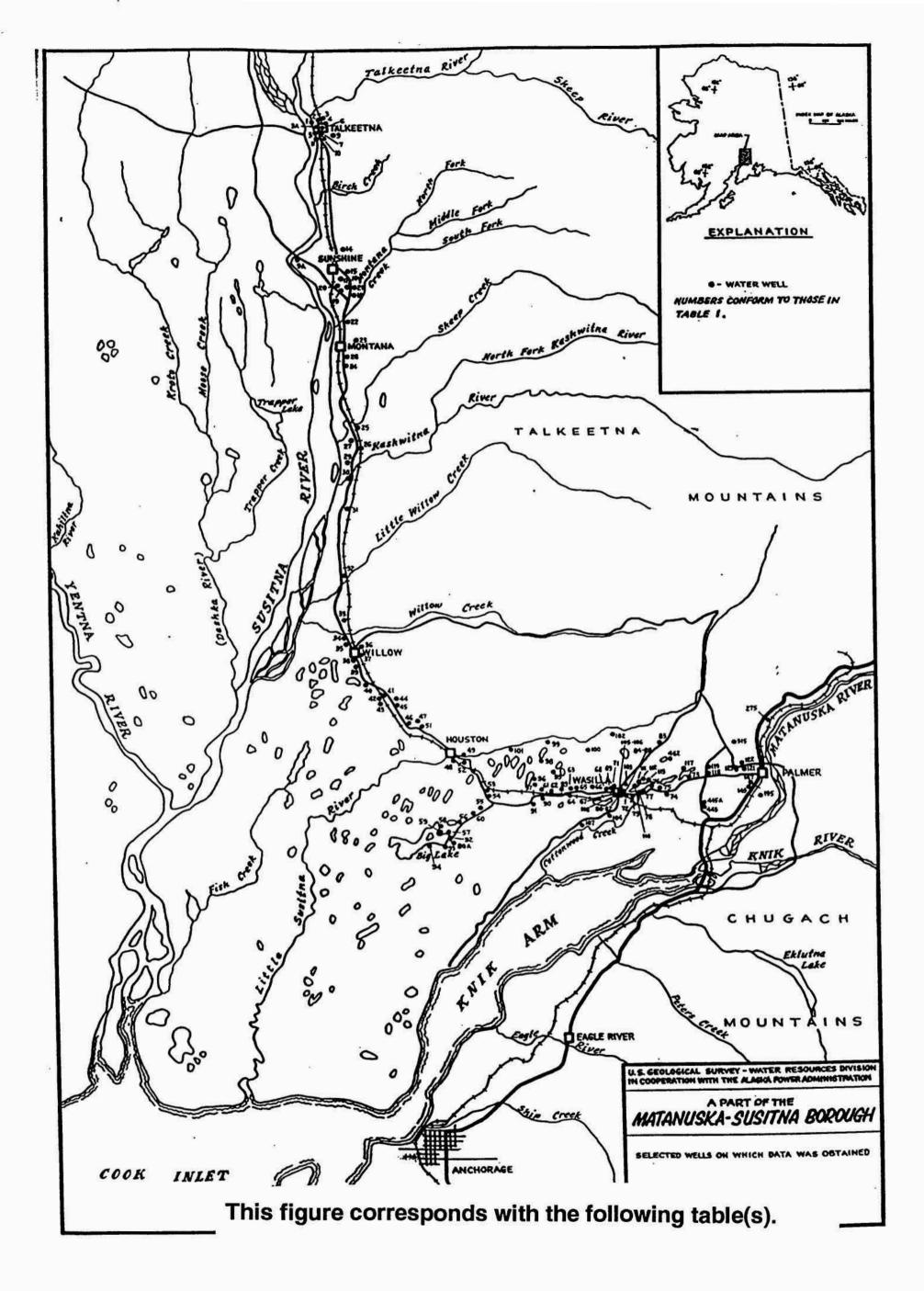
•


=

-

,

	10NE (907)-279-4014 ANC 274-3364 <u>ANAL YT ICAL</u>	HORAGE INDUSTR 5633 B Stre REPORT	EXSER SEP 1 1 1931 RECEIPS
DATE COLLECTED 8-31-81			RECVD. BY CY LAB # 8726
SAMPLED BY SOUR		4	DATE RECEIVED 8-31-81
REMARKSBIGLAKE LAN			DATE COMPLETED 9-8-81
			DATE REPORTED 9-9-81
			SIGNED archiel. then
. mg/l	n seneral de la seren en seren de la s N	mg/l	mg/1
]Ag,Silver < 0.05	[]P,Phosphorous_	< 0.05	[]Cyanide
]Al,Aluminum0.10	[]Pb,Lead	< 0.05	[]Sulfate
]As,Arsenic< 0.05	[]Pt,Platinum	< 0.05	[]Pheno1
]Au,Gold< 0.05	[]Sb,Antimony	< 0.05	[]Total Dissolved Solids
]B,Boron< 0.05	[]Se,Selenium	< 0.05	[]Total Volatile Solids
]Ba,Barium< 0.05	[]Si,Silicon	6.1	[]Suspended
]Bi,Bismuth <u>< 0.05</u>	[]Sn,Tin	< 0.10	Solids []Volatile Sus
]Ca,Calcium74	[]Sr,Strontium	0.40	pended Solids
[]Cd,Cadmium	[]Ti,Titanium	< 0.05	CaCO3 []Alkalinity as
[]Co,Cobalt0_05	[]W,Tungsten	<.1	CaCO3 [X] Sulfide < 0.002
[]Cr,Chromium_< 0.05	[]V,Vanadium	0.05	[X]_COD14
			[]
]Fe,Iron0.68	[]Zr,Zirconium	< 0.05	_ []
	[]Ammonia		[]mmhos Conductivity
]K,Potassium2_5	Nitrogen-N []Kjedah1	lacing and the second secon	[]pH Units
]Mg,Magnesium	Nitrogen-N []Nitrate-N		[]Turbidity NTU
]Mn,Manganese0,38	[]Nitrite-N		[]Color Units
	[]Phosphorus		[]T.Coliform/100m1
	(Urtho)-P		_ []
			_ []


TELEPHONE (907)-278-4014 274-3364	CHEMICAL & GEOLOGICAL LABORATO
ANCHORAGE I	LABORATO

-

		ANALYTICAL F	REPORT	
STOMER Artic	Environmental	Egrs. SAMPLE	.E LOCATION:	dfill,
TE COLLECTED_	8-20-81TI	TIME COLLECTED: 2015	5 Hrs.	RECVD.BY GY LAB USE UNLY
MPLED BY L. B	Brueggeman_SOURCE	Water Test Hole #2	2	DATE RECEIVED 8-21-81
HARKS BI	BIGLAKE LANDE	OFIN		DATE COMPLETED 8-31-81
		Ĩ	1	DATE REPORTED 9-1-81
	mn /]			SIGNED & chur X, Sheen
	. / <u>6</u>		. /6	
Ag,Silver	<0.05	[]P,Phosphorous	<0.05	- []Cyanide
Al, Aluminum	0.07	[]Pb,Lead	<0.05	- []Sulfate
As,Arsenic	<0.05	[]Pt,Platinum	<0.05	_ []Pheno1
Au,Gold	<0.05	[]Sb,Antimony	<0.05	tal
B,Boron	<0.05	[]Se,Selenium	<0.05	<pre>_ []Total Volatile</pre>
Ba,Barium	<0.05	[]Si,Silicon	4.1	- []Suspended
Bi,Bismuth	<0.05	[]Sn,Tin	<0.10	_ []Volatile Sus
Ca,Calcium	18	[]Sr,Strontium	0.15	es
Cd , Cadmi um	<0.01	[]Ti,Titanium	<0.05	[]Alkal inity as
Co,Cobalt	<0.05	[]W,Tungsten		- []
Cr,Chromium	<0.05	[]V,Vanadium	<0.05	- [] 7.8
Cu,Copper	<0.05	[]Zn,Zinc	<0.05	- []_Sulfide<0.002
Fe,Iron	0.41	.[]Zr,Zirconium	<0.05	• • • •
Hg,Mercury	<0.05	[]Ammonia		s Conductivity
K,Potassium	1.0	[]Kjedahl		- []pH Units
Mg, Magnesium_	9.0	[]Nitrate-N		_ []Turbidity NTU
Mn,Manganese_	<0.05	[]Nitrite-N		<pre>_ []Color Units</pre>
Mo,Molybdenum	<0.05	[]Phosphorus		<pre>_ []T.Coliform/100m1</pre>
Na, Sodium	5.0	- []Chloride		
Nickel	<0.05	[]Fluoride	<0.10	

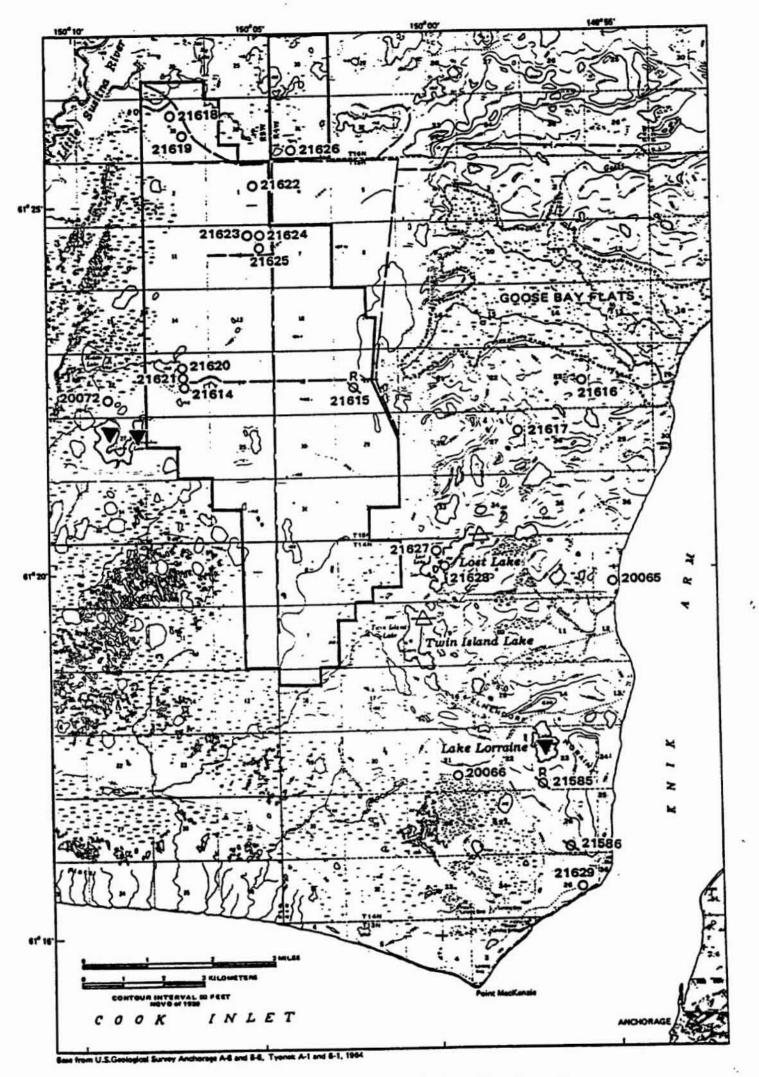
							Mar-	1	Potas-	Bicar-					Dissolved	Hardness as CaCO,	ŧ٥	Specific conduct-	1	
Me11 No.	Owner or hame	bate sampled	5114ca (510_)	Iron (Fe)	Mangan Cal- ese cium (Mrr) (Ca)	(Ce)	metum (Mg)	Bodium (Na)		bonate (HCO ₂)	Bulfate (BO ₄)	(CI)	(CI) (F)	('ON)	(residue on evap- oration at 180°C)	Carbon- ste	Non- carbon- ate	ance (micro- mhos at 25°C)	Ħ	Color
-	I Traiteethe Motel	9-20-66	1	0.71		16	4.6	6.4	1.1	56	1.6	· II	0.1	5.0	36	2	2	155	9.8	•
•		9-15-67	1	0.10		24	1.0	4.5	2.0	67	6.0	n	0.1	1.1	96	3	•	156	7.5	•
4	c TION 1801 2320		16	1.23		20	1.8	8.2	3.2	86	0	0	0.2	0.1	88	2	•	146		•
) :	Joe Heck	7-27-67		0.13		8.0	1.7	3.1	1.0	7	3.0	2.8	0.0	0.5	53	5	•	5	6.1	0
: 2	-	7-27-67	20	0.69		7.6	1.5	2.3	6.0	30	3.0	2.5	0.0	0.8	2	35	•	Ş	6.1	٥
: :	total Schole	7-28-67	17	1.01		38	5.6	4.9	2.5	161	2.5	1.4	0.3	0.3	153	119	•	245	7.8	•
: :	William School	7-28-67	23	7.0		44	6.4	5.1	2.2	180	5.0	0.7	0.5	0.3	6	136	•	263	1.7	ò
: :		11-15-65	12	0.02	0.02	11	1.9	1.7	0.5	15	1.0	1.5	0.0	1.0	8	9	ą	=	1.1	S
		8-05-67	1	0.12		57	6.6	2.6	8.0	164	17	1.1	0.0	33	209	170	46	529	•••	•
1		8-05-67	1	0.03		9	5.0	3.2	0.3	142	8.0	0.4	0.5	:	191	120	•	221	2	•
	toyon watery was		91	0.0	÷.,	36	13	3.5	1.0	155	17	1	0.1	1:9	159	140	2	260	1.1	9
1	and the set by the well i		1	0.0	5	z	1.6	6.2	1.2	160	6.9	2.5	0.2	0.2	155	123	•	261	7.5	•
1 5	city of Palmer Well 2	2	=	0.02		5	6.7	5.7	1.8	162	5.8	2.1	0.1	0.0	150	120	•	253	8.0	-
1 2	City of Palmer Well 3	-	R	0.0		2	4.5	13	1:1	153	34	4.6	0.2	0.1	195	. IS	•	303	8.2	-
	A DATE OF THE PARTY OF THE PART	a contraction of the	-																	

Chemical enalyses of well waters in the Matanuska-Susitna Borough area - concentrations in milligrams per liter

.

12

ï


×

٠

٠.

 2

e (e

- Location of data-collection sites.

This figure corresponds with the following table(s).

i.

•

Well number	Sample depth (ft)	Date of sample	Specific con- ductance (µmho/cm)	рН	Temper- ature (°C) .	Hardness (mg/L as CaCO ₃)	Hardness noncar- bonate (mg/L as CaCO ₃)	Calcium dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg)	Sodium, dis- solved (mg/L as Na)	Percen sodium	
21585	137 277 347	02-19-81 02-23-81 02-25-81	250 400 675	8.3 8.7 8.8	3.0 4.0 4.0	110 140 83	0.00 .00 .00	24 31 22	13 15 6.8	12 45 120	18 41 75	0.5 1.7 5.7
21586	158 240	02-12-81 02-13-81	338 338	8.2 8.1	3.5 3.5	72 93	.00 .00	15 22	8.5 9.2	54 43	61 49	2.8 1.9
21615	318	10-12-82	2100	8.3	3.5	330		54	48	400	72	9.6
21618	239	09-24-82	350	8.2	3.5	63	.00	13	7.5	58	64	3.5
21619	50	09-24-82	280	7.9	3.5	95	4.0	31	4.3	18	29	.8
21614	231	09-07-83	215	8.2	3.0	110	.00	37	3.7	2.8	5	.1
Well number	Date of sample	Potas- sium, dis- solved (mg/L as K)	Alka- linity lab (mg/L as CaCO ₃)	Sulfa dis- solve (mg/L as SO	te ric dis d solv (mg,	ved solv /L (mg/	e, dis- - solved ed (mg/L L as	Solids sum of consti- tuents dis- solyed (mg/L)	gen - N0 ₂ +	, Ph NO ₃ pho - di ed sol L (m	s- ved ig/L	Arsenic dis- solved (ug/L as As)
21585	02-19-8 02-23-8 02-25-8	1 2.9 1 3.1	120 200 190	9.5 8.7 14	3.	.1 0.1 .2 .2	13	150 252 388	0.00 .00 .00	0.	060 070 060	13 22 6
21586	02-12-8 02-13-8		170 150	9.1 7.3		.3 .5	9.1 12	204 204	.00 .00		040 040	8 9
21615	10-12-8	2 9.2	< 1.0	130	700	· .2	12	1430	<.10		040	15
21618	09-24-8	2 5.1	181	< 5.0	7.	8.3	15		<.10	•	990	38
21619	09-24-8		91	8.0				151	20		020	1
21614	09-07-8	3 1.4	108	5.3	1.	2 <.1	13	130	<.1		030	

1

Continued

Well number	Date of sample	Boron dis- solved (μg/L as B)	Iron, dis- solved (μg/L as Fe)	Manga- nese, dis- solved (µg/L as Mn)
21585	02-19-81	90	. 30	100
-1000	02-23-81	170	40	90
	02-25-81	200	60	60
21586	02-12-81	410	20	40
	02-13-81	160	40	80
21615	10-12-82	130	560	170
21618	09-24-82	200	100	76
21619	09-24-82	30	14	6
21614	09-07-83		130	94

•

.

Records of Wells

-Chemical analyses of ground water from the Matanuska Valley agricultural area, Alaska¹

							Pat	ts per mil	lion	
Well	Laboratory No.	. Owner	Geologic source	Depth (feet)	Date of collection	Silica (Sice)	Iron (Fe) dissolved ²	Iron (Fe) total	Manganese (Mn) dissolved ³	Manganese (Mn) total
4 44 88	2259 217 158	Lasy Mountain Children's Homedo	Sand, gravel	280 11	11-13-53 8-29-49	8.6 20		0.07	0.05	
88 70 80	306	Falk	Gravel	12	8-27-49	8.2 19		.02		
101	8256 2025 ³	McKinley	do	144	11-28-55	7.8	0.00	.03	.02	
123	157	Alasta Aural Renabilitation Corporation	Gravel	49	10- 4-48	10	.03	.11		0.1
145	215	Lester Thuma	Rock(?)	37	8-26-49	16		.06		
147	8327		Gravel	27	8-30-49	16 9.6		.02		
195	3257		Sand.	112	11-16-55	8.9	.00	.10	.00	
244	3050 3051	TOSTINGE	Gravel	129	6-21-55	9.9	.02	.12		:
275	1060	NOTIS	do	58	6-21-55	. 8.9	.70	2.4		
815	155	HoltetYadon	Sand Gravel	14	11-16-51 7	15		.02		
847	20243	Alprecht	do	36	8-22-49	13		.02		
363	1672	City of Faimer	do	85 165	Oct. 1948 11- 1-52	14		.05		
443	861	Alacas Articulular Primental Station	do	36	9-11-51			.06		
445a 462	2648	United States Geological Survey	do	295	11- 9-54	90		.02		
494	159 153		da	32	8-14-49	23		7.2	.08	
522	216	Valley Christian Children's Home		40	8-22-49	0.0		.02	.00	
522a	3003		Gravel	21	8-31-49	15		.02		
535	3208		do	131	5-25-55	14	.02	1.1	.23	
660	324	Wasilla School. Alaska Railroad, Pittman.	do Till(?)	73	11-14-55			.02		
prings	2023*	Matanuska Valley Farmers Cooperating Assoc.	Gravel	40	6-28-50	28		1.5		
pring	214	Dinkle	do		Oct. 1948 8-22-49	16	.04	.09		
pring	1753		Sandstone		12- 4-52	18		.02		

							Pa	urts per mill	ion						
Well	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbouate (HCO.)	Carbonate (CO.)	Sulfate (SO4)	Chloride (Cl)	Fluoride (F)	Nitrate (NO3)	Dissolved solids	Total hardness as (CaCOs)	Noncarbonate bardness	Specific conductance (micrombos at 25°C)	βH
4 4a 38 70 80 101 123 145 147 195 244 244 244 244 275 315 347 363 347 363 347 363 347 363 347 363 347 222 535 660 Spring ⁴ Spring ⁵	7.7 29 51 56 76 75 147 14 39 21 15 14 46 55 34 54 26 178 27 28 178 27 28 46 18 37	0.9 7.6 5.6 5.9 9.4 20 30 1.8 4.2 3.6 2.7 2.5 5.9 20 9.1 8.7 8.2 21 5.1 8.3 	35 3. 5. 6.0 9. 34 6.3 4.8 4.4 3. 6.2 11 6.2 11 6.2 11 5.7		94 91 143 194 147 236 266 371 2064 97 91 63 55 160 172 160 175 175 160 172 160 172 160 172 160 172 175 160 172 160 174 175 160 175 175 160 175 175 160 175 175 160 175 175 160 175 175 160 175 175 160 175 175 160 175 175 160 175 175 175 175 175 175 175 175 175 175	0 	17 6.1 36 120 41 38 35 73 6.0 40 3.5 3.0 5.9 12 5.5 2.6 7.5 2.6 1.3 5.2 3.8 40 5.9 12 5.5 2.6 5.3 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	1.1 8.0 4.5 4.8 42 74 5.0 5.0 1.0 1.0 1.0 1.8 3.5 2.5 5.2 1.0 7.0 85 5.2 1.0 2 2 3.0 2.0 5.0 2 2.0 5.0	.0 .0 .1 .1 .0	1.8 24 .8 2.4 9.4 35 96 4 1.0 1.6 2.7 .8 2.3 46 2.3 .1 .6 81 9.9 .7 .6 1.1 1.6 1.3	120 143 182 197 273 388 652 203 153 92 70 69 159 292 155 191 147 	23 104 150 244 244 228 269 490 490 490 490 492 115 67 49 122 170 99 122 170 99 1111 630 88 80 88 104 112 113 130 68 104	0 29 33 44 34 51 186 0 35 0 0 0 8 78 0 0 0 8 78 0 11 0 144 142 0	193 224 307 515 327 444 657 1,050 327 255 156 115 102 274 444 261 326 235 223 1,040 201 220 221 227 140 247	

¹ Analyses by Branch of Quality of Water, U.S. Geological Survey. ³ In solution at time of analysis. ⁴ Salt Lake City laboratory No. ⁴ Includes the equivalent of 7 ppm CO₂.

Brasil Spring, 3 miles northwest of Palmer.
Bluff overlooking Knik Arm, 2½ miles southeast of Wasilla.
Bluff, Matanuska River half a mile southwest of Wolvering Creek.