State of Alaska Alaska / Natural Resources DNR / Geological & Geophysical Surveys DGGS / PublicationsPubs / Pálfy, József, 1997Pálfy, József, 1997

Pálfy, József, 1997

Calibration of the Jurassic time scale

Bibliographic Reference

Pálfy, József, 1997, Calibration of the Jurassic time scale: Vancouver, British Columbia, Canada, University of British Columbia, Ph.D. dissertation, 180 p.


Current time scales disagree on age estimates for Jurassic stage boundaries and carry large uncertainties. The U-Pb or 40Ar/39Ar dating of volcaniclastic rocks of precisely known biochronologic age is the preferred method to improve the calibration. Eighteen new U-Pb zircon dates were obtained on volcaniclastic rocks from Jurassic volcanic arc assemblages of the North American Cordillera. The volcanic rocks are interbedded in fossiliferous marine sedimentary rocks, which in turn were dated by ammonite biochronology at the zonal level. In the Queen Charlotte Islands, a tuff layer directly beneath the Triassic-Jurassic boundary was dated at 200 +/- 1 Ma. Lowermost Jurassic (middle and upper Hettangian) volcaniclastic rocks from Alaska yielded ages of 200.8 +2.7/-2.8 Ma, 197.8 +/- 1.0 Ma, and 197.8 +1.2/-0.4 Ma. An ash layer near the base of the Middle Toarcian Crassicosta Zone in its type section in the Queen Charlotte Islands was dated at 181.4 +/-1.2 Ma. The other new dates furnish additional time scale calibration points. The biostratigraphy of measured sections contributes to the understanding of North American Jurassic ammonite successions, especially for the Hettangian of Alaska. In an attempt to quantify biochronologic correlation uncertainty, the computer-assisted Unitary Association method was used to correlate a Toarcian North American regional ammonite zone with the northwest European standard. The correlation uncertainty between the two regions is not more than +/- 1 standard subzone. A radiometric age database consisting of 50 U-Pb and 40Ar/39Arages was compiled to construct a revised Jurassic time scale. Apart from the newly obtained U-Pb ages, several recently reported Cordilleran dates are included with revised biochronologic ages. Additional dates were compiled from previous time scales and recent literature. Only a few boundaries are dated directly. The chronogram method was applied for the first time to estimate all Early and early Middle Jurassic chron boundaries, as well as late Middle Jurassic substage boundaries and Late Jurassic stage boundaries. The most significant improvement concerns the Pliensbachian and Toarcian, where six consecutive chron boundaries were determined. The derived chron durations vary between 0.4 and 1.6 Ma. Their disparities argue against the assumption of equal duration of chrons or subchrons, which was used as a basis for interpolation in several previous time scales. Interpolation based on magnetochronology improved chronogram estimates for the latest Jurassic, where the isotopic database remains too sparse. The initial boundaries of Jurassic stages are proposed as follows: Berriasian (Jurassic-Cretaceous): 144.8 +2.6/-3.7 Ma; Tithonian: 151.5 +1.0/-1.4 Ma; Kimmeridgian: 154.7 +1.0/-0.9 Ma; Oxfordian: 156.6 +2.0/-2.7 Ma; Callovian: 159.7 +/- 1.1 Ma; Bathonian: 166.0 +0.6/-5.4 Ma; Bajocian: 174.0 +1.0/-7.3 Ma; Aalenian: 178.0 +1.0/-1.5 Ma; Toarcian: 183.6 +1.6/-1.1 Ma; Pliensbachian: 192.0 +3.8/-5.2 Ma; Sinemurian: 197.0 +1.2/-4.2 Ma; Hettangian (Triassic-Jurassic): 201 +/- 1 Ma. The revised time scale was used to assess the timing of mass extinction events and subsequent biotic recoveries.

Publication Products


Theses and Dissertations

Top of Page

Copyright © 2022 · State of Alaska · Division of Geological & Geophysical Surveys · Webmaster